1
|
Gong Z, Zhou D, Wu D, Han Y, Yu H, Shen H, Feng W, Hou L, Chen Y, Xu T. Challenges and material innovations in drug delivery to central nervous system tumors. Biomaterials 2025; 319:123180. [PMID: 39985979 DOI: 10.1016/j.biomaterials.2025.123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 01/28/2025] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Central nervous system (CNS) tumors, encompassing a diverse array of neoplasms in the brain and spinal cord, pose significant therapeutic challenges due to their intricate anatomy and the protective presence of the blood-brain barrier (BBB). The primary treatment obstacle is the effective delivery of therapeutics to the tumor site, which is hindered by multiple physiological, biological, and technical barriers, including the BBB. This comprehensive review highlights recent advancements in material science and nanotechnology aimed at surmounting these delivery challenges, with a focus on the development and application of nanomaterials. Nanomaterials emerge as potent tools in designing innovative drug delivery systems that demonstrate the potential to overcome the limitations posed by CNS tumors. The review delves into various strategies, including the use of lipid nanoparticles, polymeric nanoparticles, and inorganic nanoparticles, all of which are engineered to enhance drug stability, BBB penetration, and targeted tumor delivery. Additionally, this review highlights the burgeoning role of theranostic nanoparticles, integrating therapeutic and diagnostic functionalities to optimize treatment efficacy. The exploration extends to biocompatible materials like biodegradable polymers, liposomes, and advanced material-integrated delivery systems such as implantable drug-eluting devices and microfabricated devices. Despite promising preclinical results, the translation of these material-based strategies into clinical practice necessitates further research and optimization.
Collapse
Affiliation(s)
- Zhenyu Gong
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China; Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, 81675, Germany
| | - Dairan Zhou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Dejun Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, 230601, PR China
| | - Yaguang Han
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Hao Yu
- National Engineering Research Center of Ophthalmology and Optometry, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, PR China
| | - Haotian Shen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Lijun Hou
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| |
Collapse
|
2
|
Moutaoukil ME, Lolli MG, D'Amone S, Khan M, Grillo R, Eyer J, Grieco M, Ursini O, Spadavecchia J, Cortese B. Doxorubicin and NFL-TBS.40-63 peptide loaded gold nanoparticles as a multimodal therapy of glioblastoma. DISCOVER NANO 2025; 20:72. [PMID: 40293574 PMCID: PMC12037963 DOI: 10.1186/s11671-025-04249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Conventional treatments for glioblastoma (GBM) are hindered by systemic toxicity, limited blood-brain barrier penetration, and therapeutic resistance. To address these challenges, we developed dual-functionalized gold nanoparticles (AuNPs) conjugated with a biotinylated NFL-TBS.40-63 peptide and the chemotherapeutic agent doxorubicin. This platform integrates targeted delivery and therapeutic action to enhance efficacy while minimising off-target effects. Our findings reveal superior cellular uptake, dose- and time-dependent cytotoxicity, and apoptosis induction in GBM cells compared to mono-functionalized counterparts. Furthermore, pH-sensitive drug release profiles underscore the system's potential to exploit the tumour microenvironment's acidic conditions for precise drug delivery. Comprehensive characterisation confirmed the stability, biocompatibility, and functional efficacy of the dual-functionalized AuNPs. This study highlights the promise of these nanoconjugates as a multimodal approach to GBM therapy, paving the way for further translational research in nanomedicine.
Collapse
Affiliation(s)
- Myriam El Moutaoukil
- CNRS, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Maria Grazia Lolli
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Stefania D'Amone
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Memona Khan
- CNRS, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Roberta Grillo
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Joel Eyer
- Laboratoire Micro et NanomedecinesTranslationnelles, Inserm 1066, CNRS 6021, Institut de Recherche enIngénierie de la Sante, Bâtiment IBS Institut de Biologie de La Sante, Université´ Angers, Centre Hospitalier Universitaire, 49100, Angers, France
| | - Maddalena Grieco
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Ecotekne, University of Salento, Via Monteroni, 73100, Lecce, Italy
| | - Ornella Ursini
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratory of Chemistry, Structures and Properties of Biomaterials and Therapeutic Agents University Paris13, Sorbonne Paris Nord, Bobigny, France
| | - Barbara Cortese
- National Research Council - Institute of Nanotechnology (CNR Nanotec), c/o Department of Physics "E. Fermi", University Sapienza, Pz.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
3
|
Razavi ZS, Razavi FS, Alizadeh SS. Inorganic nanoparticles and blood-brain barrier modulation: Advancing targeted neurological therapies. Eur J Med Chem 2025; 287:117357. [PMID: 39947054 DOI: 10.1016/j.ejmech.2025.117357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The blood-brain barrier (BBB) is a protective barrier that complicates the treatment of neurological disorders. Pharmaceutical compounds encounter significant challenges in crossing the central nervous system (CNS). Nanoparticles (NPs) are promising candidates for treating neurological conditions as they help facilitate drug delivery. This review explores the diverse characteristics and mechanisms of inorganic NPs (INPs), including metal-based, ferric-oxide, and carbon-based nanoparticles, which facilitate their passage through the BBB. Emphasis is placed on the physicochemical properties of NPs such as size, shape, surface charge, and surface modifications and their role in enhancing drug delivery efficacy, reducing immune clearance, and improving BBB permeability. Specific synthesis approaches are demonstrated, with an emphasis on the influence of each one on NP property, biological activity and the capability of an NP for its intended application. As for the advances in the field, the review emphasizes those characterized the NP formulation and surface chemistry that conquered the BBB and tested the need for its alteration. Current findings indicate that NP therapy can in the future enable effective targeting of specific brain disorders and eventually evolve this drug delivery system, which would allow for lower doses with less side effects.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - Fateme Sadat Razavi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
4
|
Chen X, Wu Y, Xing Y, Zhong P. CENPF as a prognostic marker of glioma: unraveling the molecular mechanisms. J Cancer Res Clin Oncol 2025; 151:96. [PMID: 40019588 PMCID: PMC11870995 DOI: 10.1007/s00432-025-06144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Glioma is the dominant primary intracranial malignancy. The roles of CENPF and the CENPF - p53 axis in glioma remain elusive. This study uses bioinformatics and animal experiments to clarify the relationship between CENPF and p53 in glioma. CENPF affects spindle assembly and chromosomal segregation, while p53 is a tumor-suppressor gene. Their dysregulation may interact and impact glioma development. Our research aims to uncover the underlying molecular mechanisms, offering new perspectives for glioma diagnosis and treatment. METHOD Gene expression data from the Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo/ ) were retrieved, specifically datasets GSE50161, GSE104291, and GSE12249. Volcano plots were generated to visualize differentially expressed genes (DEGs), and intersecting DEGs were identified using Venn diagrams. Weighted gene co-expression network analysis (WGCNA) was employed to construct and analyze the protein-protein interaction (PPI) network. Additionally, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted. Gene set enrichment analysis (GSEA) was utilized for comprehensive GO and KEGG analyses of the entire genome. Comparative Toxicogenomics Database (CTD) analysis was performed, and TargetScan was used to identify miRNAs regulating central DEGs. An animal model of glioma was established and analyzed via Western blot. RESULT A total of 501 differentially expressed genes (DEGs) were identified, from which eight significant modules were generated and ten core genes were extracted. These core genes exhibited differential expression patterns between glioma tumor and non-tumor samples. Expression analysis revealed that the ten core genes associated with glioma (CENPF, PBK, ASPM, KIF2C, KIF20A, CDC20, TOP2A, NUSAP1, TTK, KIF23) were significantly upregulated in tumor tissues (P < 0.05). They are primarily enriched in protein signal transduction, coated membrane structures, AP-type membrane coat adaptor complexes, and chloride channel activity. KEGG pathway analysis indicated that these target genes were mainly involved in nicotine addiction, arginine and proline metabolism, beta-alanine metabolism, and histidine metabolism. The mouse model confirmed that CENPF and CDK-1 were highly expressed in glioma tissues, while p53, p21, and Caspase9 were downregulated, leading to inhibition of the apoptosis pathway and exacerbation of glioma progression. Overexpression of CENPF further suppressed key molecules in the p53-mediated apoptosis pathway. Conversely, low expression of CENPF activated these key molecules, inducing apoptosis in glioma cells. CONCLUSIONS CENPF exhibits elevated expression levels in glioma, potentially inhibiting cell apoptosis via the p53 signaling pathway, consequently contributing to the onset and progression of glioma.
