1
|
Padhy DS, Aggarwal P, Velayutham R, Banerjee S. Aerobic exercise and metformin attenuate the cognitive impairment in an experimental model of type 2 diabetes mellitus: focus on neuroinflammation and adult hippocampal neurogenesis. Metab Brain Dis 2025; 40:92. [PMID: 39775196 DOI: 10.1007/s11011-024-01489-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder that increases the prevalence of cognitive impairment in the geriatric population. Aerobic exercise is an excellent non-pharmacological therapeutic strategy to prevent Alzheimer's disease, the most common form of dementia. The exact molecular mechanism of aerobic exercise (Exe) as an intervention to counter cognitive decline is far from clear. Metformin is a first-line agent against T2DM with neuroprotective properties. The present study assessed the role of treadmill exercise in combination with a low dose of metformin (Met; 70 mg/kg) in cognitive impairment and its associated molecular mechanism in T2DM rats. The experimental model of T2DM-associated cognitive decline was created by administration of a high-fat diet (HFD) with a low dose of streptozotocin (STZ; 35 mg/kg). Neurobehavioral assessments were performed to evaluate spatial recognition and fear-conditioned memory across the groups: control, HFD + STZ, HFD + STZ + Exe, and HFD + STZ + Exe + Met. In addition, we performed immunohistochemistry and western blotting on the rat hippocampal tissue from the above groups for protein expression studies. T2DM rats showed a significant cognitive decline compared to the control group, which improved in the long-term exercise and metformin co-administered animals. The level of neuroinflammation was significantly elevated in the hippocampal tissue of T2DM rats compared to the control and lowered after exercise and metformin treatment. T2DM reduced mature neurons and neurogenesis while increasing astrogliosis and microgliosis, ameliorated by exercise and metformin treatment. Moreover, T2DM impaired hippocampal neurogenesis by reducing the canonical Wnt/β-catenin pathway, which got upregulated in exercise and metformin-co-administered rats. Long-term aerobic exercise with metformin treatment ameliorated neuroinflammation and promoted adult hippocampal neurogenesis via upregulating the canonical Wnt/β-catenin pathway in T2DM rats.
Collapse
Affiliation(s)
- Dibya Sundar Padhy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India
| | - Punita Aggarwal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India
| | - Ravichandiran Velayutham
- Department of Natural Products, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India.
| | - Sugato Banerjee
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Kolkata, Kolkata, West Bengal, 700054, India.
| |
Collapse
|
2
|
Nazli D, Bora U, Ozhan G. Wnt/β-catenin Signaling in Central Nervous System Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1474:13-33. [PMID: 39511125 DOI: 10.1007/5584_2024_830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The Wnt/β-catenin signaling pathway plays a pivotal role in the development, maintenance, and repair of the central nervous system (CNS). This chapter explores the diverse functions of Wnt/β-catenin signaling, from its critical involvement in embryonic CNS development to its reparative and plasticity-inducing roles in response to CNS injury. We discuss how Wnt/β-catenin signaling influences various CNS cell types-astrocytes, microglia, neurons, and oligodendrocytes-each contributing to repair and plasticity after injury. The chapter also addresses the pathway's involvement in CNS disorders such as Alzheimer's and Parkinson's diseases, psychiatric disorders, and traumatic brain injury (TBI), highlighting potential Wnt-based therapeutic approaches. Lastly, zebrafish are presented as a promising model organism for studying CNS regeneration and neurodegenerative diseases, offering insights into future research and therapeutic development.
Collapse
Affiliation(s)
- Dilek Nazli
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Ugur Bora
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye
- Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, Izmir, Türkiye
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center (IBG), Dokuz Eylul University Health Campus, Izmir, Türkiye.
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye.
| |
Collapse
|
3
|
Zheng G, Lin S, Wang S, Yan Y, Zheng D. Regulation of Natural Products on Wnt/β-Catenin Signaling Pathway in Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2025; 53:709-735. [PMID: 40374374 DOI: 10.1142/s0192415x25500272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in both physiological and pathological conditions. Targeting molecules associated with the Wnt/β-catenin signaling pathway presents a promising approach for disease treatment. The use of natural products in treating various diseases is widespread due to their favorable biocompatibility, low toxicity, and high biological activity. Research has shown that natural products such as curcumin and resveratrol can regulate multiple signaling pathways under disease conditions, including the Wnt/β-catenin signaling pathway. However, the regulatory mechanisms of natural products remain incompletely understood. This review aims to explore the regulatory effects of natural products on the Wnt/β-catenin signaling pathway in certain diseases, especially in the process of tumor progression. It outlines the composition and mechanisms of the Wnt/β-catenin signaling pathway. Furthermore, we predicted the potential binding sites of these natural products to this pathway, summarized the effects of diverse natural products on this signaling pathway, and conducted a preliminary exploration ofd the mechanisms of the effects of natural products. In addition, we considered and discussed the limitations of natural products, such as potential side effects from long-term use and the precision in targeting the Wnt/β-catenin signaling pathway. This review provides a theoretical basis for the targeted strategy of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Genggeng Zheng
- School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuoqi Lin
- School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shijie Wang
- School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuxiang Yan
- School of Stomatology, Fujian Medical University, Fuzhou, China
| | - Dali Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
5
|
Wanionok NE, Morel GR, Fernández JM. Osteoporosis and Alzheimer´s disease (or Alzheimer´s disease and Osteoporosis). Ageing Res Rev 2024; 99:102408. [PMID: 38969142 DOI: 10.1016/j.arr.2024.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Alzheimer's disease (AD) and osteoporosis are two diseases that mainly affect elderly people, with increases in the occurrence of cases due to a longer life expectancy. Several epidemiological studies have shown a reciprocal association between both diseases, finding an increase in incidence of osteoporosis in patients with AD, and a higher burden of AD in osteoporotic patients. This epidemiological relationship has motivated the search for molecules, genes, signaling pathways and mechanisms that are related to both pathologies. The mechanisms found in these studies can serve to improve treatments and establish better patient care protocols.
