1
|
Yao X, Gao C, Sun C, Chen ZS, Zhuang J. Epigenetic code underlying EGFR-TKI resistance in non-small cell lung cancer: Elucidation of mechanisms and perspectives on therapeutic strategies. Drug Discov Today 2025; 30:104321. [PMID: 40032137 DOI: 10.1016/j.drudis.2025.104321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer subtype, and epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the core drugs used for its treatment. However, the emergence of drug resistance poses a significant challenge to their clinical efficacy. As a significant role-player in cancer development and maintenance, histone modifications, DNA methylation and noncoding RNA (ncRNA) changes have been proven to play a crucial part in driving EGFR-TKI resistance, which provides promising potential therapeutic targets and biomarkers for overcoming drug resistance. This review delves into the complex epigenetic mechanisms that cause EGFR-TKI resistance and emphasizes the potential of combined epigenetic therapies, aiming to provide better-targeted treatment options for NSCLC patients with NSCLC and drive innovative strategies to overcome the challenges of drug resistance.
Collapse
Affiliation(s)
- XiaoYu Yao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chundi Gao
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China; Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Jing Zhuang
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.
| |
Collapse
|
2
|
Mao K, Liu C, Tang Z, Rao Z, Wen J. Advances in drug resistance of osteosarcoma caused by pregnane X receptor. Drug Metab Rev 2024; 56:385-398. [PMID: 38872275 DOI: 10.1080/03602532.2024.2366948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Osteosarcoma (OS) is a prevalent malignancy among adolescents, commonly manifesting during childhood and adolescence. It exhibits a high degree of malignancy, propensity for metastasis, rapid progression, and poses challenges in clinical management. Chemotherapy represents an efficacious therapeutic modality for OS treatment. However, chemotherapy resistance of OS is a major problem in clinical treatment. In order to treat OS effectively, it is particularly important to explore the mechanism of chemotherapy resistance in OS.The Pregnane X receptor (PXR) is a nuclear receptor primarily involved in the metabolism, transport, and elimination of xenobiotics, including chemotherapeutic agents. PXR involves three stages of drug metabolism: stage I: drug metabolism enzymes; stage II: drug binding enzyme; stage III: drug transporter.PXR has been confirmed to be involved in the process of chemotherapy resistance in malignant tumors. The expression of PXR is increased in OS, which may be related to drug resistance of OS. Therefore, wereviewed in detail the role of PXR in chemotherapy drug resistance in OS.
Collapse
Affiliation(s)
- Kunhong Mao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Can Liu
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
| | - Zhongwen Tang
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zhouzhou Rao
- Key Laboratory of Translational Cancer Stem Cell Research, Department of Physiology, Hunan Normal University School of Medicine, Changsha, China
| | - Jie Wen
- Department of Anatomy, Hunan Normal University school of Medicine, Changsha, China
- Department of Pediatric Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
3
|
Matos BS, Peixoto da Silva S, Vasconcelos MH, Xavier CPR. Chemosensitizing effect of pentoxifylline in sensitive and multidrug-resistant non-small cell lung cancer cells. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:19. [PMID: 38835347 PMCID: PMC11149106 DOI: 10.20517/cdr.2024.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Aim: Multidrug resistance (MDR) is frequent in non-small cell lung cancer (NSCLC) patients, which can be due to its fibrotic stroma. This work explores the combination of pentoxifylline, an anti-fibrotic and chitinase 3-like-1 (CHI3L1) inhibitor drug, with conventional chemotherapy to improve NSCLC treatment. Methods: The effect of pentoxifylline in the expression levels of P-glycoprotein (P-gp), CHI3L1 and its main downstream proteins, as well as on cell death, cell cycle profile, and P-gp activity was studied in two pairs of sensitive and MDR counterpart NSCLC cell lines (NCI-H460/NCI-H460/R and A549/A549-CDR2). Association studies between CHI3L1 gene expression and NSCLC patients' survival were performed using The Cancer Genome Atlas (TCGA) analysis. The sensitizing effect of pentoxifylline to different drug regimens was evaluated in both sensitive and MDR NSCLC cell lines. The cytotoxicity of the drug combinations was assessed in MCF10A non-tumorigenic cells. Results: Pentoxifylline slightly decreased the expression levels of CHI3L1, β-catenin and signal transducer and activator of transcription 3 (STAT3), and caused a significant increase in the G1 phase of the cell cycle in both pairs of NSCLC cell lines. A significant increase in the % of cell death was observed in the sensitive NCI-H460 cell line. TCGA analysis revealed that high levels of CHI3L1 are associated with low overall survival (OS) in NSCLC patients treated with vinorelbine. Moreover, pentoxifylline sensitized both pairs of sensitive and MDR NSCLC cell lines to the different drug regimens, without causing significant toxicity to non-tumorigenic cells. Conclusion: This study suggests the possibility of combining pentoxifylline with chemotherapy to increase NSCLC therapeutic response, even in cases of MDR.