Collapse
Affiliation(s)
- Xiuyang Chen
- Department of Neurological Care Unit, The Affliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, People's Republic of China
| | - Yiwei Wu
- Department of Orthopaedic Surgery, Yantaishan Hospital, Yantai, 264000, Shandong, People's Republic of China
| | - Yining Xing
- Department of Neurological Care Unit, The Affliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, People's Republic of China
- Department of Orthopaedic Surgery, Yantaishan Hospital, Yantai, 264000, Shandong, People's Republic of China
| | - Peng Zhong
- Department of Neurological Care Unit, The Affliated Yantai Yuhuangding Hospital of Qingdao University, No. 20, Yuhuangding East Road, Zhifu District, Yantai, 264000, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Rahman MA, Jalouli M, Yadab MK, Al-Zharani M. Progress in Drug Delivery Systems Based on Nanoparticles for Improved Glioblastoma Therapy: Addressing Challenges and Investigating Opportunities. Cancers (Basel) 2025; 17:701. [PMID: 40002294 PMCID: PMC11852615 DOI: 10.3390/cancers17040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor that has a bleak outlook despite existing treatments such as surgery, radiation, and chemotherapy. The utilization of nanoparticles for drug delivery presents a promising method by which to improve the effectiveness of treatment while reducing the harmful effects on the entire body. This review examines the application of nanoparticles in the treatment of GBM, focusing on different types of nanoparticles, including lipid-based, polymeric, metallic, and those under development. Every variety is analyzed for its distinct characteristics and therapeutic capacity. Lipid-based nanoparticles, such as liposomes and solid lipid nanoparticles, enhance the transport of medicines that are not soluble in water and have shown considerable potential in preclinical investigations. Polymeric nanoparticles have benefits in terms of controlled release and targeted distribution, whereas metallic nanoparticles have potential in both therapy and imaging. In the current review we would like to emphasize the ways in which nanoparticles improve medicine delivery, specifically by enhancing penetration of the blood-brain barrier (BBB), targeting tumors, and enabling controlled release. Additionally, we also discuss current preclinical and clinical discoveries, highlighting both achievements and obstacles in the process of converting these technologies into effective treatments for GBM. This study offers a thorough examination of the present status and prospects of nanoparticles in the treatment of GBM.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| | - Mahesh Kumar Yadab
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| |
Collapse
|
6
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
7
|
Lin ZY, Song Q, Xu K. Drug Delivery System for Cancer Immunotherapy: Potential Roles, Challenge and Recent Advances. Technol Cancer Res Treat 2025; 24:15330338251338390. [PMID: 40270096 PMCID: PMC12035301 DOI: 10.1177/15330338251338390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025] Open
Abstract
Immunotherapy has emerged as a pivotal advancement in oncological therapeutics, representing a paradigm shift from conventional treatment modalities including surgery, radiotherapy, and chemotherapy. This innovative approach demonstrates considerable clinical potential through its capacity to enhance systemic anti-tumor responses via active or passive immunomodulation. Compared to traditional therapies, immunotherapy offers distinct advantages such as broad applicability, rapid therapeutic onset, and reduced adverse effects. However, critical challenges persist in clinical implementation, particularly concerning treatment safety and efficacy optimization. Current limitations, including drug off-target effects and biological delivery barriers, frequently result in suboptimal therapeutic outcomes and severe complications such as autoimmune disorders and nonspecific inflammation. Recently advancements in drug delivery systems (DDS) present transformative solutions to these challenges. Sophisticated DDS platforms enable precise spatiotemporal delivery of tumor antigens, immunotherapeutic agents, and immunostimulatory molecules, thereby achieving targeted modulation of diverse immune cell populations. This technological innovation not only enhances therapeutic efficacy but also significantly mitigates adverse reactions, while facilitating synergistic combinations with conventional cancer treatments. In this review, we outline the application of new drug delivery platforms in major malignancies (including but not limited to melanoma, non-small cell lung cancer, hormone receptor-positive breast cancer, and hepatocellular carcinoma). We further propose evidence-based optimization strategies for next-generation delivery platforms, aiming to bridge the gap between preclinical development and clinical implementation in cancer immunotherapy.
Collapse
Affiliation(s)
- Zi-Yue Lin
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Stomatology, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qian Song
- Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Kruse B, Dash BS, Kostka K, Wolff N, Prymak O, Loza K, Gumbiowski N, Heggen M, Oliveira CLP, Chen JP, Epple M. Doxorubicin-Loaded Ultrasmall Gold Nanoparticles (1.5 nm) for Brain Tumor Therapy and Assessment of Their Biodistribution. ACS APPLIED BIO MATERIALS 2024; 7:6890-6907. [PMID: 39240877 DOI: 10.1021/acsabm.4c00999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Ultrasmall gold nanoparticles (1.5 nm) were covalently conjugated with doxorubicin (AuDox) and AlexaFluor647 (AuAF647) to assess their biodistribution and their efficiency toward brain tumors (glioblastoma). A thorough characterization by transmission electron microscopy, small-angle X-ray scattering, and differential centrifugal sedimentation confirmed their uniform ultrasmall nature which makes them very mobile in the body. Each nanoparticle carried either 13 doxorubicin molecules (AuDox) or 2.7 AlexaFluor-647 molecules (AuAF647). The firm attachment of the ligands to the nanoparticles was demonstrated by their resilience to extensive washing, followed by centrifugation. The particles easily entered mammalian cells (HeLa, T98-G, brain endothelial cells, and human astrocytes) due to their small size. The intravenously delivered fluorescing AuAF647 nanoparticles crossed the blood-brain barrier with ∼23% accumulation in the brain tumor in an orthotopic U87 brain tumor model in nude mice. This was confirmed by elemental analysis (gold; inductively coupled plasma optical emission spectroscopy) in various organs. The doxorubicin-loaded AuDox nanoparticles inhibited brain tumor growth and prolonged animal survival without adverse side effects. Most of the nanoparticles (84%) had been excreted from the animal after 24 h, indicating a high mobility in the body.
Collapse
Affiliation(s)
- Benedikt Kruse
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Banendu Sunder Dash
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Kathrin Kostka
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Natalie Wolff
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan
| | - Matthias Epple
- Inorganic Chemistry and Centre of Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
9
|
Liu C, Tian C, Guo J, Zhang X, Wu L, Zhu L, Du B. Research Progress of Metal-Organic Frameworks as Drug Delivery Systems. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43156-43170. [PMID: 39132713 DOI: 10.1021/acsami.4c09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Metal-organic frameworks (MOFs) are composite crystalline materials created through the coordination of metal ions and organic ligands. MOFs have attracted extensive attention in the biomedical field based on the advantages of internal porosity, customizable porosity, and facile surface modification. This review examines the utilization of MOFs in drug delivery systems, focusing on the research progress from the aspects of coloading drug systems, intelligent responsive carriers, biological macromolecule stabilizers, self-driving micro/nanomotors, and multifunctional living carriers. In addition, the current challenges the research faces are also discussed. The review aims to provide a reference for the further application of MOFs as advanced drug delivery systems.
Collapse
Affiliation(s)
- Chenxin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Chaoying Tian
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Jialing Guo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Xiaodi Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ligang Wu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Ling Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Science Road, Zhengzhou 450001, People's Republic of China
- Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, 100 Science Road, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
10
|
Navyatha B, Nara S. The effects of conjugating anti-MUC1 aptamers on gold nanobipyramids and nanostars for photothermal cancer ablation. Nanomedicine (Lond) 2024; 19:1957-1975. [PMID: 39136402 PMCID: PMC11485751 DOI: 10.1080/17435889.2024.2384351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/22/2024] [Indexed: 10/09/2024] Open
Abstract
Aim: To ascertain the impact of shape and surface modification of anisotropic nanoparticles on the toxicity and photothermal efficiency toward cancerous cell lines.Methods: Gold nanobipyramids and nanostars surface modified with MUC1 aptamer were used in the current study to explore the toxicity and photothermal efficiency on MCF7 breast cancer cell lines via MTT assay.Results: Surface functionalization with MUC1 aptamer showed significant reduction in % cytotoxicity and increase in % specific internalization of nanostructures into MCF7 cell lines. Further, the photothermal studies accomplished at IC50 concentration for 6 h of treatment and laser exposure for 15 min reported that aptamer-conjugated nanobipyramids were more effective and specific toward MCF7 cell lines than aptamer-conjugated nanostars.Conclusion: This work establishes a platform for the development of tailored photoablation based gold nanostructures for in vivo studies.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, U.P., 211004, India
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, 522302, Andhra Pradesh,India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, U.P., 211004, India
| |
Collapse
|
11
|
Mu Y, Zhang Z, Zhou H, Ma L, Wang DA. Applications of nanotechnology in remodeling the tumour microenvironment for glioblastoma treatment. Biomater Sci 2024; 12:4045-4064. [PMID: 38993162 DOI: 10.1039/d4bm00665h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
With the increasing research and deepening understanding of the glioblastoma (GBM) tumour microenvironment (TME), novel and more effective therapeutic strategies have been proposed. The GBM TME involves intricate interactions between tumour and non-tumour cells, promoting tumour progression. Key therapeutic goals for GBM treatment include improving the immunosuppressive microenvironment, enhancing the cytotoxicity of immune cells against tumours, and inhibiting tumour growth and proliferation. Consequently, remodeling the GBM TME using nanotechnology has emerged as a promising approach. Nanoparticle-based drug delivery enables targeted delivery, thereby improving treatment specificity, facilitating combination therapies, and optimizing drug metabolism. This review provides an overview of the GBM TME and discusses the methods of remodeling the GBM TME using nanotechnology. Specifically, it explores the application of nanotechnology in ameliorating immune cell immunosuppression, inducing immunogenic cell death, stimulating, and recruiting immune cells, regulating tumour metabolism, and modulating the crosstalk between tumours and other cells.
Collapse
Affiliation(s)
- Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
| | - Liang Ma
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China.
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Centre for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
12
|
Song B, Wang X, Qin L, Hussain S, Liang W. Brain gliomas: Diagnostic and therapeutic issues and the prospects of drug-targeted nano-delivery technology. Pharmacol Res 2024; 206:107308. [PMID: 39019336 DOI: 10.1016/j.phrs.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Glioma is the most common intracranial malignant tumor, with severe difficulty in treatment and a low patient survival rate. Due to the heterogeneity and invasiveness of tumors, lack of personalized clinical treatment design, and physiological barriers, it is often difficult to accurately distinguish gliomas, which dramatically affects the subsequent diagnosis, imaging treatment, and prognosis. Fortunately, nano-delivery systems have demonstrated unprecedented capabilities in diagnosing and treating gliomas in recent years. They have been modified and surface modified to efficiently traverse BBB/BBTB, target lesion sites, and intelligently release therapeutic or contrast agents, thereby achieving precise imaging and treatment. In this review, we focus on nano-delivery systems. Firstly, we provide an overview of the standard and emerging diagnostic and treatment technologies for glioma in clinical practice. After induction and analysis, we focus on summarizing the delivery methods of drug delivery systems, the design of nanoparticles, and their new advances in glioma imaging and treatment in recent years. Finally, we discussed the prospects and potential challenges of drug-delivery systems in diagnosing and treating glioma.