Collapse
Affiliation(s)
- Nahuel E Wanionok
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina
| | - Gustavo R Morel
- Biochemistry Research Institute of La Plata "Professor Doctor Rodolfo R. Brenner" (INIBIOLP), Argentina
| | - Juan M Fernández
- Laboratorio de Osteopatías y Metabolismo Mineral (LIOMM), Facultad de Cs. Exactas. Universidad Nacional de La Plata UNLP-CIC, Argentina.
| |
Collapse
|
6
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
7
|
Deng AF, Wang FX, Wang SC, Zhang YZ, Bai L, Su JC. Bone-organ axes: bidirectional crosstalk. Mil Med Res 2024; 11:37. [PMID: 38867330 PMCID: PMC11167910 DOI: 10.1186/s40779-024-00540-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/31/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its recognized role in providing structural support, bone plays a crucial role in maintaining the functionality and balance of various organs by secreting specific cytokines (also known as osteokines). This reciprocal influence extends to these organs modulating bone homeostasis and development, although this aspect has yet to be systematically reviewed. This review aims to elucidate this bidirectional crosstalk, with a particular focus on the role of osteokines. Additionally, it presents a unique compilation of evidence highlighting the critical function of extracellular vesicles (EVs) within bone-organ axes for the first time. Moreover, it explores the implications of this crosstalk for designing and implementing bone-on-chips and assembloids, underscoring the importance of comprehending these interactions for advancing physiologically relevant in vitro models. Consequently, this review establishes a robust theoretical foundation for preventing, diagnosing, and treating diseases related to the bone-organ axis from the perspective of cytokines, EVs, hormones, and metabolites.
Collapse
Affiliation(s)
- An-Fu Deng
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fu-Xiao Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Si-Cheng Wang
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, 200444, China
| | - Ying-Ze Zhang
- Department of Orthopaedics, the Third Hospital of Hebei Medical University, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, Shijiazhuang, 050051, China.
| | - Long Bai
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou, 325000, Zhejiang, China.
| | - Jia-Can Su
- Institute of Translational Medicine, Organoid Research Center, Shanghai University, Shanghai, 200444, China.
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
8
|
Suresh S, Vellapandian C. Cyanidin Ameliorates Bisphenol A-Induced Alzheimer's Disease Pathology by Restoring Wnt/β-Catenin Signaling Cascade: an In Vitro Study. Mol Neurobiol 2024; 61:2064-2080. [PMID: 37843801 DOI: 10.1007/s12035-023-03672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing memory loss and cognitive decline, linked to amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein accumulation in the brain. Environmental pollutant bisphenol A (BPA) has been implicated in AD pathology due to its neurotoxic effects. This study aims to evaluate cyanidin from flower bracts of Musa acuminata Colla (red variety; AAA group) for its neuroprotective properties against BPA-induced AD pathology. The extraction of cyanidin was optimized using 70% ethanol in acidified water, showing promising anti-acetylcholinesterase activity. Cyanidin was effectively purified from the resultant extract and characterized using spectroscopic techniques. Two gradient doses of cyanidin (90 and 10 µg/ml) were determined based on cell viability assay. The role of cyanidin in promoting nerve growth and differentiation was assessed in PC12 cells for up to 72 h. A discernible and statistically significant difference was assessed in neurite extension at both doses at 72 h, followed by pre-treatment with cyanidin. BPA stimulation significantly increased the p-tau expression compared to the control (p < 0.0001). Pre-treatment with cyanidin reduced the tau expression; however, a significant difference was observed compared to control cells (p = 0.0003). Cyanidin significantly enhanced the mRNA expression of Wnt3a (p < 0.0001), β-catenin (p = 0.0004), and NeuroD1 (p = 0.0289), and decreased the expression of WIF1(p = 0.0040) and DKK1 (p < 0.0001), which are Wnt antagonist when compared to cells stimulated with BPA. Conclusively, our finding suggests that cyanidin could agonize nerve growth factor and promote neuronal differentiation, reduce tau-hyperphosphorylation by restoring the Wnt/β-catenin signaling cascade, and thereby render its neuroprotective potential against BPA-induced AD pathology.
Collapse
Affiliation(s)
- Swathi Suresh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India.
| |
Collapse
|
9
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
10
|
Shahbaz MA, Kuivanen S, Lampinen R, Mussalo L, Hron T, Závodná T, Ojha R, Krejčík Z, Saveleva L, Tahir NA, Kalapudas J, Koivisto AM, Penttilä E, Löppönen H, Singh P, Topinka J, Vapalahti O, Chew S, Balistreri G, Kanninen KM. Human-derived air-liquid interface cultures decipher Alzheimer's disease-SARS-CoV-2 crosstalk in the olfactory mucosa. J Neuroinflammation 2023; 20:299. [PMID: 38098019 PMCID: PMC10722731 DOI: 10.1186/s12974-023-02979-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Muhammad Ali Shahbaz
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Suvi Kuivanen
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Institute of Virology, 10117, Berlin, Germany
| | - Riikka Lampinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Laura Mussalo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Tomáš Hron
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Ravi Ojha
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Liudmila Saveleva
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Numan Ahmad Tahir
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210, Kuopio, Finland
- Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210, Kuopio, Finland
| | | | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
| | - Sweelin Chew
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Giuseppe Balistreri
- Department of Virology, Faculty of Medicine, University of Helsinki, 00290, Helsinki, Finland
- The Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
11
|
Hao Z, Liu K, Zhou L, Chen P. Precious but convenient means of prevention and treatment: physiological molecular mechanisms of interaction between exercise and motor factors and Alzheimer's disease. Front Physiol 2023; 14:1193031. [PMID: 37362440 PMCID: PMC10285460 DOI: 10.3389/fphys.2023.1193031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Disproportionate to the severity of Alzheimer's disease (AD) and the huge number of patients, the exact treatment and prevention of AD is still being explored. With increasing ageing, the search for means to prevent and treat AD has become a high priority. In the search for AD, it has been suggested that exercise may be one of the more effective and less costly means of preventing and treating AD, and therefore a large part of current research is aimed at exploring the effectiveness of exercise in the prevention and treatment of AD. However, due to the complexity of the specific pathogenesis of AD, there are multiple hypotheses and potential mechanisms for exercise interventions in AD that need to be explored. This review therefore specifically summarises the hypotheses of the interaction between exercise and AD from a molecular perspective, based on the available evidence from animal models or human experiments, and explores them categorised according to the pathologies associated with AD: exercise can activate a number of signalling pathways inhibited by AD (e.g., Wnt and PI3K/Akt signalling pathways) and reactivate the effects of downstream factors regulated by these signalling pathways, thus acting to alleviate autophagic dysfunction, relieve neuroinflammation and mitigate Aβ deposition. In addition, this paper introduces a new approach to regulate the blood-brain barrier, i.e., to restore the stability of the blood-brain barrier, reduce abnormal phosphorylation of tau proteins and reduce neuronal apoptosis. In addition, this paper introduces a new concept." Motor factors" or "Exerkines", which act on AD through autocrine, paracrine or endocrine stimulation in response to movement. In this process, we believe there may be great potential for research in three areas: (1) the alleviation of AD through movement in the brain-gut axis (2) the prevention and treatment of AD by movement combined with polyphenols (3) the continued exploration of movement-mediated activation of the Wnt signalling pathway and AD.