Collapse
Affiliation(s)
- Beatriz S Matos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
| | - Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Gandra 4585-116, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra 4585-116, Portugal
| |
Collapse
|
4
|
Yang H, Yang Y, Zou X, Zhang Q, Li X, Zhang C, Wang Y, Ren L. NIO-1, A Novel Inhibitor of OCT1, Enhances the Antitumor Action of Radiofrequency Ablation against Hepatocellular Carcinoma. Curr Mol Med 2024; 24:637-647. [PMID: 37246325 DOI: 10.2174/1566524023666230526154739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Radiofrequency ablation (RFA) is an important treatment strategy for patients with advanced hepatocellular carcinoma (HCC). However, its therapeutic effect is unsatisfactory and recurrence often occurs after RFA treatment. The octamer-binding transcription factor OCT1 is a novel tumour-promoting factor and an ideal target for HCC therapy. OBJECTIVE This study aimed to expand the understanding of HCC regulation by OCT1. METHODS The expression levels of the target genes were examined using qPCR. The inhibitory effects of a novel inhibitor of OCT1 (NIO-1) on HCC cells and OCT1 activation were examined using Chromatin immunoprecipitation or cell survival assays. RFA was performed in a subcutaneous tumour model of nude mice. RESULTS Patients with high OCT1 expression in the tumour tissue had a poor prognosis after RFA treatment (n = 81). The NIO-1 showed antitumor activity against HCC cells and downregulated the expression of the downstream genes of OCT1 in HCC cells, including those associated with cell proliferation (matrix metalloproteinase-3) and epithelial-mesenchymal transition-related factors (Snail, Twist, N-cadherin, and vimentin). In a subcutaneous murine model of HCC, NIO-1 enhanced the effect of RFA treatment on HCC tissues (n = 8 for NIO-1 and n = 10 for NIO-1 + RFA). CONCLUSION This study demonstrated the clinical importance of OCT1 expression in HCC for the first time. Our findings also revealed that NIO-1 aids RFA therapy by targeting OCT1.
Collapse
Affiliation(s)
- Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Yang Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Xiaozheng Zou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning Province, P.R. China
| | - Qian Zhang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Xiaoli Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Chunyu Zhang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Yanan Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Lili Ren
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| |
Collapse
|
5
|
Wang H, Chu F, Zhijie L, Bi Q, Lixin L, Zhuang Y, Xiaofeng Z, Niu X, Zhang D, Xi H, Li BA. MTBP enhances the activation of transcription factor ETS-1 and promotes the proliferation of hepatocellular carcinoma cells. Front Oncol 2022; 12:985082. [PMID: 36106099 PMCID: PMC9464980 DOI: 10.3389/fonc.2022.985082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence indicates that the oncoprotein murine double minute (MDM2) binding protein (MTBP) can be considered a pro-oncogene of human malignancies; however, its function and mechanisms in hepatocellular carcinoma (HCC) are still not clear. In the present work, our results demonstrate that MTBP could function as a co-activator of transcription factor E26 transformation-specific sequence (ETS-1), which plays an important role in HCC cell proliferation and/or metastasis and promotes proliferation of HCC cells. Using luciferase and real-time polymerase chain reaction (qPCR) assays, MTBP was found to enhance the transcription factor activation of ETS-1. The results from chromatin co-immunoprecipitation showed that MTBP enhanced the recruitment of ETS-1 to its downstream gene’s (mmp1’s) promoter region with ETS-1 binding sites. In cellular and nude mice models, overexpression of MTBP was shown to promote the proliferation of MHCC97-L cells with low endogenous MTBP levels, whereas the knockdown of MTBP led to inhibition of the proliferation of MHCC97-H cells that possessed high endogenous levels of MTBP. The effect of MTBP on ETS-1 was confirmed in the clinical specimens; the expression of MTBP was positively correlated with the downstream genes of ETS-1, mmp3, mmp9, and uPA. Therefore, by establishing the role of MTBP as a novel co-activator of ETS-1, this work expands our knowledge of MTBP or ETS-1 and helps to provide new ideas concerning HCC-related research.