Collapse
Affiliation(s)
- Baoqin Song
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Xiu Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| | - Lijing Qin
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Shehbaz Hussain
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China
| | - Wanjun Liang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, China.
| |
Collapse
|
13
|
Sun B, Sun Y, Wang Z, Zhao C, Yang L. Prevalence and risk factors of early postoperative seizures in patients with glioma: a systematic review and meta-analysis. Front Neurol 2024; 15:1356715. [PMID: 38572493 PMCID: PMC10989274 DOI: 10.3389/fneur.2024.1356715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Objective This study aimed to explore the prevalence and risk factors of early postoperative seizures in patients with glioma through meta-analysis. Methods Case-control studies and cohort studies on the prevalence and risk factors of early postoperative seizures in glioma patients were retrieved from various databases including CNKI, Wanfang, VIP, PubMed, Embase, Cochrane Library, and Web of Science, and the retrieval deadline for the data was 1 April 2023. Stata15.0 was used to analyze the data. Results This review included 11 studies consisting of 488 patients with early postoperative seizures and 2,051 patients without early postoperative seizures. The research findings suggest that the prevalence of glioma is complicated by seizures (ES = 19%, 95% confidence interval [CI] [14%-25%]). The results also indicated a history of seizures (RR = 1.94, 95% CI [1.76, 2.14], P = 0.001), preoperative dyskinesia (RR = 3.13, 95% CI [1.20, 8.15], P = 0.02), frontal lobe tumor (RR = 1.45, 95% CI [1.16, 1.83], P = 0.001), pathological grade ≤2 (RR = 1.74, 95% CI [1.13, 2.67], P = 0.012), tumor≥ 3 cm (RR = 1.70, 95% CI [1.18, 2.45], P = 0.005), tumor resection (RR = 1.60, 95% CI [1.36, 1.88], P = 0.001), tumor edema ≥ 2 cm (RR = 1.77, 95% CI [1.40, 2.25], P = 0.001), and glioma cavity hemorrhage (RR=3.15, 95% CI [1.85, 5.37], P = 0.001). The multivariate analysis results showed that a history of seizures, dyskinesia, tumor ≥3 cm, peritumoral edema ≥2 cm, and glioma cavity hemorrhage were indicated as risk factors for glioma complicated with early postoperative seizures. Significance Based on the existing evidence, seizure history, dyskinesia, frontal lobe tumor, pathological grade ≤2, tumor ≥3 cm, partial tumor resection, edema around tumor ≥2 cm, and glioma cavity hemorrhage are indicated as risk factors for glioma complicated with early postoperative seizures.
Collapse
Affiliation(s)
| | | | | | | | - Liang Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Reddy RV, Buchanan L, Swayze A, Fleischmann B, Ghomeshi A, Mondesir RF, Donnenfeld SR, Golan R, Ramasamy R. Rubin H. Flocks (1906-1975): President of American Board of Urology, Chair of Department of Urology at the University of Iowa Carver College of Medicine, and Inventor of Colloidal Gold Therapy for Cancer. Urology 2024:S0090-4295(24)00152-3. [PMID: 38490278 DOI: 10.1016/j.urology.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Affiliation(s)
- Raghuram V Reddy
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL; Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL.
| | - Logan Buchanan
- University of Tennessee Health Science Center, Memphis, TN; Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Aden Swayze
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL; Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Benjamin Fleischmann
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL; Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Armin Ghomeshi
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL; Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Ronscardy F Mondesir
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL; Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | | | - Roei Golan
- Department of Clinical Sciences, Florida State University College of Medicine, Tallahassee, FL; Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL
| | - Ranjith Ramasamy
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
15
|
Arcos Rosero WA, Bueno Barbezan A, Daruich de Souza C, Chuery Martins Rostelato ME. Review of Advances in Coating and Functionalization of Gold Nanoparticles: From Theory to Biomedical Application. Pharmaceutics 2024; 16:255. [PMID: 38399309 PMCID: PMC10892584 DOI: 10.3390/pharmaceutics16020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/25/2024] Open
Abstract
Nanoparticles, especially gold nanoparticles (Au NPs) have gained increasing interest in biomedical applications. Used for disease prevention, diagnosis and therapies, its significant advantages in therapeutic efficacy and safety have been the main target of interest. Its application in immune system prevention, stability in physiological environments and cell membranes, low toxicity and optimal bioperformances are critical to the success of engineered nanomaterials. Its unique optical properties are great attractors. Recently, several physical and chemical methods for coating these NPs have been widely used. Biomolecules such as DNA, RNA, peptides, antibodies, proteins, carbohydrates and biopolymers, among others, have been widely used in coatings of Au NPs for various biomedical applications, thus increasing their biocompatibility while maintaining their biological functions. This review mainly presents a general and representative view of the different types of coatings and Au NP functionalization using various biomolecules, strategies and functionalization mechanisms.
Collapse
|
16
|
Lin Y, Gong H, Liu J, Hu Z, Gao M, Yu W, Liu J. HECW1 induces NCOA4-regulated ferroptosis in glioma through the ubiquitination and degradation of ZNF350. Cell Death Dis 2023; 14:794. [PMID: 38049396 PMCID: PMC10695927 DOI: 10.1038/s41419-023-06322-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Tumor suppression by inducing NCOA4-mediated ferroptosis has been shown to be feasible in a variety of tumors, including gliomas. However, the regulatory mechanism of ferroptosis induced by NCOA4 in glioma has not been studied deeply. HECW1 and ZNF350 are involved in the biological processes of many tumors, but their specific effects and mechanisms on glioma are still unclear. In this study, we found that HECW1 decreased the survival rate of glioma cells and enhanced iron accumulation, lipid peroxidation, whereas ZNF350 showed the opposite effect. Mechanistically, HECW1 directly regulated the ubiquitination and degradation of ZNF350, eliminated the transcriptional inhibition of NCOA4 by ZNF350, and ultimately activated NCOA4-mediated iron accumulation, lipid peroxidation, and ferroptosis. We demonstrate that HECW1 induces ferroptosis and highlight the value of HECW1 and ZNF350 in the prognostic evaluation of patients with glioma. We also elucidate the mechanisms underlying the HECW1/ZNF350/NCOA4 axis and its regulation of ferroptosis. Our findings enrich the understanding of ferroptosis and provide potential treatment options for glioma patients.
Collapse
Affiliation(s)
- Yuancai Lin
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Hailong Gong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jinliang Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Zhiwen Hu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Mingjun Gao
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Wei Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China
| | - Jing Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, 36 Sanhao Road, 110000, Shenyang, China.
- Liaoning Clinical Medical Research Center in Nervous System Disease, 7 Mulan Road, 117000, Benxi, China.
| |
Collapse
|
17
|
Duan H, Wang F, Xu W, Sheng G, Sun Z, Chu H. Recent advances in the nanoarchitectonics of metal-organic frameworks for light-activated tumor therapy. Dalton Trans 2023; 52:16085-16102. [PMID: 37814810 DOI: 10.1039/d3dt02725b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Metal-organic frameworks (MOFs) have received extensive attention in tumor therapy because of their advantages, including large specific surface area, regular pore size, adjustable shape, and facile functionalization. MOFs are porous materials formed by the coordination bonding of metal clusters and organic ligands. This review summarized the most recent advancements in tumor treatment based on nMOFs. First, we discuss the classification of MOFs, which primarily include the series of isoreticular MOF (IRMOF), zeolitic imidazolate framework (ZIF), coordination pillared-layer (CPL), Materials of Institute Lavoisier (MIL), porous coordination network (PCN), University of Oslo (UiO) and Biological metal-organic frameworks (BioMOFs). Then, we discuss the use of nMOFs in antitumor therapy, including drug delivery strategies, photodynamic therapy (PDT), photothermal therapy (PTT), and combination therapy. Finally, the obstacles and opportunities in nMOFs are discussed.
Collapse
Affiliation(s)
- Huijuan Duan
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Fang Wang
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Weizhe Xu
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Gang Sheng
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Zhaogang Sun
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Hongqian Chu
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing 101149, China.
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
18
|
Song X, Qian H, Yu Y. Nanoparticles Mediated the Diagnosis and Therapy of Glioblastoma: Bypass or Cross the Blood-Brain Barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302613. [PMID: 37415556 DOI: 10.1002/smll.202302613] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Glioblastoma is one of the most aggressive central nervous system malignancies with high morbidity and mortality. Current clinical approaches, including surgical resection, radiotherapy, and chemotherapy, are limited by the difficulty of targeting brain lesions accurately, leading to disease recurrence and fatal outcomes. The lack of effective treatments has prompted researchers to continuously explore novel therapeutic strategies. In recent years, nanomedicine has made remarkable progress and expanded its application in brain drug delivery, providing a new treatment for brain tumors. Against this background, this article reviews the application and progress of nanomedicine delivery systems in brain tumors. In this paper, the mechanism of nanomaterials crossing the blood-brain barrier is summarized. Furthermore, the specific application of nanotechnology in glioblastoma is discussed in depth.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230011, P. R. China
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, 230011, China
| | - Yongqiang Yu
- Department of Radiology, Anhui Provincial Institute of Translational Medicine, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, 230022, P. R. China
- Research Center of Clinical Medical Imaging, Hefei, 230022, China
| |
Collapse
|
19
|
Chen J, Pan J, Liu S, Zhang Y, Sha S, Guo H, Wang X, Hao X, Zhou H, Tao S, Wang Y, Fan JB. Fruit-Derived Extracellular-Vesicle-Engineered Structural Droplet Drugs for Enhanced Glioblastoma Chemotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304187. [PMID: 37589312 DOI: 10.1002/adma.202304187] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Existing solid-nanoparticle-based drug delivery systems remain a great challenge for glioblastoma chemotherapy due to their poor capacities in crossing the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB). Herein, fruit-derived extracellular-vesicle (EV)-engineered structural droplet drugs (ESDDs) are demonstrated by programming the self-assembly of fruit-derived EVs at the DOX@squalene-PBS interface, greatly enhancing the antitumor efficacy against glioblastoma. The ESDDs experience a flexible delivery via deformation-amplified macropinocytosis and membrane fusion, enabling them to highly efficiently cross the BBB/BBTB and deeply penetrate glioblastoma tissues. As expected, the ESDDs exhibit approximately 2.5-fold intracellular uptake, 2.2-fold transcytosis, and fivefold membrane fusion higher than cRGD-modified EVs (REs), allowing highly efficient accumulation, deep penetration, and cellular internalization into the glioblastoma tissues, and thereby significantly extending the survival time of glioblastoma mice.