Collapse
Affiliation(s)
- Zikang Hao
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| | - Kerui Liu
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Lu Zhou
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Ping Chen
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| |
Collapse
|
12
|
Jia Y, Cheng S, Liu L, Cheng B, Liang C, Ye J, Chu X, Yao Y, Wen Y, Kafle OP, Zhang F. Association between birth by caesarian section and anxiety, self-harm: a gene-environment interaction study using UK Biobank data. BMC Psychiatry 2023; 23:237. [PMID: 37029353 PMCID: PMC10080817 DOI: 10.1186/s12888-023-04720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/27/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Limited efforts have been paid to explore the underlying genetic mechanisms of birth by caesarian section (CS) affecting the risks of adult anxiety and self-harm. METHODS Using UK Biobank cohort, the logistic regression model was first applied to evaluate the associations of adult anxiety and self-harm with birth by CS. Using birth by CS as exposure variables, genome-wide by environment interaction study (GWEIS) was then applied by PLINK2.0 to identify associated genes interacting with birth by CS for anxiety and self-harm. RESULTS In the observational study, significant associations were observed between birth by CS and anxiety (odds ratio (OR) = 1.24; 95% confidence interval (CI), 1.12-1.38; P = 4.86 × 10- 5), and self-harm (OR = 1.12; 95% CI, 1.01-1.24; P = 2.90 × 10- 2). GWEIS revealed multiple suggestive genes interacted with birth by CS for anxiety, such as DKK2 (rs13137764, P = 1.24 × 10- 9, adjusted P = 2.68 × 10- 7) and ATXN1 (rs62389045, P = 4.38 × 10- 8, adjusted P = 3.55 × 10- 6). For self-harm, significant gene-environment interactions of birth by CS on self-harm were detected, such as ALDH1A2 (rs77828167, P = 1.62 × 10- 8; rs116899929, P = 1.92 × 10- 8) and DAB1 (rs116124269, P = 3.20 × 10- 8; rs191070006, P = 3.63 × 10- 8). CONCLUSIONS Our results suggested that birth by CS was associated with the risk of adult anxiety and self-harm. We also discovered some genes interacted with birth by CS might influence the risk of anxiety and self-harm, which may provide novel clues for the pathogenesis of those mental disorders.
Collapse
Affiliation(s)
- Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chujun Liang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Ye
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaomeng Chu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yao Yao
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Om Prakash Kafle
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
13
|
Lan XB, Ni YS, Liu N, Wei W, Liu Y, Yang JM, Ma L, Bai R, Zhang J, Yu JQ. Neuroprotective effects of oxymatrine on hypoxic-ischemic brain damage in neonatal rats by activating the Wnt/β-catenin pathway. Biomed Pharmacother 2023; 159:114266. [PMID: 36652736 DOI: 10.1016/j.biopha.2023.114266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Neuronal apoptosis is a major pathological process associated with neurological dysfunction in neonates after hypoxic-ischemic brain damage (HIBD). Our previous study demonstrated that oxymatrine (OMT) exerts potential neuroprotective effects on neonatal rats subjected to hypoxic-ischemic insult. However, the underlying molecular mechanism remains unclear. In this study, we investigated the effects of OMT-mediated neuroprotection on neonatal HIBD by attempting to determine its effect on the Wnt/β-catenin signaling pathway and explored the underlying mechanism. Both 7-day-old rat pups and primary hippocampus neurons were used to establish the HIBD and oxygen-glucose deprivation (OGD) injury models, respectively. Our results demonstrated that OMT treatment significantly increased cerebral blood flow and reduced S100B concentration, infarct volume, and neuronal apoptosis in neonatal rats. In vitro, OMT markedly increased cell viability and MMP level and decreased DNA damage. Moreover, OMT improved the mRNA and protein levels of Wnt1 and β-catenin, inhibited the expression of DKK1 and GSK-3β, enhanced the nuclear transfer of β-catenin, and promoted the binding activity of β-catenin with Tcf-4; however, it downregulated the expression of cleaved caspase-3 and cleaved caspase-9. Notably, the introduction of XAV-939 (a Wnt/β-catenin signaling inhibitor) reversed the positive effects of OMT both in vivo and in vitro. Collectively, our findings demonstrated that OMT exerted a neuroprotective effect on neonatal HIBD by inhibiting neuronal apoptosis, which was partly via the activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yuan-Shu Ni
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Wei Wei
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jia-Mei Yang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ru Bai
- College of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China; State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
14
|
Manandhar S, Sankhe R, Priya K, Hari G, Kumar B H, Mehta CH, Nayak UY, Pai KSR. Molecular dynamics and structure-based virtual screening and identification of natural compounds as Wnt signaling modulators: possible therapeutics for Alzheimer's disease. Mol Divers 2022; 26:2793-2811. [PMID: 35146638 PMCID: PMC9532339 DOI: 10.1007/s11030-022-10395-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
Wnt signaling pathway is an evolutionarily conserved pathway responsible for neurogenesis, axon outgrowth, neuronal polarity, synapse formation, and maintenance. Downregulation of Wnt signaling has been found in patients with Alzheimer's disease (AD). Several experimental approaches to activate Wnt signaling pathway have proven to be beneficial in alleviating AD, which is one of the new therapeutic approaches for AD. The current study focuses on the computational structure-based virtual screening followed by the identification of potential phytomolecules targeting different markers of Wnt signaling like WIF1, DKK1, LRP6, GSK-3β, and acetylcholine esterase. Initially, screening of 1924 compounds from the plant-based library of Zinc database was done for the selected five proteins using docking approach followed by MM-GBSA calculations. The top five hit molecules were identified for each protein. Based on docking score, and binding interactions, the top two hit molecules for each protein were selected as promising molecules for the molecular dynamic (MD) simulation study with the five proteins. Therefore, from this in silico based study, we report that Mangiferin could be a potential molecule targeting Wnt signaling pathway modulating the LRP6 activity, Baicalin for AChE activity, Chebulic acid for DKK1, ZINC103539689 for WIF1, and Morin for GSk-3β protein. However, further validation of the activity is warranted based on in vivo and in vitro experiments for better understanding and strong claim. This study provides an in silico approach for the identification of modulators of the Wnt signaling pathway as a new therapeutic approach for AD.