Collapse
Affiliation(s)
- Hongbo Wang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Fang Chu
- Department of Emergency, The Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Li Zhijie
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Qian Bi
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Li Lixin
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yunlong Zhuang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhang Xiaofeng
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Xiaofeng Niu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Dali Zhang
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - He Xi
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Bo-an Li
- Clinical Laboratory, The Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- *Correspondence: Bo-an Li,
| |
Collapse
|
6
|
Zhu X, Xue C, Kang X, Jia X, Wang L, Younis MH, Liu D, Huo N, Han Y, Chen Z, Fu J, Zhou C, Yao X, Du Y, Cai W, Kang L, Lyu Z. DNMT3B-mediated FAM111B methylation promotes papillary thyroid tumor glycolysis, growth and metastasis. Int J Biol Sci 2022; 18:4372-4387. [PMID: 35864964 PMCID: PMC9295055 DOI: 10.7150/ijbs.72397] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the incidence of thyroid cancer (TC) rapidly increased all over the world, with the papillary thyroid cancer (PTC) accounting for the vast majority of TC cases. It is crucial to investigate novel diagnostic and therapeutic targets for PTC and explore more detailed molecular mechanisms in the carcinogenesis and progression of PTC. Based on the TCGA and GEO databases, FAM111B is downregulated in PTC tissues and predicts better prognosis in PTC patients. FAM111B suppresses the growth, migration, invasion and glycolysis of PTC both in vitro and in vivo. Furthermore, estrogen inhibits FAM111B expression by DNMT3B methylation via enhancing the recruitment of DNMT3B to FAM111B promoter. DNMT3B-mediated FAM111B methylation accelerates the growth, migration, invasion and glycolysis of PTC cells. In clinical TC patient specimens, the expression of FAM111B is inversely correlated with the expressions of DNMT3B and the glycolytic gene PGK1. Besides, the expression of FAM111B is inversely correlated while DNMT3B is positively correlated with glucose uptake in PTC patients. Our work established E2/DNMT3B/FAM111B as a crucial axis in regulating the growth and progression of PTC. Suppression of DNMT3B or promotion of FAM111B will be potential promising strategies in the estrogen induced PTC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China.,Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Chunyuan Xue
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaofeng Kang
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaomeng Jia
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Lin Wang
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Donghui Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Huo
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Yuchen Han
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Jing Fu
- Department of Pathology, Beijing Haidian Hospital, Beijing, China
| | - Chunyu Zhou
- Department of Pathology, Beijing Haidian Hospital, Beijing, China
| | - Xiaoxiang Yao
- Department of Pathology, Beijing Haidian Hospital, Beijing, China
| | - Yimeng Du
- Department of Genetic Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhaohui Lyu
- Department of Endocrinology, the First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Ma DB, Liu XY, Jia H, Zhang Y, Jiang Q, Sun H, Li X, Sun F, Chai Y, Feng F, Liu L. A Novel Small-Molecule Inhibitor of SREBP-1 Based on Natural Product Monomers Upregulates the Sensitivity of Lung Squamous Cell Carcinoma Cells to Antitumor Drugs. Front Pharmacol 2022; 13:895744. [PMID: 35662712 PMCID: PMC9157598 DOI: 10.3389/fphar.2022.895744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
The transcription factor, sterol regulatory element binding protein 1 (SREBP-1), plays important roles in modulating the proliferation, metastasis, or resistance to antitumor agents by promoting cellular lipid metabolism and related cellular glucose-uptake/Warburg Effect. However, the underlying mechanism of SREBP-1 regulating the proliferation or drug-resistance in lung squamous cell carcinoma (LUSC) and the therapeutic strategies targeted to SREBP-1 in LUSC remain unclear. In this study, SREBP-1 was highly expressed in LUSC tissues, compared with the paired non-tumor tissues (the para-tumor tissues). A novel small-molecule inhibitor of SREBP-1, MSI-1 (Ma’s inhibitor of SREBP-1), based on natural product monomers, was identified by screening the database of natural products. Treatment with MSI-1 suppressed the activation of SREBP-1-related pathways and the Warburg effect of LUSC cells, as indicated by decreased glucose uptake or glycolysis. Moreover, treatment of MSI-1 enhanced the sensitivity of LUSC cells to antitumor agents. The specificity of MSI-1 on SREBP-1 was confirmed by molecular docking and point-mutation of SPEBP-1. Therefore, MSI-1 improved our understanding of SREBP-1 and provided additional options for the treatment of LUSC.