Collapse
Affiliation(s)
- Jianping Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
- Department of Radiotherapy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, P. R. China
| | - Jiahao Pan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Sijia Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yangning Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Suinan Sha
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Haoyan Guo
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xuejiao Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Xiangrong Hao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Houwang Zhou
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Sijian Tao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Ying Wang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jun-Bing Fan
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
20
|
Shakila PB, Hirad AH, Alarfaj AA, Hussein-Al-Ali SH, Mulugeta B. Precise Construction of Dual-Promising Anticancer Drugs Associated with Gold Nanomaterials on Glioma Cancer Cells. Bioinorg Chem Appl 2023; 2023:8892099. [PMID: 37920234 PMCID: PMC10620031 DOI: 10.1155/2023/8892099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
Multiple chemodrugs with nanotechnology have proven to be an effective cancer treatment technique. When taken combined, cabazitaxel (CTX) and cisplatin (PT) have more excellent cytotoxic effects than drugs used alone in the chemotherapy of several different cancers. However, several severe side effects are associated with using these chemotherapy drugs in cancer patients. Gold nanomaterials (AuNMs) are promising as drug carriers because of their small diameter, easy surface modifications, good biocompatibility, and strong cell penetration. This work aimed to determine the CTX and PT encapsulated with AuNMs against human glioma U87 cancer cells. The fabrication of the AuNMs achieved a negative surface charge, polydispersity index, and the mean sizes. The combined cytotoxic effect of CTX and PT bound to AuNMs was greater than that of either drug alone when tested on U87 cells. The half inhibitory concentration (IC50) values for free PT were 54.7 μg/mL (at 24 h) and 4.8 g μg/mL (at 72 h). Results acquired from the MTT assay show cell growth decreases time- and concentration-dependent AuNMs, free CTX, free PT, and AuNMs@CTX/PT-induced cytotoxicity and, ultimately, the cell death of U87 cells via apoptosis. The biochemical apoptosis staining techniques investigated the cells' morphological changes of the cells (acridine orange and ethidium bromide (AO-EB) and nuclear staining (DAPI) techniques). The AO-EB and nuclear staining results reveal that the NPs effectively killed cancer cells. Furthermore, the flow cytometry analysis examined the mode of cell death. Therefore, AuNMs@CTX/PT has excellent potential in the cancer therapy of different cancer cells.
Collapse
Affiliation(s)
- P. Baby Shakila
- Department of Biochemistry, Vivekananda College of Arts and Sciences for Women, Tiruchengode 637205, Tamil Nadu, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Beza Mulugeta
- Department of Food Science and Postharvest Technology, Haramaya Institute of Technology, Haramaya University, Dire Dawa, P.O. Box 128, Ethiopia
| |
Collapse
|
21
|
Roque D, Cruz N, Ferreira HA, Reis CP, Matela N, Herculano-Carvalho M, Cascão R, Faria CC. Nanoparticle-Based Treatment in Glioblastoma. J Pers Med 2023; 13:1328. [PMID: 37763096 PMCID: PMC10532799 DOI: 10.3390/jpm13091328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Glioblastoma (GB) is a malignant glioma associated with a mean overall survival of 12 to 18 months, even with optimal treatment, due to its high relapse rate and treatment resistance. The standardized first-line treatment consists of surgery, which allows for diagnosis and cytoreduction, followed by stereotactic fractionated radiotherapy and chemotherapy. Treatment failure can result from the poor passage of drugs through the blood-brain barrier (BBB). The development of novel and more effective therapeutic approaches is paramount to increasing the life expectancy of GB patients. Nanoparticle-based treatments include epitopes that are designed to interact with specialized transport systems, ultimately allowing the crossing of the BBB, increasing therapeutic efficacy, and reducing systemic toxicity and drug degradation. Polymeric nanoparticles have shown promising results in terms of precisely directing drugs to the brain with minimal systemic side effects. Various methods of drug delivery that pass through the BBB, such as the stereotactic injection of nanoparticles, are being actively tested in vitro and in vivo in animal models. A significant variety of pre-clinical studies with polymeric nanoparticles for the treatment of GB are being conducted, with only a few nanoparticle-based drug delivery systems to date having entered clinical trials. Pre-clinical studies are key to testing the safety and efficacy of these novel anticancer therapies and will hopefully facilitate the testing of the clinical validity of this promising treatment method. Here we review the recent literature concerning the most frequently reported types of nanoparticles for the treatment of GB.
Collapse
Affiliation(s)
- Diogo Roque
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisbon, Portugal; (D.R.); (M.H.-C.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Nuno Cruz
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Matela
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; (N.C.); (H.A.F.); (C.P.R.); (N.M.)
| | - Manuel Herculano-Carvalho
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisbon, Portugal; (D.R.); (M.H.-C.)
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Claudia C. Faria
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisbon, Portugal; (D.R.); (M.H.-C.)
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
22
|
Hooper GW, Ansari S, Johnson JM, Ginat DT. Advances in the Radiological Evaluation of and Theranostics for Glioblastoma. Cancers (Basel) 2023; 15:4162. [PMID: 37627190 PMCID: PMC10453051 DOI: 10.3390/cancers15164162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Imaging is essential for evaluating patients with glioblastoma. Traditionally a multimodality undertaking, CT, including CT cerebral blood profusion, PET/CT with traditional fluorine-18 fluorodeoxyglucose (18F-FDG), and MRI have been the mainstays for diagnosis and post-therapeutic assessment. However, recent advances in these modalities, in league with the emerging fields of radiomics and theranostics, may prove helpful in improving diagnostic accuracy and treating the disease.
Collapse
Affiliation(s)
| | - Shehbaz Ansari
- Rush University Medical Center, Department of Radiology and Nuclear Medicine, Chicago, IL 60612, USA;
| | - Jason M. Johnson
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Daniel T. Ginat
- Department of Radiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
24
|
Entezari M, Yousef Abad GG, Sedghi B, Ettehadi R, Asadi S, Beiranvand R, Haratian N, Karimian SS, Jebali A, Khorrami R, Zandieh MA, Saebfar H, Hushmandi K, Salimimoghadam S, Rashidi M, Taheriazam A, Hashemi M, Ertas YN. Gold nanostructure-mediated delivery of anticancer agents: Biomedical applications, reversing drug resistance, and stimuli-responsive nanocarriers. ENVIRONMENTAL RESEARCH 2023; 225:115673. [PMID: 36906270 DOI: 10.1016/j.envres.2023.115673] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Sedghi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reyhaneh Ettehadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shafagh Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Razieh Beiranvand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negar Haratian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyedeh Sara Karimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Jebali
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| |
Collapse
|
25
|
Han S, Wang JTW, Yavuz E, Zam A, Rouatbi N, Utami RN, Liam-Or R, Griffiths A, Dickson W, Sosabowski J, Al-Jamal KT. Spatiotemporal tracking of gold nanorods after intranasal administration for brain targeting. J Control Release 2023; 357:606-619. [PMID: 37061195 PMCID: PMC10390340 DOI: 10.1016/j.jconrel.2023.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Intranasal administration is becoming increasingly more attractive as a fast delivery route to the brain for therapeutics circumventing the blood-brain barrier (BBB). Gold nanorods (AuNRs) demonstrate unique optical and biological properties compared to other gold nanostructures due to their high aspect ratio. In this study, we investigated for the first time the brain region-specific distribution of AuNRs and their potential as a drug delivery platform for central nervous system (CNS) therapy following intranasal administration to mice using a battery of analytical and imaging techniques. AuNRs were functionalized with a fluorescent dye (Cyanine5, Cy5) or a metal chelator (diethylenetriaminepentaacetic dianhydride, DTPA anhydride) to complex with Indium-111 via a PEG spacer for optical and nuclear imaging, respectively. Direct quantification of gold was achieved by inductively coupled plasma mass spectrometry. Rapid AuNRs uptake in mice brains was observed within 10 min following intranasal administration which gradually reduced over time. This was confirmed by the 3 imaging/analytical techniques. Autoradiography of sagittal brain sections suggested entry to the brain via the olfactory bulb followed by diffusion to other brain regions within 1 h of administration. The presence of AuNR in glioblastoma (GBM) tumors following intranasal administration was also proven which opens doors for AuNRs applications, as nose-to-brain drug delivery carriers, for treatment of a range of CNS diseases.