Collapse
Affiliation(s)
- Suman Manandhar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Keerthi Priya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
15
|
Genetic analyses identify pleiotropy and causality for blood proteins and highlight Wnt/β-catenin signalling in migraine. Nat Commun 2022; 13:2593. [PMID: 35546551 PMCID: PMC9095680 DOI: 10.1038/s41467-022-30184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Migraine is a common complex disorder with a significant polygenic SNP heritability (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2). Here we utilise genome-wide association study (GWAS) summary statistics to study pleiotropy between blood proteins and migraine under the polygenic model. We estimate \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2 for 4625 blood protein GWASs and identify 325 unique proteins with a significant \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${h}_{{SNP}}^{2}$$\end{document}hSNP2 for use in subsequent genetic analyses. Pleiotropy analyses link 58 blood proteins to migraine risk at genome-wide, gene and/or single-nucleotide polymorphism levels—suggesting shared genetic influences or causal relationships. Notably, the identified proteins are largely distinct from migraine GWAS loci. We show that higher levels of DKK1 and PDGFB, and lower levels of FARS2, GSTA4 and CHIC2 proteins have a significant causal effect on migraine. The risk-increasing effect of DKK1 is particularly interesting—indicating a role for downregulation of β-catenin-dependent Wnt signalling in migraine risk, suggesting Wnt activators that restore Wnt/β-catenin signalling in brain could represent therapeutic tools against migraine. Understanding of the causes and treatment of migraine is incomplete. Here, the authors detect pleiotropic genetic effects and causal relationships between migraine and 58 proteins that are largely distinct from migraine-associated loci identified by GWAS.
Collapse
|
16
|
Narvaes RF, Nachtigall EG, Marcondes LA, Izquierdo I, Myskiw JDC, Furini CR. Involvement of medial prefrontal cortex canonical Wnt/β-catenin and non-canonical Wnt/Ca2+ signaling pathways in contextual fear memory in male rats. Behav Brain Res 2022; 430:113948. [DOI: 10.1016/j.bbr.2022.113948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 04/25/2022] [Accepted: 05/24/2022] [Indexed: 11/02/2022]
|
17
|
Jiang H, Zhang Z, Yu Y, Chu HY, Yu S, Yao S, Zhang G, Zhang BT. Drug Discovery of DKK1 Inhibitors. Front Pharmacol 2022; 13:847387. [PMID: 35355709 PMCID: PMC8959454 DOI: 10.3389/fphar.2022.847387] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Dickkopf-1 (DKK1) is a well-characterized Wnt inhibitor and component of the Wnt/β-catenin signaling pathway, whose dysregulation is associated with multiple abnormal pathologies including osteoporosis, Alzheimer's disease, diabetes, and various cancers. The Wnt signaling pathway has fundamental roles in cell fate determination, cell proliferation, and survival; thus, its mis-regulation can lead to disease. Although DKK1 is involved in other signaling pathways, including the β-catenin-independent Wnt pathway and the DKK1/CKAP4 pathway, the inhibition of DKK1 to propagate Wnt/β-catenin signals has been validated as an effective way to treat related diseases. In fact, strategies for developing DKK1 inhibitors have produced encouraging clinical results in different pathological models, and many publications provide detailed information about these inhibitors, which include small molecules, antibodies, and nucleic acids, and may function at the protein or mRNA level. However, no systematic review has yet provided an overview of the various aspects of their development and prospects. Therefore, we review the DKK1 inhibitors currently available or under study and provide an outlook on future studies involving DKK1 and drug discovery.