Collapse
Affiliation(s)
- De-Bin Ma
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Xing-Yu Liu
- Department of General Internal Medicine, Central Medical Branch of PLA General Hospital, Beijing, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Yingshi Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiyu Jiang
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fang Sun
- Institute of Infectious Diseases, Department of Infectious Diseases, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fan Feng
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lei Liu
- Department of Respiratory and Critical Care Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
8
|
Ran Q, Xu D, Wang Q, Wang D. Hypermethylation of the Promoter Region of miR-23 Enhances the Metastasis and Proliferation of Multiple Myeloma Cells via the Aberrant Expression of uPA. Front Oncol 2022; 12:835299. [PMID: 35707350 PMCID: PMC9189361 DOI: 10.3389/fonc.2022.835299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/02/2022] [Indexed: 11/24/2022] Open
Abstract
Multiple myeloma has a long course, with no obvious symptoms in the early stages. However, advanced stages are characterized by injury to the bone system and represent a severe threat to human health. The results of the present work indicate that the hypermethylation of miR-23 promoter mediates the aberrant expression of uPA/PLAU (urokinase plasminogen activator, uPA) in multiple myeloma cells. miR-23, a microRNA that potentially targets uPA’s 3’UTR, was predicted by the online tool miRDB. The endogenous expressions of uPA and miR-23 are related to disease severity in human patients, and the expression of miR-23 is negatively related to uPA expression. The hypermethylation of the promoter region of miR-23 is a promising mechanism to explain the low level of miR-23 or aberrant uPA expression associated with disease severity. Overexpression of miR-23 inhibited the expression of uPA by targeting the 3’UTR of uPA, not only in MM cell lines, but also in patient-derived cell lines. Overexpression of miR-23 also inhibited in vitro and in vivo invasion of MM cells in a nude mouse model. The results therefore extend our knowledge about uPA in MM and may assist in the development of more effective therapeutic strategies for MM treatment.
Collapse
Affiliation(s)
- Qijie Ran
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| | - Dehong Xu
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Qi Wang
- Department of Hematology, General Hospital of Central Theater Command, Wuhan, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Fifth People’s Hospital of Dalian, Dalian, China
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian City, China
- *Correspondence: Qijie Ran, ; Dongsheng Wang,
| |
Collapse
|
9
|
Dong R, Ye N, Wang J, Zhao S, Wang T, Wang G, Shi X, Cheng J, Zhang Y, Yao T, Chen M, Zhang T, Luo L. Serum Exosomes MicroRNAs Are Novel Non-Invasive Biomarkers of Intrahepatic Cholestasis of Pregnancy. Front Endocrinol (Lausanne) 2022; 13:832577. [PMID: 35600587 PMCID: PMC9114354 DOI: 10.3389/fendo.2022.832577] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 11/17/2022] Open
Abstract
Background Intrahepatic cholestasis of pregnancy (ICP) is closely related to the occurrence of adverse outcomes. Currently, total bile acids (TBAs) are the only diagnostic index for ICP, and its sensitivity and specificity have certain limitations. In this study, we aimed to develop potential biomarkers for the diagnosis of ICP. Methods Sixty pregnant women diagnosed with ICP and 48 healthy pregnant controls were enrolled in this study. We used the Agilent microRNA (miRNA) array followed by quantitative reverse transcriptase polymerase chain reaction assays to identify and validate the serum exosome miRNA profiles in ICP and healthy pregnant controls. We employed bioinformatics to identify metabolic processes associated with differentially expressed serum exosome miRNAs. Results The expression levels of hsa-miR-4271, hsa-miR-1275, and hsa-miR-6891-5p in maternal serum exosomes were significantly lower in ICP patients compared to controls; the diagnostic accuracy of hsa-miR-4271, hsa-miR-1275, and hsa-miR-6891-5p was evaluated with the area under the receiver operating characteristic curve (AUC) values of 0.861, 0.886, and 0.838, respectively. Multiple logistic regression analysis showed that a combination of the levels of hsa-miR-4271and hsa-miR-1275 afforded a significantly higher AUC (0.982). The non-error rate of a combination of all three exosome miRNAs was the highest (95%), thus more reliable ICP diagnosis. The expression levels of all three exosome miRNAs were negatively associated with TBAs. Furthermore, according to bioinformatics analysis, the three exosome miRNAs were related to lipid metabolism, apoptosis, oxidative stress, and the Mitogen Activated Protein Kinase (MAPK) signaling pathway. Conclusions This study may identify the novel non-invasive biomarkers for ICP and provided new insights into the important role of the exosome miRNA regulation in ICP.