Collapse
Affiliation(s)
- Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Emine Yavuz
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; Advanced Technology Research and Application Center, Selcuk University, Aleaddin Keykubat Yerleskesi, Akademi Mah. Yeni Istanbul Cad. No: 355/C, Selcuklu, Konya, Turkey
| | - Alaa Zam
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Nadia Rouatbi
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Rifka Nurul Utami
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Alexander Griffiths
- London Metallomics Facility, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Wayne Dickson
- Department of Physics, King's College London, Strand, London WC2R 2LS, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Jane Sosabowski
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom; London Centre for Nanotechnology, King's College London, Strand, London WC2R 2LS, United Kingdom.
| |
Collapse
|
26
|
Koklesova L, Jakubikova J, Cholujova D, Samec M, Mazurakova A, Šudomová M, Pec M, Hassan STS, Biringer K, Büsselberg D, Hurtova T, Golubnitschaja O, Kubatka P. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management-Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front Pharmacol 2023; 14:1121950. [PMID: 37033601 PMCID: PMC10076662 DOI: 10.3389/fphar.2023.1121950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer causes many deaths worldwide each year, especially due to tumor heterogeneity leading to disease progression and treatment failure. Targeted treatment of heterogeneous population of cells - cancer stem cells is still an issue in protecting affected individuals against associated multidrug resistance and disease progression. Nanotherapeutic agents have the potential to go beyond state-of-the-art approaches in overall cancer management. Specially assembled nanoparticles act as carriers for targeted drug delivery. Several nanodrugs have already been approved by the US Food and Drug Administration (FDA) for treating different cancer types. Phytochemicals isolated from plants demonstrate considerable potential for nanomedical applications in oncology thanks to their antioxidant, anti-inflammatory, anti-proliferative, and other health benefits. Phytochemical-based NPs can enhance anticancer therapeutic effects, improve cellular uptake of therapeutic agents, and mitigate the side effects of toxic anticancer treatments. Per evidence, phytochemical-based NPs can specifically target CSCs decreasing risks of tumor relapse and metastatic disease manifestation. Therefore, this review focuses on current outlook of phytochemical-based NPs and their potential targeting CSCs in cancer research studies and their consideration in the framework of predictive, preventive, and personalized medicine (3PM).
Collapse
Affiliation(s)
- Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jana Jakubikova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dana Cholujova
- Cancer Research Institute, Department of Tumor Immunology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
- Centre for Advanced Material Application, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Samec
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | | | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Sherif T. S. Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Tatiana Hurtova
- Department of Dermatology, Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin and University Hospital Martin, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
27
|
Bian Y, Wang Y, Chen X, Zhang Y, Xiong S, Su D. Image‐guided diagnosis and treatment of glioblastoma. VIEW 2023. [DOI: 10.1002/viw.20220069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yongning Bian
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yaling Wang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Xueqian Chen
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Yong Zhang
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Shaoqing Xiong
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| | - Dongdong Su
- Center of Excellence for Environmental Safety and Biological Effects Beijing Key Laboratory for Green Catalysis and Separation Department of Chemistry Beijing University of Technology Beijing P. R. China
| |
Collapse
|
28
|
Li J, Zhu L, Kwok HF. Nanotechnology-based approaches overcome lung cancer drug resistance through diagnosis and treatment. Drug Resist Updat 2023; 66:100904. [PMID: 36462375 DOI: 10.1016/j.drup.2022.100904] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lung cancer continues to be a malignant tumor with high mortality. Two obstacles interfere with curative therapy of lung cancer: (i) poor diagnosis at the early stages, as symptoms are not specific or asymptomatic; and (ii) invariably emerging drug resistance after treatment. Some factors contributing to drug resistance include preexisting genetic/genomic drug-resistant alteration(s); activation of adaptive drug resistance pathways; remodeling of the tumor microenvironment; and pharmacological mechanisms or activation of drug efflux pumps. Despite the mechanisms explored to better understand drug resistance, a gap remains between molecular understanding and clinical application. Therefore, facilitating the translation of basic science into the clinical setting is a great challenge. Nanomedicine has emerged as a promising tool for cancer treatment. Because of their excellent physicochemical properties and enhanced permeability and retention effects, nanoparticles have great potential to revolutionize conventional lung cancer diagnosis and combat drug resistance. Nanoplatforms can be designed as carriers to improve treatment efficacy and deliver multiple drugs in one system, facilitating combination treatment to overcome drug resistance. In this review, we describe the difficulties in lung cancer treatment and review recent research progress on nanoplatforms aimed at early diagnosis and lung cancer treatment. Finally, future perspectives and challenges of nanomedicine are also discussed.
Collapse
Affiliation(s)
- Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Lipeng Zhu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
29
|
Nuez-Martínez M, Queralt-Martín M, Muñoz-Juan A, Aguilella VM, Laromaine A, Teixidor F, Viñas C, Pinto CG, Pinheiro T, Guerreiro JF, Mendes F, Roma-Rodrigues C, Baptista PV, Fernandes AR, Valic S, Marques F. Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma. J Mater Chem B 2022; 10:9794-9815. [PMID: 36373493 DOI: 10.1039/d2tb01818g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]- and [8,8'-I2-o-FESAN]-), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.
Collapse
Affiliation(s)
- Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castelló, Spain
| | - Amanda Muñoz-Juan
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Vicente M Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071 Castelló, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Catarina G Pinto
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Teresa Pinheiro
- iBB - Instituto de Bioengenharia e Biociências, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Joana F Guerreiro
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Filipa Mendes
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| | - Catarina Roma-Rodrigues
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Pedro V Baptista
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Srecko Valic
- Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal.
| |
Collapse
|
30
|
Wang GG, Wang Y, Wang SL, Zhu LC. Down-regulation of CX43 expression by miR-1 inhibits the proliferation and invasion of glioma cells. Transl Cancer Res 2022; 11:4126-4136. [PMID: 36523292 PMCID: PMC9745374 DOI: 10.21037/tcr-22-2318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/17/2022] [Indexed: 02/07/2025]
Abstract
BACKGROUND Connexin (CX) 43 makes glioblastoma resistant to temozolomide, the first-line chemotherapy drug. However, targeting CX43 is very difficult because the mechanisms underlying CX43-mediated resistance remain unclear. CX43 is highly expressed in glioblastoma, which is closely associated with poor prognosis and chemotherapy resistance. The present study was to analyze the mechanism of microRNA (miR)-1 in regulating the proliferation and invasion of glioma cells. METHODS The effects of knockdown of miR-1 on the growth of glioma cell lines were observed by establishing blank, miR-1 inhibitor, and miR-1 mimic groups. Cell proliferation was detected using a Cell Counting Kit-8 (CCK-8) assay, cell apoptosis was detected by flow cytometry, and protein expression was detected by western blot. We used the Student's t-test to assess continuous data between the two groups and the Kruskal-Wallis test was adopted for multiple group comparisons. RESULTS Compared with the mimics normal control (NC) group, the apoptosis rate of the miR-1-3p mimics group was decreased, while that of the miR-1-3p inhibitor group was increased compared to the inhibitor NC group. In addition, the miR-1-3p mimics model of U251 cells exerted an inhibitory effect on the invasion ability of cells, whereas the miR-1-3p inhibitor model of U251 cells showed an invasion-promoting effect. The dual-luciferase assay showed that miR-1-3p had a targeted relationship with the CX43 gene. CONCLUSIONS Down-regulation of CX43 expression by miR-1 inhibited the infiltration and growth of glioma cells and further promoted the apoptosis of glioma cells by regulating CX43 expression.
Collapse
Affiliation(s)
- Gang-Gang Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yang Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Shi-Long Wang
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Li-Cang Zhu
- Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
31
|
Ahmad F, Varghese R, Panda S, Ramamoorthy S, Areeshi MY, Fagoonee S, Haque S. Smart Nanoformulations for Brain Cancer Theranostics: Challenges and Promises. Cancers (Basel) 2022; 14:5389. [PMID: 36358807 PMCID: PMC9655255 DOI: 10.3390/cancers14215389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Despite their low prevalence, brain tumors are among the most lethal cancers. They are extremely difficult to diagnose, monitor and treat. Conventional anti-cancer strategies such as radio- and chemotherapy have largely failed, and to date, the development of even a single effective therapeutic strategy against central nervous system (CNS) tumors has remained elusive. There are several factors responsible for this. Brain cancers are a heterogeneous group of diseases with variable origins, biochemical properties and degrees of invasiveness. High-grade gliomas are amongst the most metastatic and invasive cancers, which is another reason for therapeutic failure in their case. Moreover, crossing the blood brain and the blood brain tumor barriers has been a significant hindrance in the development of efficient CNS therapeutics. Cancer nanomedicine, which encompasses the application of nanotechnology for diagnosis, monitoring and therapy of cancers, is a rapidly evolving field of translational medicine. Nanoformulations, because of their extreme versatility and manipulative potential, are emerging candidates for tumor targeting, penetration and treatment in the brain. Moreover, suitable nanocarriers can be commissioned for theranostics, a combinatorial personalized approach for simultaneous imaging and therapy. This review first details the recent advances in novel bioengineering techniques that provide promising avenues for circumventing the hurdles of delivering the diagnostic/therapeutic agent to the CNS. The authors then describe in detail the tremendous potential of utilizing nanotechnology, particularly nano-theranostics for brain cancer imaging and therapy, and outline the different categories of recently developed next-generation smart nanoformulations that have exceptional potential for making a breakthrough in clinical neuro-oncology therapeutics.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Ressin Varghese
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Subhrajita Panda
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Siva Ramamoorthy
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology, Vellore 632014, India
| | - Mohammad Y. Areeshi
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging (CNR), Molecular Biotechnology Center, 10126 Turin, Italy
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
32
|
El-Gendy AO, Obaid Y, Ahmed E, Enwemeka CS, Hassan M, Mohamed T. The Antimicrobial Effect of Gold Quantum Dots and Femtosecond Laser Irradiation on the Growth Kinetics of Common Infectious Eye Pathogens: An In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213757. [PMID: 36364531 PMCID: PMC9654226 DOI: 10.3390/nano12213757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/29/2023]
Abstract
We studied the antimicrobial effect of gold quantum dots (AuQDs), femtosecond laser irradiation, and the combined effect of laser irradiation and AuQD treatment against common infectious eye pathogens. The INSPIRE HF100 laser system (Spectra Physics) provided a femtosecond laser, which was pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP (Spectra Physics), while a Quanta-Ray nanosecond Nd: YAG laser (Spectra-Physics) was used to precisely synthesize 7.8, 8.7, and 11.6 nm spherical AuQDs. Then, the in vitro growth kinetics and growth rate analysis of E. coli, methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, and Candida albicans (treated with the AuQDs, femtosecond laser irradiation, or combined laser and AuQDs treatment) was measured. The biocompatibility of the AuQDs with the retinal epithelial cell lines (ARPE-19) and their toxicity to the cells was assayed. The results showed that (1) in vitro irradiation using a 159 J/cm2 energy density obtained from the 400 nm femtosecond laser suppressed the growth of each of the five pathogens. (2) Similarly, treatment with the AuQDs was antimicrobial against the four bacteria. The AuQDs with an average size of 7.8 nm were more highly antimicrobial and biocompatible and were less cytotoxic than the larger AuQD sizes. (3) The combined femtosecond laser irradiation and AuQD treatment was more highly antimicrobial than each treatment alone. (4) The AuQD treatment did not impair the rate of wound closure in vitro. These findings suggest that combined femtosecond laser irradiation and AuQD treatment is significantly antimicrobial against Candida albicans, Gram-positive L. monocytogenes, S. aureus, and E. faecalis, as well as Gram-negative E. coli. The nontoxicity and biocompatibility of the AuQD particles tested suggest that this form of treatment may be clinically viable.