Collapse
Affiliation(s)
- Hewen Jiang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Zongkang Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Yuanyuan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hang Yin Chu
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Sifan Yu
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Shanshan Yao
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| | - Ge Zhang
- Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China.,Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China.,Institute of Integrated Bioinformedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Macao Greater Bay Area International Research Platform for Aptamer-Based Translational Medicine and Drug Discovery, Hong Kong, China
| |
Collapse
|
18
|
Liang X, Jin Q, Yang X, Jiang W. Dickkopf‑3 and β‑catenin play opposite roles in the Wnt/β‑catenin pathway during the abnormal subchondral bone formation of human knee osteoarthritis. Int J Mol Med 2022; 49:48. [PMID: 35137918 PMCID: PMC8904073 DOI: 10.3892/ijmm.2022.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Osteoarthritis (OA) is condition which poses a main concern to the aging population and its severity is expected to increase with the increasing life expectancy. In the future, several possible targets for OA treatment need to be defined. Dickkopf-related protein 3 (DKK3) is an atypical member of the Wnt-antagonistic dickkopf-related protein (DKK) family. The availability of research into the role of DKK3 in the abnormal remodeling of subchondral bone in human knee joints is currently limited. Thus, the aim of the present study was the evaluation of DKK3 expression in the abnormal bone remodeling of subchondral bone in human knee OA in order to clarify the role of DKK3 in subchondral bone remodeling and to acknowledge its potential relevance to β-catenin. In total, 38 specimens were collected from osteotomies of the medial tibial plateau of the human knee. The patient samples were then divided into the normal, mild, moderate and severe symptom groups, according to the Osteoarthritis Research Society International (OARSI) score. Following hematoxylin and eosin (H&E) and Safranin O-fast green staining for alkaline phosphatase (AZO method), changes in the distribution and number of osteocytes in the subchondral bone and the degree of sclerosis of the subchondral bone were observed. Immunohistochemical staining, immunofluorescence, western blot analysis and reverse-transcription quantitative PCR (RT-qPCR) were used for the detection of DKK3 and β-catenin expression level changes in osteoblasts in the subchondral bone of the medial tibial plateau. H&E and alkaline phosphatase staining revealed that the total number of osteocytes in the subchondral bone increased with the severity of the disease. The samples were also evaluated using Safranin O-Fast Green staining and were attributed a score according to the OARSI scoring system: The scoring number and cartilage damage increased along with OA severity. Immunohistochemistry and immunofluorescence assays demonstrated that β-catenin expression in osteocytes increased from mild to moderate, whereas DKK3 expression decreased with the development of arthritis from normal, mild to moderate. According to the results of western blot analysis, β-catenin expression was higher in moderate OA and then decreased in severe OA. On the other hand, the DKK3 levels decreased along with the progression from normal, mild to moderate OA. The results of RT-qPCR demonstrated that β-catenin and DKK3 gene expression differed with the degree of OA. On the whole, the present study demonstrates that DKK3 and β-catenin may play opposite roles in OA subchondral bone remodeling.
Collapse
Affiliation(s)
- Xuegang Liang
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Qunhua Jin
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Xiaochun Yang
- Department of Orthopedics, Ningxia Medical University General Hospital, Ningxia Hui Autonomous Region 750000, P.R. China
| | - Wenhui Jiang
- Clinical Medical College, Xi'an Medical College, Xi'an, Shanxi 710000, P.R. China
| |
Collapse
|
19
|
Dai L, Xu D, Wan C, Liu L, Wen F. DKK1 Positively Correlates with Lung Function in COPD Patients and Reduces Airway Inflammation. Int J Chron Obstruct Pulmon Dis 2022; 17:93-100. [PMID: 35027825 PMCID: PMC8749044 DOI: 10.2147/copd.s341249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Purpose WNT/β-catenin signal pathway is a potential hope for lung tissue repair. We investigated the levels of Dickkopf‐1 (DKK1), an endogenous inhibitor of WNT/β-catenin signal pathway, in chronic obstructive pulmonary disease (COPD) patients and airway inflammation. Patients and Methods Collected the demographic and clinical characteristics of 36 healthy controls, 25 stable COPD patients and 10 acute exacerbation of COPD (AECOPD) patients, then performed pulmonary function and detected serum DKK1 levels. After over-expression of DKK1, detect the levels of DDK1, lipoprotein-related protein 6 (LRP6) and inflammatory factors in bronchial epithelial cells stimulated with cigarette smoke extract (CSE). Results Serum DKK1 were reduced in stable COPD patients compared to healthy controls (3866.72 ± 775.33 pg/mL vs 5317.61 ± 1317.20 pg/mL, p<0.0001), but there was no significant difference between stable and acutely exacerbated patients (3866.72 ± 775.33 pg/mL vs 3482.10 ± 841.25 pg/mL, p>0.05). DKK1 was positively correlated with FEV1 (r = 0.570, p<0.0001), FEV1/FVC (rho = 0.590, p<0.0001), FEV1/Pre (r = 0.517, p<0.0001). Multiple linear regression analysis also suggested that FEV1 levels were higher with increasing DKK1. In vitro, elevated IL-6, IL-8, TNF-α and decreased DKK1, LRP6 were found in Beas-2B cells after CSE treatments, and increased LRP6 and decreased inflammatory factors were found after overexpression of DKK1. Andrographolide restored the CSE-induced decrease in DKK1 and increase in IL-6 and IL-8. Conclusion DKK1 levels were decreased in COPD patients and positively correlated with lung function, overexpression of DKK1 and andrographolide attenuated airway cell inflammation, both suggesting a potential role in pathophysiology and providing a disease-specific biomarker pattern.
Collapse
Affiliation(s)
- Luqi Dai
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dan Xu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chun Wan
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lian Liu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Respiratory and Critical Care Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
20
|
Ren C, Zhang P, Yao XY, Li HH, Chen R, Zhang CY, Geng DQ. The cognitive impairment and risk factors of the older people living in high fluorosis areas: DKK1 need attention. BMC Public Health 2021; 21:2237. [PMID: 34886821 PMCID: PMC8656079 DOI: 10.1186/s12889-021-12310-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/25/2021] [Indexed: 01/15/2023] Open
Abstract
Objective To evaluate cognitive impairment and risk factors of elders in high fluoride drinking water areas and investigate whether DKK1 is involved in this disorder. Methods MoCA-B and AD-8 were used to measure the cognitive functions of 272 and 172 subjects over the age of 60 came from the high and normal fluoride drinking water areas respectively, general information and peripheral blood were collected, the level of SOD, GSH and MDA were measured, mRNA level of DKK1, the concentration of blood fluoride and the polymorphism of APOE were tested. Results The blood fluoride concentration, mRNA level of DKK1 and ratio of abnormal cognitive function of subjects in high fluorine drinking water areas were higher than those in normal areas. The level of SOD of subjects in high fluorine drinking water was low compared with those in normal areas. The level of MDA and GSH had no difference between the two crowds in different fluorine drinking water areas. There were differences in cigarette smoking, education, dental status, hypertension, hyperlipidaemia and APOE results between the two crowds in different fluorine drinking water areas. The mRNA level of DKK1 and the level of cognitive function showed a positive correlation and DKK1 was one of five risk factors involved in cognitive impairment of older people living in high fluorosis areas. Conclusions The cognitive functions could be impaired in the older people living in high fluoride drinking water areas, and DKK1 may as a potential intervention point of this brain damage process need attention.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.,Department of Neurology , Department of Neurology Yantai Yuhuangding Hospitalof Qingdao University, Yantai, 264000, China
| | - Peng Zhang
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.,Department of Psychiatry and Psychology, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Xiao-Yan Yao
- Department of Neurology , Department of Neurology Yantai Yuhuangding Hospitalof Qingdao University, Yantai, 264000, China
| | - Hui-Hua Li
- Zhenjiang Mental Health Center, The Fifth People's Hospital of Zhenjiang City, Zhenjiang, 212000, China
| | - Rui Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002, China
| | - Cai-Yi Zhang
- Department of Psychiatry and Psychology, The Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
| | - De-Qin Geng
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| |
Collapse
|
21
|
Zhao Y, Suo Y, Yang Z, Hao Y, Li W, Su Y, Shi Y, Gao Y, Song L, Yin X, Shi H. Inspiration for the prevention and treatment of neuropsychiatric disorders: New insight from the bone-brain-axis. Brain Res Bull 2021; 177:263-272. [PMID: 34678443 DOI: 10.1016/j.brainresbull.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Bone is the main supporting structure of the body and the main organ involved in body movement and calcium and phosphorus metabolism. Recent studies have shown that bone is also a potential new endocrine organ that participates in the physiological and pathophysiological processes of the cardiovascular, digestive, and endocrine systems through various bioactive cytokines secreted by bone cells and bone marrow. Bone-derived active cytokines can also directly act on the central nervous system and regulate brain function and individual behavior. The bidirectional regulation of the bone-brain axis has gradually attracted attention in the field of neuroscience. This paper reviews the regulatory effects of bone-derived active cytokines and bone-derived cells on individual brain function and brain diseases, as well as the occurrence and development of related neuropsychiatric diseases. The central regulatory mechanism function is briefly introduced, which will broaden the scope for mechanistic research and help establish prevention and treatment strategies for neuropsychiatric diseases based on the bone-brain axis.