Collapse
Affiliation(s)
- Ruirui Dong
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ningzhen Ye
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jing Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Shaojie Zhao
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tiejun Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Gaoying Wang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Xinrui Shi
- School of Medicine, Jiangnan University, Wuxi, China
| | - Jing Cheng
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yan Zhang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Tingting Yao
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ting Zhang
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Liang Luo
- Intensive Care Medicine, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
10
|
Liu YY, Ding CZ, Chen JL, Wang ZS, Yang B, Wu XM. A Novel Small Molecular Inhibitor of DNMT1 Enhances the Antitumor Effect of Radiofrequency Ablation in Lung Squamous Cell Carcinoma Cells. Front Pharmacol 2022; 13:863339. [PMID: 35401185 PMCID: PMC8983860 DOI: 10.3389/fphar.2022.863339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Radiofrequency ablation (RFA) is a relatively new and effective therapeutic strategy for treating lung squamous cell carcinomas (LSCCs). However, RFA is rarely used in the clinic for LSCC which still suffers from a lack of effective comprehensive treatment strategies. In the present work, we investigate iDNMT, a novel small molecular inhibitor of DNMT1 with a unique structure. In clinical LSCC specimens, endogenous DNMT1 was positively associated with methylation rates of miR-27-3p's promoter. Moreover, endogenous DNMT1 was negatively correlated with miR-27-3p expression which targets PSEN-1, the catalytic subunit of γ-secretase, which mediates the cleavage and activation of the Notch pathway. We found that DNMT1 increased activation of the Notch pathway in clinical LSCC samples while downregulating miR-27-3p expression and hypermethylation of miR-27-3p's promoter. In addition of inhibiting activation of the Notch pathway by repressing methylation of the miR-27-3p promoter, treatment of LSCC cells with iDNMT1 also enhanced the sensitivity of LSCC tumor tissues to RFA treatment. These data suggest that iDNMT-induced inhibition of DNMT-1 enhances miR-27-3p expression in LSCC to inhibit activation of the Notch pathway. Furthermore, the combination of iDNMT and RFA may be a promising therapeutic strategy for LSCC.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Cheng-Zhi Ding
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Jia-Ling Chen
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Zheng-Shuai Wang
- Department of Traditional Chinese Medicine, Zhengzhou Xinhua Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bin Yang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Ming Wu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Shen LJ, Sun HW, Chai YY, Jiang QY, Zhang J, Li WM, Xin SJ. The Disassociation of the A20/HSP90 Complex via Downregulation of HSP90 Restores the Effect of A20 Enhancing the Sensitivity of Hepatocellular Carcinoma Cells to Molecular Targeted Agents. Front Oncol 2022; 11:804412. [PMID: 34976842 PMCID: PMC8714928 DOI: 10.3389/fonc.2021.804412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
NF-κB (nuclear factor κB) is a regulator of hepatocellular cancer (HCC)-related inflammation and enhances HCC cells' resistance to antitumor therapies by promoting cell survival and anti-apoptosis processes. In the present work, we demonstrate that A20, a dominant-negative regulator of NF-κB, forms a complex with HSP90 (heat-shock protein 90) and causes the disassociation of the A20/HSP90 complex via downregulation of HSP90. This process restores the antitumor activation of A20. In clinical specimens, the expression level of A20 did not relate with the outcome in patients receiving sorafenib; however, high levels of HSP90 were associated with poor outcomes in these patients. A20 interacted with and formed complexes with HSP90. Knockdown of HSP90 and treatment with an HSP90 inhibitor disassociated the A20/HSP90 complex. Overexpression of A20 alone did not affect HCC cells. Downregulation of HSP90 combined with A20 overexpression restored the effect of A20. Overexpression of A20 repressed the expression of pro-survival and anti-apoptosis-related factors and enhanced HCC cells' sensitivity to sorafenib. These results suggest that interactions with HSP90 could be potential mechanisms of A20 inactivation and disassociation of the A20/HSP90 complex and could serve as a novel strategy for HCC treatment.
Collapse
Affiliation(s)
- Li-Jun Shen
- Medical School of Chinese People's Liberation Army (PLA), Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Division 8, Department of Hepatology, Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hui-Wei Sun
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yan-Yao Chai
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Qi-Yu Jiang
- Senior Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Jian Zhang
- Department of Patient Management, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wen-Ming Li
- Department of Emergency Medicine, Handan Central Hospital, Handan, Hebei Province, China
| | - Shao-Jie Xin
- Medical School of Chinese People's Liberation Army (PLA), Chinese People's Liberation Army (PLA) General Hospital, Beijing, China.,Division 6, Department of Hepatology, Senior Department of Hepatology, The Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
12
|
Zou XZ, Hao JF, Zhou XH. Inhibition of SREBP-1 Activation by a Novel Small-Molecule Inhibitor Enhances the Sensitivity of Hepatocellular Carcinoma Tissue to Radiofrequency Ablation. Front Oncol 2021; 11:796152. [PMID: 34900747 PMCID: PMC8660695 DOI: 10.3389/fonc.2021.796152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/01/2021] [Indexed: 12/11/2022] Open
Abstract
Radiofrequency ablation (RFA) is an important strategy for treatment of advanced hepatocellular carcinoma (HCC). However, the prognostic indicators of RFA therapy are not known, and there are few strategies for RFA sensitization. The transcription factor sterol regulatory element binding protein 1 (SREBP)-1 regulates fatty-acid synthesis but also promotes the proliferation or metastasis of HCC cells. Here, the clinical importance of SREBP-1 and potential application of knockdown of SREBP-1 expression in RFA of advanced HCC was elucidated. In patients with advanced HCC receiving RFA, a high level of endogenous SREBP-1 expression correlated to poor survival. Inhibition of SREBP-1 activation using a novel small-molecule inhibitor, SI-1, not only inhibited the aerobic glycolysis of HCC cells, it also enhanced the antitumor effects of RFA on xenograft tumors. Overall, our results: (i) revealed the correlation between SREBP-1 and HCC severity; (ii) indicated that inhibition of SREBP-1 activation could be a promising approach for treatment of advanced HCC.