Collapse
Affiliation(s)
- Ahmed O. El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Yousif Obaid
- Anbar Health Department, Ministry of Health, Ramadi 31001, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Chukuka S. Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Department of Ophthalmology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
33
|
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology 2022; 20:412. [PMID: 36109754 PMCID: PMC9479308 DOI: 10.1186/s12951-022-01610-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2023] Open
Abstract
Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
- Sirius University of Science and Technology, Olympic Ave 1, Sirius, 354340, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation.
| |
Collapse
|
34
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Stavropoulou AP, Theodosiou M, Sakellis E, Boukos N, Papanastasiou G, Wang C, Tavares A, Corral CA, Gournis D, Chalmpes N, Gobbo OL, Efthimiadou EK. Bimetallic gold-platinum nanoparticles as a drug delivery system coated with a new drug to target glioblastoma. Colloids Surf B Biointerfaces 2022; 214:112463. [PMID: 35316703 DOI: 10.1016/j.colsurfb.2022.112463] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 01/04/2023]
Abstract
A drug delivery nanosystem of noble bimetallic nanoparticles (NPs) which consists of Au NPs capped with Pt NPs (Au@Pt NPs) is constructed and functionalised with a quinazoline based small molecule (Au@Pt@Q NPs), acting as a theranostic agent against glioblastoma. Two different hydrothermal synthetic procedures for bimetallic Au@Pt NPs are presented and the resulting nanostructures are fully characterised by means of spectroscopic and microscopic methods. The imaging and targeting capacity of the new drug delivery system is assessed through fluorescent optical microscopy and cytotoxicity evaluations. The constructed Au@Pt NPs consist a monodispersed colloidal solution of 25 nm with photoluminescent, fluorescent and X-Ray absorption properties that confirm their diagnostic potential. Haemolysis testing demonstrated that Au@Pt NPs are biocompatible and fluorescent microscopy confirmed their entering the cells. Cytological evaluation of the NPs through MTT assay showed that they do not inhibit the proliferation of control cell line HEK293, whereas they are toxic in U87MG, U251 and D54 glioblastoma cell lines; rendering them selective targeting agents for treating glioblastoma.
Collapse
Affiliation(s)
- Anastasia P Stavropoulou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece; Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, Athens, Greece
| | - Maria Theodosiou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece; Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, Athens, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, Athens, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, Athens, Greece
| | - Giorgos Papanastasiou
- School of Computer Science and Electronic Engineering, University of Essex, Colchester Campus, CO4 3SQ, UK; Edinburgh Imaging Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Chengjia Wang
- Edinburgh Imaging Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Adriana Tavares
- Edinburgh Imaging Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carlos Alcaide Corral
- Edinburgh Imaging Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Dimitrios Gournis
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Nikolaos Chalmpes
- Department of Materials Science & Engineering, University of Ioannina, 45110 Ioannina, Greece
| | - Oliviero L Gobbo
- Trinity College Dublin, School of Pharmacy & Pharmaceutical Sciences, Dublin, Ireland
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Panepistimioupolis, Zografou, Athens, Greece; Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", Agia Paraskevi, Athens, Greece.
| |
Collapse
|
36
|
Chen Z, Li N, Liu C, Yan S. Deep Convolutional Neural Network-Based Brain Magnetic Resonance Imaging Applied in Glioma Diagnosis and Tumor Region Identification. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4938587. [PMID: 35795879 PMCID: PMC9155927 DOI: 10.1155/2022/4938587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the application value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) based on a convolutional neural network (CNN) algorithm in glioma diagnosis and tumor segmentation. 66 patients with gliomas who were diagnosed and treated in the hospital were selected as the research objects. The patients were rolled into the high-grade glioma group (HGG, 46 cases) and the low-grade glioma group (LGG, 20 cases) according to the World Health Organization glioma grading standard. All patients received a conventional plain scan and a DCE-MRI. Parameters such as volume transfer constant (K trans), rate constant (K ep ), extracellular volume (V e ), and mean plasma volume (V p ) were calculated, and the parameters of patients of each grade were analyzed. The efficacy of each parameter in diagnosing glioma was analyzed through a receiver operating characteristic curve. All images were segmented by the CNN algorithm. The CNN algorithm showed good performance in DCE-MRI image segmentation. The mean, standard deviation, kurtosis, and skewness of K trans and V e , the standard deviation and skewness of K ep , and the mean and standard deviation of V p were statistically considerable in differentiating HGG and LGG (P < 0.05). ROC analysis showed that the standard deviation of K trans (0.885) had the highest diagnostic accuracy in distinguishing HGG and LGG. The values of K trans, V e , and V p were positively correlated with Ki-67 (r = 0.346, P = 0.014; r = 0.335, P = 0.017; r = 0.323, P = 0.022). In summary, the CNN-based DCE-MRI technology had high application value in glioma diagnosis and tumor segmentation.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Neurosurgery, The First People's Hospital of Lianyungang/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, Jiangsu, China
| | - Ning Li
- Department of Neurosurgery, The First People's Hospital of Lianyungang/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, Jiangsu, China
| | - Changtao Liu
- Department of Neurosurgery, The First People's Hospital of Lianyungang/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, Jiangsu, China
| | - Shiwei Yan
- Department of Neurosurgery, The First People's Hospital of Lianyungang/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang 222000, Jiangsu, China
| |
Collapse
|
37
|
Qiao L, Yang H, Shao XX, Yin Q, Fu XJ, Wei Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol Pharm 2022; 19:1927-1951. [DOI: 10.1021/acs.molpharmaceut.1c00856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Li Qiao
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Huishu Yang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xin-xin Shao
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Qiuyan Yin
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xian-Jun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
- Shandong Engineering and Technology Research Center of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingcong Wei
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
38
|
Zare I, Yaraki MT, Speranza G, Najafabadi AH, Haghighi AS, Nik AB, Manshian BB, Saraiva C, Soenen SJ, Kogan MJ, Lee JW, Apollo NV, Bernardino L, Araya E, Mayer D, Mao G, Hamblin MR. Gold nanostructures: synthesis, properties, and neurological applications. Chem Soc Rev 2022; 51:2601-2680. [PMID: 35234776 DOI: 10.1039/d1cs01111a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent advances in technology are expected to increase our current understanding of neuroscience. Nanotechnology and nanomaterials can alter and control neural functionality in both in vitro and in vivo experimental setups. The intersection between neuroscience and nanoscience may generate long-term neural interfaces adapted at the molecular level. Owing to their intrinsic physicochemical characteristics, gold nanostructures (GNSs) have received much attention in neuroscience, especially for combined diagnostic and therapeutic (theragnostic) purposes. GNSs have been successfully employed to stimulate and monitor neurophysiological signals. Hence, GNSs could provide a promising solution for the regeneration and recovery of neural tissue, novel neuroprotective strategies, and integrated implantable materials. This review covers the broad range of neurological applications of GNS-based materials to improve clinical diagnosis and therapy. Sub-topics include neurotoxicity, targeted delivery of therapeutics to the central nervous system (CNS), neurochemical sensing, neuromodulation, neuroimaging, neurotherapy, tissue engineering, and neural regeneration. It focuses on core concepts of GNSs in neurology, to circumvent the limitations and significant obstacles of innovative approaches in neurobiology and neurochemistry, including theragnostics. We will discuss recent advances in the use of GNSs to overcome current bottlenecks and tackle technical and conceptual challenges.