Collapse
Affiliation(s)
- Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yining Suo
- Child Health Department, Hebei Children's Hospital, Shijiazhuang 050031, China
| | - Zhenbang Yang
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Ying Hao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Wenshuya Li
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yujiao Su
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China
| | - Xi Yin
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Department of Functional Region of Diagnosis, Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science of HeBMU, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key laboratory of Neurophysiology, Hebei Medicinal University, 050017, China; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medicinal University, Shijiazhuang 050017, China.
| |
Collapse
|
22
|
Novel Balance Mechanism Participates in Stem Cell Therapy to Alleviate Neuropathology and Cognitive Impairment in Animal Models with Alzheimer's Disease. Cells 2021; 10:cells10102757. [PMID: 34685737 PMCID: PMC8534506 DOI: 10.3390/cells10102757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell therapy improves memory loss and cognitive deficits in animal models with Alzheimer's disease. The underlying mechanism remains to be determined, but it may involve the interaction of stem cells with hippocampal cells. The transplantation of stem cells alters the pathological state and establishes a novel balance based on multiple signaling pathways. The new balance mechanism is regulated by various autocrine and paracrine cytokines, including signal molecules that target (a) cell growth and death. Stem cell treatment stimulates neurogenesis and inhibits apoptosis, which is regulated by the crosstalk between apoptosis and autophagy-(b) Aβ and tau pathology. Aberrant Aβ plaques and neurofibrillary tau tangles are mitigated subsequent to stem cell intervention-(c) inflammation. Neuroinflammation in the lesion is relieved, which may be related to the microglial M1/M2 polarization-(d) immunoregulation. The transplanted stem cells modulate immune cells and shape the pathophysiological roles of immune-related genes such as TREM2, CR1, and CD33-(e) synaptogenesis. The functional reconstruction of synaptic connections can be promoted by stem cell therapy through multi-level signaling, such as autophagy, microglial activity, and remyelination. The regulation of new balance mechanism provides perspective and challenge for the treatment of Alzheimer's disease.
Collapse
|
23
|
Cai Q, Ma J, Wang J, Wang J, Cui J, Wu S, Wang Z, Wang N, Wang J, Yang D, Yang J, Xue J, Li F, Chen J, Liu X. Adenoviral Transduction of Dickkopf-1 Alleviates Silica-Induced Silicosis Development in Lungs of Mice. Hum Gene Ther 2021; 33:155-174. [PMID: 34405699 DOI: 10.1089/hum.2021.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Silicosis is an occupational disease caused by inhalation of silica dust, which is hallmarked by progressive pulmonary fibrosis associated with poor prognosis. Wnt/β-catenin signaling is implicated in the development of fibrosis and is a therapeutic target for fibrotic diseases. Previous clinical studies of patients with pneumoconiosis, including silicosis, revealed an increased concentration of circulating WNT3A and DKK1 proteins and inflammatory cells in bronchoalveolar lavage compared with healthy subjects. The present study evaluated the effects of adenovirus-mediated transduction of Dickkopf-1 (Dkk1), a Wnt/β-catenin signaling inhibitor, on the development of pulmonary silicosis in mice. Consistent with previous human clinical studies, our experimental studies in mice demonstrated an aberrant Wnt/β-catenin signaling activity coinciding with increased Wnt3a and Dkk1 proteins and inflammation in lungs of silica-induced silicosis mice compared with controls. Intratracheal delivery of adenovirus expressing murine Dkk1 (AdDkk1) inhibited Wnt/β-catenin activity in mouse lungs. The adenovirus-mediated Dkk1 gene transduction demonstrated the potential to prevent silicosis development and ameliorate silica-induced lung fibrogenesis in mice, accompanied by the reduced expression of epithelia--mesenchymal transition markers and deposition of extracellular matrix proteins compared with mice treated with "null" adenoviral vector. Mechanistically, AdDkk1 is able to attenuate the lung silicosis by inhibiting a silica-induced spike in TGF-β/Smad signaling. In addition, the forced expression of Dkk1 suppressed silica-induced epithelial cell proliferation in polarized human bronchial epithelial cells. This study provides insight into the underlying role of Wnt/β-catenin signaling in promoting the pathogenesis of silicosis and is proof-of-concept that targeting Wnt/β-catenin signaling by Dkk1 gene transduction may be an alternative approach in the prevention and treatment of silicosis lung disease.