Collapse
Affiliation(s)
- Xiao-Zheng Zou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, China
| | - Jun-Feng Hao
- Department of Nephrology, Affiliated Hospital of Guangdong Medical University/Institute of Nephrology and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang City, China
| | - Xiu-Hua Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang City, China
| |
Collapse
|
13
|
Yang H, Zhang MZH, Sun HW, Chai YT, Li X, Jiang Q, Hou J. A Novel Microcrystalline BAY-876 Formulation Achieves Long-Acting Antitumor Activity Against Aerobic Glycolysis and Proliferation of Hepatocellular Carcinoma. Front Oncol 2021; 11:783194. [PMID: 34869036 PMCID: PMC8636331 DOI: 10.3389/fonc.2021.783194] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
BAY-876 is an effective antagonist of the Glucose transporter type 1 (GLUT1) receptor, a mediator of aerobic glycolysis, a biological process considered a hallmark of hepatocellular carcinoma (HCC) together with cell proliferation, drug-resistance, and metastasis. However, the clinical application of BAY-876 has faced many challenges. In the presence study, we describe the formulation of a novel microcrystalline BAY-876 formulation. A series of HCC tumor models were established to determine not only the sustained release of microcrystalline BAY-876, but also its long-acting antitumor activity. The clinical role of BAY-876 was confirmed by the increased expression of GLUT1, which was associated with the worse prognosis among advanced HCC patients. A single dose of injection of microcrystalline BAY-876 directly in the HCC tissue achieved sustained localized levels of Bay-876. Moreover, the single injection of microcrystalline BAY-876 in HCC tissues not only inhibited glucose uptake and prolonged proliferation of HCC cells, but also inhibited the expression of epithelial-mesenchymal transition (EMT)-related factors. Thus, the microcrystalline BAY-876 described in this study can directly achieve promising localized effects, given its limited diffusion to other tissues, thereby reducing the occurrence of potential side effects, and providing an additional option for advanced HCC treatment.
Collapse
Affiliation(s)
- Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding, China
| | - Mu-Zi-He Zhang
- Department of Pharmacy, Medical Security Center of PLA General Hospital, Beijing, China
| | - Hui-Wei Sun
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan-Tao Chai
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Department of Infectious Disease, Institute of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
14
|
Wang J, Huo C, Yin J, Tian L, Ma L, Wang D. Hypermethylation of the Promoter of miR-338-5p Mediates Aberrant Expression of ETS-1 and Is Correlated With Disease Severity Of Astrocytoma Patients. Front Oncol 2021; 11:773644. [PMID: 34858853 PMCID: PMC8632532 DOI: 10.3389/fonc.2021.773644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
The pro-oncogene ETS-1 (E26 transformation-specific sequence 1) is a key regulator of the proliferation and invasion of cancer cells. The present work examined the correlation of the aberrant expression of ETS-1 with histological or clinical classification of astrocytoma: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). MicroRNA, miR-338-5p, was predicted by an online tool (miRDB) to potentially target the 3' untranslated region of ETS-1; this was confirmed by multi-assays, including western blot experiments or the point mutation of the targeting sites of miR-338-5p in ETS-1's 3'untralation region (3'UTR). The expression of miR-338-5p was negatively associated with that of ETS-1 in astrocytoma, and deficiency of miR-338-5p would mediate aberrant expression of ETS-1 in astrocytoma. Mechanistically, hypermethylation of miR-338-5p by DNA methyltransferase 1 (DNMT1) resulted in repression of miR-338-5p expression and the aberrant expression of ETS-1. Knockdown or deactivation of DNMT1 decreased the methylation rate of the miR-338-5p promoter, increased the expression of miR-338-5p, and repressed the expression of ETS-1 in astrocytoma cell lines U251 and U87. These results indicate that hypermethylation of the miR-338-5p promoter by DNMT1 mediates the aberrant expression of ETS-1 related to disease severity of patients with astrocytoma.