Collapse
Affiliation(s)
- Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | | | - Giorgio Speranza
- CMM - FBK, v. Sommarive 18, 38123 Trento, Italy.,IFN - CNR, CSMFO Lab., via alla Cascata 56/C Povo, 38123 Trento, Italy.,Department of Industrial Engineering, University of Trento, v. Sommarive 9, 38123 Trento, Italy
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alireza Shourangiz Haghighi
- Department of Mechanical Engineering, Shiraz University of Technology, Modarres Boulevard, 13876-71557, Shiraz, Iran
| | - Amirala Bakhshian Nik
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Cláudia Saraiva
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 Avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg.,Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Marcelo J Kogan
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Farmacológica y Toxicológica, Universidad de Chile, 8380492 Santiago, Chile
| | - Jee Woong Lee
- Department of Medical Sciences, Clinical Neurophysiology, Uppsala University, Uppsala, SE-751 23, Sweden
| | - Nicholas V Apollo
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Liliana Bernardino
- Health Sciences Research Centre (CICS-UBI), University of Beira Interior, Rua Marques d'Avila e Bolama, 6201-001 Covilha, Portugal
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. Republica 275, Santiago, Chile
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich GmbH, Germany
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - Michael R Hamblin
- Laser Research Center, University of Johannesburg, Doorfontein 2028, South Africa.
| |
Collapse
|
39
|
Imam SS, Alshehri S, Altamimi MA, Hussain A, Alyahya KH, Mahdi WA, Qamar W. Formulation and Evaluation of Luteolin-Loaded Nanovesicles: In Vitro Physicochemical Characterization and Viability Assessment. ACS OMEGA 2022; 7:1048-1056. [PMID: 35036768 PMCID: PMC8757359 DOI: 10.1021/acsomega.1c05628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
Luteolin (LT) is a natural polyphenol water-insoluble compound. LT-loaded nanovesicles (NVs) were prepared by using the solvent evaporation method. LT-NVs were prepared using cholesterol, phosphatidylcholine, span 60, and labrasol in a different composition. The prepared LT-NVs were evaluated for encapsulation efficiency, in vitro drug release, and permeation study. The optimized LT-NVs were further evaluated for antioxidant activity and cytotoxicity using the lung cancer cell line. LT-NVs showed nanometric size (less than 300 nm), an optimum polydispersibility index (less than 0.5), and a negative zeta potential value. The formulations also showed significant variability in the encapsulation efficiency (69.44 ± 0.52 to 83.75 ± 0.35%) depending upon the formulation composition. The in vitro and permeation study results revealed enhanced drug release as well as permeation profile. The formulation LT-NVs (F2) showed the maximum drug release of 88.28 ± 1.13%, while pure LT showed only 20.1 ± 1.21% in 12 h. The release data revealed significant variation (p < 0.001) in the release pattern. The permeation results also depicted significant (p < 0.001) enhancement in the permeation across the membrane. The enhanced permeation from LT-NVs was achieved due to the enhanced solubility of LT in the presence of the surfactant. The antioxidant activity results proved that LT-NVs showed greater activity compared to pure LT. The cytotoxicity study showed lesser IC50 value from LT-NVs than the pure LT. Thus, it can be concluded that LT-NVs are a natural alternative to the synthetic drug in the treatment of lung cancer.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled Hamad Alyahya
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department
of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
40
|
Alotaibi BS, Buabeid M, Ibrahim NA, Kharaba ZJ, Ijaz M, Noreen S, Murtaza G. Potential of Nanocarrier-Based Drug Delivery Systems for Brain Targeting: A Current Review of Literature. Int J Nanomedicine 2021; 16:7517-7533. [PMID: 34795481 PMCID: PMC8593899 DOI: 10.2147/ijn.s333657] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
The advent of nanotechnologies such as nanocarriers and nanotherapeutics has changed the treatment strategy and developed a more efficacious novel drug delivery system. Various drug delivery systems are focused on drug-targeting of brain cells. However, the manifestation of the brain barrier is the main hurdle for the effective delivery of chemotherapeutics, ultimately causing treatment failure of various drugs. To solve this problem, various nanocarrier-based drug delivery system has been developed for brain targeting. This review outlines nanocarrier-based composites for different brain diseases and highlights nanocarriers for drug targeting towards brain cells. It also summarizes the latest developments in nanocarrier-based delivery systems containing liposomal systems, dendrimers, polymeric micelles, polymeric nanocarriers, quantum dots (QDs), and gold nanoparticles. Besides, the optimal properties of nanocarriers and therapeutic implications for brain targeting have been extensively studied. Finally, the potential applications and research opportunities for nanocarriers in brain targeting are discussed.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Manal Buabeid
- Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Nihal Abdalla Ibrahim
- Medical and Bio-allied Health Sciences Research Centre, Ajman University, Ajman, United Arab Emirates
- Department of Clinical Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Zelal Jaber Kharaba
- Department of Clinical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Munazza Ijaz
- Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ghulam Murtaza
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
41
|
Multifunctional lipidic nanocarriers for effective therapy of glioblastoma: recent advances in stimuli-responsive, receptor and subcellular targeted approaches. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Background
Glioblastoma, or glioblastoma multiforme (GBM), remains a fatal cancer type despite the remarkable progress in understanding the genesis and propagation of the tumor. Current treatment modalities, comprising mainly of surgery followed by adjuvant chemoradiation, are insufficient for improving patients' survival owing to existing hurdles, including the blood–brain barrier (BBB). In contemporary practice, the prospect of long-term survival or cure continues to be a challenge for patients suffering from GBM. This review provides an insight into the drug delivery strategies and the significant efforts made in lipid-based nanoplatform research to circumvent the challenges in optimal drug delivery in GBM.
Area covered
Owing to the unique properties of lipid-based nanoplatforms and advancements in clinical translation, this article describes the application of various stimuli-responsive lipid nanocarriers and tumor subcellular organelle-targeted therapy to give an idea about the strategies that can be applied to enhance site-specific drug delivery for GBM. Furthermore, active targeting of drugs via surface-modified lipid-based nanostructures and recent findings in alternative therapeutic platforms such as gene therapy, immunotherapy, and multimodal therapy have also been overviewed.
Expert opinion
Lipid-based nanoparticles stand out among the other nanocarriers explored for GBM drug delivery, as they support both passive and active drug targeting by crossing/bypassing the BBB at the same time minimizing toxicity and projects better pharmacological parameters. Although these nanocarriers could be a plausible choice for treating GBM, in-depth research is essential to advance neuro-oncology research and enhance outcomes in patients with brain tumors.
Collapse
|
42
|
Pohanka M. Current Biomedical and Diagnostic Applications of Gold Micro and Nanoparticles. Mini Rev Med Chem 2021; 21:1085-1095. [PMID: 32744971 DOI: 10.2174/1389557520666200730155616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/22/2022]
Abstract
Production of particles and their adaptation in the pharmacology became an object of interest, and they are the currently introduced therapies based on the use of micro and nanoparticles. The use of gold particles is not an exception. This review has focused on the application of gold micro and nanoparticles in pharmacology and biomedicine. The particles can be used for diagnosis respective theranostic of cancer, rheumatoid arthritis and as antimicrobial means. Besides these applications, specifications of gold, gold particles, and colloidal gold manufacturing and their comparison with the solid gold, are described as well. This review is based on a survey of actual scientific literature.
Collapse
Affiliation(s)
- Miroslav Pohanka
- Faculty of Military Health Sciences, University of Defense, Trebesska 1575, Hradec Kralove CZ-50001, Czech Republic
| |
Collapse
|
43
|
Yan P, Shu X, Zhong H, Chen P, Gong H, Han S, Tu Y, Shuai X, Li J, Liu LH, Wang P. A versatile nanoagent for multimodal imaging-guided photothermal and anti-inflammatory combination cancer therapy. Biomater Sci 2021; 9:5025-5034. [PMID: 34109950 DOI: 10.1039/d1bm00576f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Photothermal therapy (PTT) has drawn great attention in cancer treatment because of its minimal invasiveness and high spatiotemporal selectivity, but it still encounters severe obstacles like heat-resistance, metastasis and recurrence. A key reason for the treatment failure is the highly inflammatory tumor microenvironment caused by hyperthermia. A simultaneous anti-inflammatory therapy alongside the PTT has great potential for overcoming the drawbacks of PTT; however, it has been less reported and further study is urgently needed. In addition, as many inorganic photothermal agents have no inherent imaging capability, diagnostic strategies should be introduced to help identify cancerous lesions and find the best treatment time period for PTT. Herein, we developed a versatile theranostic nanoagent (named T-lipos-CPAuNCs) for synergistic multimodal imaging-guided photothermal/anti-inflammatory cancer therapy. Perfluorohexane (PFH) loaded AuNCs and the anti-inflammatory drug celecoxib were encapsulated into the tumor-targeting cyclic Arg-Gly-Asp (cRGD) peptide modified liposomes to form T-lipos-CPAuNCs. The T-lipos-CPAuNCs accumulated in the tumor tissue and selectively targeted the cancer cells, and converted photo to thermal energy under near-infrared (NIR) laser irradiation to kill the cancer cells by PTT. The high temperature further accelerated the release of celecoxib to exert an anti-inflammatory effect, while on the other hand led to liquid to gas phase transition of PFH to facilitate ultrasound (US) imaging. The T-lipos-CPAuNCs also exhibited photoacoustic (PA) imaging capability. In vitro and in vivo experiments established that under the guidance of multimodal imaging, T-lipos-CPAuNCs significantly suppressed the tumor growth by PTT and prevented tumor metastasis with non-apparent tumor inflammation. The developed theranostic nanosystem (T-lipos-CPAuNCs) shows great potential for PA/US multimodal imaging guided photothermal/anti-inflammatory combination cancer therapy.