Collapse
Affiliation(s)
- Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China.,Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA.,Key Laboratory of Environmental Factors and Chronic Disease Control, School of Public Health, Ningxia Medical University, Yinchuan, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Wang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Juying Wang
- Department of Occupational Disease, The Fifth People's Hospital of Ningxia, Shizuishan, China
| | - Jieda Cui
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Zhaojun Wang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Na Wang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Jiaqi Wang
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Dandan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China
| | - Feng Li
- Center of Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources of Western China, College of Life Science, Ningxia University, Yinchuan, China.,Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
24
|
Chow H, Sun JK, Hart RP, Cheng KK, Hung CHL, Lau T, Kwan K. Low-Density Lipoprotein Receptor-Related Protein 6 Cell Surface Availability Regulates Fuel Metabolism in Astrocytes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004993. [PMID: 34180138 PMCID: PMC8373092 DOI: 10.1002/advs.202004993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 05/06/2021] [Indexed: 05/07/2023]
Abstract
Early changes in astrocyte energy metabolism are associated with late-onset Alzheimer's disease (LOAD), but the underlying mechanism remains elusive. A previous study suggested an association between a synonymous SNP (rs1012672, C→T) in LRP6 gene and LOAD; and that is indeed correlated with diminished LRP6 gene expression in the frontal cortex region. The authors show that LRP6 is a unique Wnt coreceptor on astrocytes, serving as a bimodal switch that modulates their metabolic landscapes. The Wnt-LRP6 mediated mTOR-AKT axis is essential for sustaining glucose metabolism. In its absence, Wnt switches to activate the LRP6-independent Ca2+ -PKC-NFAT axis, resulting in a transcription network that favors glutamine and branched chain amino acids (BCAAs) catabolism over glucose metabolism. Exhaustion of these raw materials essential for neurotransmitter biosynthesis and recycling results in compromised synaptic, cognitive, and memory functions; priming for early changes that are frequently found in LOAD. The authors also highlight that intranasal supplementation of glutamine and BCAAs is effective in preserving neuronal integrity and brain functions, proposing a nutrient-based method for delaying cognitive and memory decline when LRP6 cell surface levels and functions are suboptimal.
Collapse
Affiliation(s)
- Hei‐Man Chow
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Jacquelyne Ka‐Li Sun
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Ronald P. Hart
- Department of Cell Biology and NeuroscienceRutgers UniversityPiscatawayNJ08854USA
| | - Kenneth King‐Yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic University999077Hong Kong
| | - Clara H. L. Hung
- The University Research Facility in Life SciencesThe Hong Kong Polytechnic University999077Hong Kong
| | - Tsun‐Ming Lau
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| | - Kin‐Ming Kwan
- School of Life Sciences, Faculty of ScienceThe Chinese University of Hong Kong999077Hong Kong
| |
Collapse
|
25
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
26
|
Hasanzadeh Z, Nourazarian A, Nikanfar M, Laghousi D, Vatankhah AM, Sadrirad S. Evaluation of the Serum Dkk-1, Tenascin-C, Oxidative Stress Markers Levels and Wnt Signaling Pathway Genes Expression in Patients with Alzheimer's Disease. J Mol Neurosci 2020; 71:879-887. [PMID: 32935274 DOI: 10.1007/s12031-020-01710-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Early diagnosis of Alzheimer's disease (AD) using potential biomarkers may help with implementing early therapeutic interventions, monitoring, and ultimately disease treatment. The current study aimed to evaluate serum levels of DKK-1, TNC, and oxidative stress markers, as well as analyzing the expression of LRP6, GSK3A, and GSK3B genes in patients with AD. Serum levels of DKK-1, TNC, TOS, TAC, and MDA were measured in 40 AD patients and 40 healthy individuals. Additionally, the relative expressions of LRP6, GSK3A, and GSK3B genes in whole blood were evaluated. Receiver operating characteristic (ROC) analysis was used to investigate the incremental diagnostic value of each factor in the study groups. Mean serum levels of DKK-1, TNC, TOS, TAC, and MDA were significantly higher in the AD group compared to the healthy group (p < 0.001). Moreover, a significant difference was observed in the expression of LRP6 and GSK3A genes (p < 0.001) between patients and healthy groups. However, the expression of GSK3B did not significantly differ between the two groups (p > 0.05). With considerable sensitivity and specificity, ROC analysis demonstrated the diagnostic efficacy of DKK-1 and TNC serum levels in AD within an area under the ROC curve of ≥ 0.98 (p ˂ 0.001). The results showed that evaluating serum levels of DKK-1 and TNC, as well as assessing the expression of LRP6, could be utilized for diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Zahra Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayeh Sadrirad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
28
|
Shi L, Winchester LM, Liu BY, Killick R, Ribe EM, Westwood S, Baird AL, Buckley NJ, Hong S, Dobricic V, Kilpert F, Franke A, Kiddle S, Sattlecker M, Dobson R, Cuadrado A, Hye A, Ashton NJ, Morgan AR, Bos I, Vos SJ, ten Kate M, Scheltens P, Vandenberghe R, Gabel S, Meersmans K, Engelborghs S, De Roeck EE, Sleegers K, Frisoni GB, Blin O, Richardson JC, Bordet R, Molinuevo JL, Rami L, Wallin A, Kettunen P, Tsolaki M, Verhey F, Lleó A, Alcolea D, Popp J, Peyratout G, Martinez-Lage P, Tainta M, Johannsen P, Teunissen CE, Freund-Levi Y, Frölich L, Legido-Quigley C, Barkhof F, Blennow K, Rasmussen KL, Nordestgaard BG, Frikke-Schmidt R, Nielsen SF, Soininen H, Vellas B, Kloszewska I, Mecocci P, Zetterberg H, Morgan BP, Streffer J, Visser PJ, Bertram L, Nevado-Holgado AJ, Lovestone S. Dickkopf-1 Overexpression in vitro Nominates Candidate Blood Biomarkers Relating to Alzheimer's Disease Pathology. J Alzheimers Dis 2020; 77:1353-1368. [PMID: 32831200 PMCID: PMC7683080 DOI: 10.3233/jad-200208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous studies suggest that Dickkopf-1 (DKK1), an inhibitor of Wnt signaling, plays a role in amyloid-induced toxicity and hence Alzheimer's disease (AD). However, the effect of DKK1 expression on protein expression, and whether such proteins are altered in disease, is unknown. OBJECTIVE We aim to test whether DKK1 induced protein signature obtained in vitro were associated with markers of AD pathology as used in the amyloid/tau/neurodegeneration (ATN) framework as well as with clinical outcomes. METHODS We first overexpressed DKK1 in HEK293A cells and quantified 1,128 proteins in cell lysates using aptamer capture arrays (SomaScan) to obtain a protein signature induced by DKK1. We then used the same assay to measure the DKK1-signature proteins in human plasma in two large cohorts, EMIF (n = 785) and ANM (n = 677). RESULTS We identified a 100-protein signature induced by DKK1 in vitro. Subsets of proteins, along with age and apolipoprotein E ɛ4 genotype distinguished amyloid pathology (A + T-N-, A+T+N-, A+T-N+, and A+T+N+) from no AD pathology (A-T-N-) with an area under the curve of 0.72, 0.81, 0.88, and 0.85, respectively. Furthermore, we found that some signature proteins (e.g., Complement C3 and albumin) were associated with cognitive score and AD diagnosis in both cohorts. CONCLUSIONS Our results add further evidence for a role of DKK regulation of Wnt signaling in AD and suggest that DKK1 induced signature proteins obtained in vitro could reflect theATNframework as well as predict disease severity and progression in vivo.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, UK