Collapse
Affiliation(s)
- Junping Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Cheng Huo
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Jinzhu Yin
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Lixia Tian
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Lili Ma
- Department of Neurology, The Yantaishan Hospital, Yantai, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Ren H, Wei ZC, Sun YX, Qiu CY, Zhang WJ, Zhang W, Liu T, Che X. ATF2-Induced Overexpression of lncRNA LINC00882, as a Novel Therapeutic Target, Accelerates Hepatocellular Carcinoma Progression via Sponging miR-214-3p to Upregulate CENPM. Front Oncol 2021; 11:714264. [PMID: 34513693 PMCID: PMC8429907 DOI: 10.3389/fonc.2021.714264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/05/2023] Open
Abstract
Background Long intergenic non-protein coding RNA 882 (LINC00882) are abnormally expressed in several tumors. Our research aimed to uncover the functions and the potential mechanisms of LINC00882 in hepatocellular carcinoma (HCC) progression. Methods RT-qPCR was applied to identify LINC00882 and miR-214-3p levels in HCC specimens and cells. Luciferase reporter was applied for the exploration of whether activating transcription factor 2 (ATF2) could bind to the promoter region of LINC00882. Cell proliferation, invasion, and migration were evaluated. In vivo tumor xenograft models were constructed to assess tumorigenicity. RT-PCR, Western blot and Luciferase reporter assays were conducted to examine the regulatory relationships among LINC00882, miR-214-3p and ATF2. Results LINC00882 was markedly upregulated in HCC cells and clinical specimens. Additionally, ATF2 could bind directly to the LINC00882 promoter region and activate its transcription. Loss-of-function studies further demonstrated that LINC00882 knockdown inhibited proliferation, invasion, and migration of HCC cells. Mechanistically, LINC00882 adsorbed miR-214-3p, thus promoting the expressions of CENPM. Rescue assays demonstrated that functions of LINC00882 deficiency in HCC cells were reversed through suppressing miR-214-3p. Conclusion Our group identified a novel regulatory axis of ATF2/LINC00882/miR-214-3p/CENPM, which may provide potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Hua Ren
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zhi-Cheng Wei
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yan-Xia Sun
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chun-Yan Qiu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wen-Jue Zhang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Wei Zhang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Xu Che
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China.,Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
16
|
Wang J, Liu R, Zhao Y, Ma Z, Sang Z, Wen Z, Yang X, Xie H. Novel Microcrystal Formulations of Sorafenib Facilitate a Long-Acting Antitumor Effect and Relieve Treatment Side Effects as Observed With Fundus Microcirculation Imaging. Front Oncol 2021; 11:743055. [PMID: 34513717 PMCID: PMC8426437 DOI: 10.3389/fonc.2021.743055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/06/2021] [Indexed: 12/24/2022] Open
Abstract
The tyrosine kinase inhibitors (TKIs), including sorafenib, remain one first-line antitumor treatment strategy for advanced hepatocellular carcinoma (HCC). However, many problems exist with the current orally administered TKIs, creating a heavy medical burden and causing severe side effects. In this work, we prepared a novel microcrystalline formulation of sorafenib that not only achieved sustainable release and long action in HCC tumors but also relieved side effects, as demonstrated by fundus microcirculation imaging. The larger the size of the microcrystalline formulation of sorafenib particle, the slower the release rates of sorafenib from the tumor tissues. The microcrystalline formulation of sorafenib with the largest particle size was named as Sor-MS. One intratumor injection (once administration) of Sor-MS, but not Sor-Sol (the solution formulation of sorafenib as a control), could slow the release of sorafenib in HCC tumor tissues and in turn inhibited the in vivo proliferation of HCC or the expression of EMT/pro-survival–related factors in a long-acting manner. Moreover, compared with oral administration, one intratumor injection of Sor-MS not only facilitated a long-acting antitumor effect but also relieved side effects of sorafenib, avoiding damage to the capillary network of the eye fundus, as evidenced by fundus microcirculation imaging. Therefore, preparing sorafenib as a novel microcrystal formulation could facilitate a long-acting antitumor effect and relieve drug-related side effects.