Collapse
Affiliation(s)
- Ping Yan
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Xian Shu
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Hao Zhong
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Peiling Chen
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Haiyan Gong
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Shisong Han
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology, and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yingfeng Tu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Li
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| | - Li-Han Liu
- Guangdong Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.
| | - Ping Wang
- Department of Ultrasonography, The Third Affiliated Hospital of Southern Medical University, Academy of Orthopedics, Guangzhou 510515, Guangdong Province, P. R. China.
| |
Collapse
|
44
|
Liu J, Ren S, Zhang X, Feng Y, Qiu Z, Ma L, Huang J. Preparation, Biocompatibility and Antitumor Activity of Nanodelivery System Targeting Breast Cancer Base on a Silica Nanoparticle. Onco Targets Ther 2021; 14:3429-3442. [PMID: 34079288 PMCID: PMC8164725 DOI: 10.2147/ott.s291142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background Breast cancer (BC) is the most common type of cancer among women worldwide, and about 30% of males will have recurrent disease. Methods In order to treat recurrent BC, we designed a type of silica nanodelivery system loaded with epirubicin and curcumin (composite nanoparticles, CNPs). To promote CNPs clinical application, the stability, the blood, immune and cell compatibility, skin stimulation experiments, anti-tumor activity in vivo and in vitro were studied. Results In our study, the CNPs had a particle size of 73.9 nm and a uniform size and morphology; moreover, they maintained physical and chemical stability in the blood protein environment. Additionally, results showed that nanoparticles had good blood and immune compatibility, and they did not affect intracellular superoxide dismutase (SOD) and intracellular catalase (CAT). Skin stimulation experiments showed that CNPs did not cause any obvious irritative damage to the intact skin of rabbits. In the cytotoxicity study, CNPs showed strongest antitumor activity. The results of cell cycle and apoptosis studies showed that CNPs could mainly induce apoptosis of S and G2/M phase cells. In vivo, CNPs showed strongest aggregation in the tumor after 6 h of tail vein administration, and a large amount of CNPs continued to accumulate in the blood after 12 h of administration, indicating that CNPs had long circulation ability. The in vivo antitumor activities showed that CNPs had the strongest antitumor activity and tumor targeting ability, and hematoxylin-eosin staining of internal organs showed no obvious difference between treatment groups and negative control. Conclusion CNPs have an ideal biosafety and therapeutic effect for recurrent BC, and they have potential clinical application value.
Collapse
Affiliation(s)
- Jiuzhou Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Shasha Ren
- Department of Breast and Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, People's Republic of China
| | - Xiangyu Zhang
- Department of Pathology, Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Yun Feng
- Department of Breast and Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, People's Republic of China
| | - Zhenglun Qiu
- Department of Breast and Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471009, People's Republic of China
| | - Li Ma
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| | - Jingwen Huang
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, People's Republic of China
| |
Collapse
|
45
|
Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021; 18:1261-1290. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The targeted delivery of anticancer agents to tumor is a major challenge because most of the drugs show off-target effect resulting in nonspecific cell death. Multifunctionalized metallic nanoparticles (NPs) are explored as new carrier system in the era of cancer therapeutics. Researchers investigated the potential of metallic NPs to target tumor cells by active and passive mechanisms, thereby reducing off-target effects of anticancer agents. Moreover, photocatalytic activity of upconversion nanoparticles (UCNPs) and the enhanced permeation and retention (EPR) effect have also gained wide potential in cancer treatment. Recent advancement in the field of nanotechnology highlights their potency for cancer therapy. AREAS COVERED This review summarizes the types of gold and silver metallic NPs with targeting mechanisms and their potentiality in cancer therapy. EXPERT OPINION Recent advances in the field of nanotechnology for cancer therapy offer high specificity and targeting efficiency. Targeting tumor cells through mechanistic pathways using metallic NPs for the disruption/alteration of molecular profile and survival rate of the tumor cells has led to an effective approach for cancer therapeutics. This alteration in the survival rate of the tumor cells might decrease the proliferation thereby resulting in more efficient management in the treatment of cancer.
Collapse
Affiliation(s)
- Neha Desai
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | | | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
46
|
Clearable Nanoparticles for Cancer Photothermal Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33543458 DOI: 10.1007/978-3-030-58174-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Nanoparticles are important mediators for cancer photothermal therapy (PTT) where they can efficiently convert photon energy into heat and ablate the surrounding cancer cells with superior spatial and temporal precision. Recent decades have witnessed a booming development of numerous formulations of PTT nanoparticles that exhibit outstanding anti-tumor efficacy in preclinical studies. However, their clinical translation has been mined by safety concerns, especially their long-term impact on human body. Biodegradable nanoparticles that can be excreted after PTT, therefore, are gaining popularity due to their biocompatibility and improved safety profiles. This chapter provides an update on the progress in clearable PTT nanoparticles for cancer treatment. We discuss their design, synthesis strategy, and physicochemical properties relevant to photothermal performance. We also review their biodistribution patterns and in vivo anti-tumor efficacy, along with their degradation mechanism and clearance kinetics. Lastly, we present a brief overview of the imaging techniques to noninvasively monitor the degradation of PTT nanoparticles.
Collapse
|
47
|
Bellotto O, Cringoli MC, Perathoner S, Fornasiero P, Marchesan S. Peptide Gelators to Template Inorganic Nanoparticle Formation. Gels 2021; 7:14. [PMID: 33540722 PMCID: PMC7930985 DOI: 10.3390/gels7010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/28/2022] Open
Abstract
The use of peptides to template inorganic nanoparticle formation has attracted great interest as a green route to advance structures with innovative physicochemical properties for a variety of applications that range from biomedicine and sensing, to catalysis. In particular, short-peptide gelators offer the advantage of providing dynamic supramolecular environments for the templating effect on the formation of inorganic nanoparticles directly in the resulting gels, and ideally without using further reductants or chemical reagents. This mini-review describes the recent progress in the field to outline future research directions towards dynamic functional materials that exploit the synergy between supramolecular chemistry, nanoscience, and the interface between organic and inorganic components for advanced performance.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
| | - Maria C. Cringoli
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| | - Siglinda Perathoner
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, 98168 Messina, Italy;
- INSTM, Unit of Messina, 98168 Messina, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| |
Collapse
|
48
|
Norouzi M, Hardy P. Clinical applications of nanomedicines in lung cancer treatment. Acta Biomater 2021; 121:134-142. [PMID: 33301981 DOI: 10.1016/j.actbio.2020.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/21/2020] [Accepted: 12/03/2020] [Indexed: 12/22/2022]
Abstract
Lung cancer is the leading cause of cancer mortality worldwide. Owing to a lack of early-stage diagnosis, most lung cancers are detected in advanced stages, limiting the available therapeutic options. Moreover, extensive systemic chemotherapy of lung tumors is often associated with severe off-target toxicity and drug resistance of cancer cells, thus diminishing the outcomes of chemotherapy modalities. In this light, nanomedicines have opened an alternative avenue to develop more efficacious therapeutic platforms while addressing several current challenges. Clinical findings have revealed that nanomedicines improve the pharmacokinetics and biodistribution of the therapeutic agents while decreasing their systemic toxicity. This review provides an update on nanomedicines that have been clinically approved or are undergoing clinical trials for treatment of lung cancer. By discussing the clinical findings of the current nanoformulations, this review provides prospects for the development of more efficacious nanomedicines to improve the clinical outcomes of lung cancer treatment.
Collapse
|
49
|
Wen T, Quan G, Niu B, Zhou Y, Zhao Y, Lu C, Pan X, Wu C. Versatile Nanoscale Metal-Organic Frameworks (nMOFs): An Emerging 3D Nanoplatform for Drug Delivery and Therapeutic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005064. [PMID: 33511778 DOI: 10.1002/smll.202005064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/04/2020] [Indexed: 06/12/2023]
Abstract
For decades, nanoscale metal-organic frameworks (nMOFs) have attracted extensive interest in biomedicine due to their distinct characteristics, including facile synthesis, porous interior, and tunable biocompatibility. With high porosity, versatile nMOFs allow for the facile encapsulation of various therapeutic agents with exceptionally high payloads. Constructed from metal ions and organic linkers through coordination bonds, nMOFs with plentiful functional groups enable the surface modification for active targeting and enhanced biocompatibility. This review outlines the up-to-date progresses on the exploration of nMOFs in the field of biomedicine. First, the classification and synthesis of nMOFs are discussed, followed by the concrete introduction of drug loading strategies of nMOFs and mechanisms of stimulation-responsive drug release. Second, the smart designs of the nMOFs-based platforms for anticancer and antibacterial treatment are summarized. Finally, the basic challenges faced by nMOFs research and the great potential of biomimetic nMOFs are presented. This review article affords an inspiring insight into the interdisciplinary research of nMOFs and their biomedical applications, which holds great expectation for their further clinical translation.
Collapse
Affiliation(s)
- Ting Wen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Boyi Niu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yixian Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yiting Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, P. R. China
| |
Collapse
|
50
|
CdSe/ZnS Core-Shell-Type Quantum Dot Nanoparticles Disrupt the Cellular Homeostasis in Cellular Blood-Brain Barrier Models. Int J Mol Sci 2021; 22:ijms22031068. [PMID: 33499077 PMCID: PMC7866238 DOI: 10.3390/ijms22031068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Two immortalized brain microvascular endothelial cell lines (hCMEC/D3 and RBE4, of human and rat origin, respectively) were applied as an in vitro model of cellular elements of the blood–brain barrier in a nanotoxicological study. We evaluated the impact of CdSe/ZnS core-shell-type quantum dot nanoparticles on cellular homeostasis, using gold nanoparticles as a largely bioorthogonal control. While the investigated nanoparticles had surprisingly negligible acute cytotoxicity in the evaluated models, a multi-faceted study of barrier-related phenotypes and cell condition revealed a complex pattern of homeostasis disruption. Interestingly, some features of the paracellular barrier phenotype (transendothelial electrical resistance, tight junction protein gene expression) were improved by exposure to nanoparticles in a potential hormetic mechanism. However, mitochondrial potential and antioxidant defences largely collapsed under these conditions, paralleled by a strong pro-apoptotic shift in a significant proportion of cells (evidenced by apoptotic protein gene expression, chromosomal DNA fragmentation, and membrane phosphatidylserine exposure). Taken together, our results suggest a reactive oxygen species-mediated cellular mechanism of blood–brain barrier damage by quantum dots, which may be toxicologically significant in the face of increasing human exposure to this type of nanoparticles, both intended (in medical applications) and more often unintended (from consumer goods-derived environmental pollution).
Collapse
|