| | | | | | - Richard Killick
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
| | | | | | | | | | - Shengjun Hong
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Valerija Dobricic
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Fabian Kilpert
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Steven Kiddle
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- MRC Social, Genetic and Developmental Psychiatry Centre, King’s College London, UK
| | - Martina Sattlecker
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- MRC Social, Genetic and Developmental Psychiatry Centre, King’s College London, UK
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Antonio Cuadrado
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas Alberto Sols UAM-CSIC, and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- ”Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Abdul Hye
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
| | - Nicholas J. Ashton
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Institute Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Stephanie J.B. Vos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Mara ten Kate
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Silvy Gabel
- University Hospital Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium
| | - Karen Meersmans
- University Hospital Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Belgium
| | - Sebastiaan Engelborghs
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Department of Neurology, UZ Brussel, Brussels, Belgium
| | - Ellen E. De Roeck
- Center for Neurosciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Kristel Sleegers
- Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Belgium
| | - Giovanni B. Frisoni
- University of Geneva, Geneva, Switzerland
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Olivier Blin
- AIX Marseille University, INS, Ap-hm, Marseille, France
| | | | | | - José L. Molinuevo
- Alzheimer’s disease & other cognitive disorders unit, Hospital Clínic, Barcelona, Spain
- BarcelonaBeta Brain Research Center, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lorena Rami
- BarcelonaBeta Brain Research Center, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, school of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
| | - Frans Verhey
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
| | - Alberto Lleó
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Daniel Alcolea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Julius Popp
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
- Geriatric Psychiatry, Department of Psychiatry, Geneva University Hospitals, and University of Geneva, Geneva, Switzerland
| | - Gwendoline Peyratout
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Mikel Tainta
- CITA-Alzheimer Foundation, San Sebastian, Spain
- Organización Sanitaria Integrada Goierri – Alto Urola, Osakidetza, Spain
| | - Peter Johannsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, dept of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam, the Netherlands
| | - Yvonne Freund-Levi
- School of Medical Sciences, Örebro University, Örebro, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Karolinska Institute, Stockholm, Sweden
- Department of Old Age Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Department of Psychiatry, Örebro Universitetssjukhus, Örebro, Sweden
| | - Lutz Frölich
- Department of Geriatric Psychiatry, Zentralinstitut für Seelische Gesundheit, University of Heidelberg, Mannheim, Germany
| | - Cristina Legido-Quigley
- Kings College London, London, UK
- The Systems Medicine Group, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherland
- UCL Institutes of Neurology and Healthcare Engineering, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Katrine Laura Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sune Fallgaard Nielsen
- The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Hilkka Soininen
- Neurology / Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Bruno Vellas
- Toulouse Gerontopole University Hospital, Univeriste Paul Sabatier, INSERM U 558, France
| | | | - Patrizia Mecocci
- Section of Gerontology and Geriatrics, Department of Medicine, University of Perugia, Perugia, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - B. Paul Morgan
- Dementia Research Institute Cardiff, Cardiff University, Cardiff, UK
| | - Johannes Streffer
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- UCB, Braine-l’Alleud, Belgium, formerly Janssen R&D, LLC. Beerse, Belgium at the time of study conduct
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, the Netherlands
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, Institutes of Neurogenetics and Cardiogenetics, University of Lübeck, Lübeck, Germany
- Department of Psychology, University of Oslo, Oslo, Norway
| | | | - Simon Lovestone
- Department of Psychiatry, University of Oxford, UK
- Currently at Janssen-Cilag UK, formerly at Department of Psychiatry, University of Oxford, UK at the time of the study conduct
| |
Collapse
|
29
|
Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer's disease. Mol Brain 2019; 12:104. [PMID: 31801553 PMCID: PMC6894260 DOI: 10.1186/s13041-019-0525-5] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer’s disease (AD) is an aging-related neurological disorder characterized by synaptic loss and dementia. Wnt/β-catenin signaling is an essential signal transduction pathway that regulates numerous cellular processes including cell survival. In brain, Wnt/β-catenin signaling is not only crucial for neuronal survival and neurogenesis, but it plays important roles in regulating synaptic plasticity and blood-brain barrier integrity and function. Moreover, activation of Wnt/β-catenin signaling inhibits amyloid-β production and tau protein hyperphosphorylation in the brain. Critically, Wnt/β-catenin signaling is greatly suppressed in AD brain via multiple pathogenic mechanisms. As such, restoring Wnt/β-catenin signaling represents a unique opportunity for the rational design of novel AD therapies.
Collapse
Affiliation(s)
- Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.,Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College, Xiamen University, Xiamen, 361102, China
| | - Juan Piña-Crespo
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|