Collapse
Affiliation(s)
- Junxiao Wang
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Rui Liu
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China.,Department of Medical Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yun Zhao
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenhu Ma
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zejie Sang
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhenyu Wen
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xueling Yang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute & Hospital/National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer/Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Hui Xie
- Department of Interventional Radiology, Senior Department of Oncology, The Fifth Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
17
|
Jie Y, Liu G, E M, Li Y, Xu G, Guo J, Li Y, Rong G, Li Y, Gu A. Novel small molecule inhibitors of the transcription factor ETS-1 and their antitumor activity against hepatocellular carcinoma. Eur J Pharmacol 2021; 906:174214. [PMID: 34116044 DOI: 10.1016/j.ejphar.2021.174214] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
The transcription factor ETS-1 (E26 transformation specific sequence 1) is the key regulator for malignant tumor cell proliferation and invasion by mediating the transcription of the invasion/migration related factors, e.g. MMPs (matrix metalloproteinases). This work aims to identify the novel small molecule inhibitors of ETS-1 using a small molecule compound library and to study the inhibitors' antitumor activity against hepatocellular carcinoma (HCC). The luciferase reporter is used to examine the inhibition and activation of ETS-1's transcription factor activity in HCC cells, including a highly invasive HCC cell line, MHCC97-H, and five lines of patient-derived cells. The inhibition of the proliferation of HCC cells is examined using the MTT assay, while the invasion of HCC cells is examined using the transwell assay. The anti-tumor activity of the selected compound on HCC cells is also examined in a subcutaneous tumor model or intrahepatic tumor model in nude mice. The results show that for the first time, four compounds, EI1~EI-4, can inhibit the transcription factor activation of ETS-1 and the proliferation or invasion of HCC cells. Among the four compounds, EI-4 has the best activation. The results from this paper contribute to expanding our understanding of ETS-1 and provide alternative, the safer and more effective, HCC molecular therapy strategies.
Collapse
Affiliation(s)
- Yamin Jie
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Guijun Liu
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine Harbin, Heilongjiang, 150040, China.
| | - Mingyan E
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China.
| | - Ying Li
- Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Guo Xu
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Jingjing Guo
- Department of Out-patient Clinic, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yinyin Li
- Department of Liver Disease, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Guanghua Rong
- Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Yongwu Li
- Department of Radiology, The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Anxin Gu
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
18
|
Wu Q, Liu TY, Hu BC, Li X, Wu YT, Sun XT, Jiang XW, Wang S, Qin XC, Ding HW, Zhao QC. CK-3, A Novel Methsulfonyl Pyridine Derivative, Suppresses Hepatocellular Carcinoma Proliferation and Invasion by Blocking the PI3K/AKT/mTOR and MAPK/ERK Pathways. Front Oncol 2021; 11:717626. [PMID: 34395292 PMCID: PMC8355706 DOI: 10.3389/fonc.2021.717626] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive tumor with a poor prognosis that highly expresses phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (ERK). The PI3K/AKT/mTOR and MAPK/ERK signaling pathways play a crucial role in HCC tumor formation, cell cycle, apoptosis and survival. However, no effective targeted therapies against these pathways is available, mainly due to the extensive and complex negative feedback loops between them. Here we used CK-3, a dual blocker of the PI3K/AKT/mTOR and MAPK/ERK pathways, against HCC cell lines to verify its anti-tumor activity in vitro. CK-3 exhibited cytotoxic activity against HCC, as demonstrated with MTT and colony formation assays. The anti-metastatic potential of CK-3 was demonstrated with wound healing and cell invasion assays. The ability of CK-3 to block both the PI3K/AKT/mTOR and MAPK/ERK pathways was also confirmed. CK-3 induced the apoptosis of Hep3B cells, while Bel7402 cells died via mitotic catastrophe (MC). Oral administration of CK-3 also inhibited the subcutaneous growth of BEL7402 cells in nude mice. Simultaneous PI3K/AKT/mTOR and MAPK/ERK pathway inhibition with CK-3 may be superior to single pathway monotherapies by inhibiting their feedback-regulation, and represents a potential treatment for HCC.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian-Yi Liu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bai-Chun Hu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu-Ting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Tong Sun
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Shu Wang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Chun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Huai-Wei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
19
|
He X, Sun H, Jiang Q, Chai Y, Li X, Wang Z, Zhu B, You S, Li B, Hao J, Xin S. Hsa-miR-4277 Decelerates the Metabolism or Clearance of Sorafenib in HCC Cells and Enhances the Sensitivity of HCC Cells to Sorafenib by Targeting cyp3a4. Front Oncol 2021; 11:735447. [PMID: 34381736 PMCID: PMC8350395 DOI: 10.3389/fonc.2021.735447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has shown that the metabolism and clearance of molecular targeted agents, such as sorafenib, plays an important role in mediating the resistance of HCC cells to these agents. Metabolism of sorafenib is performed by oxidative metabolism, which is initially mediated by CYP3A4. Thus, targeting CYP3A4 is a promising approach to enhance the sensitivity of HCC cells to chemotherapeutic agents. In the present work, we examined the association between CYP3A4 and the prognosis of HCC patients receiving sorafenib. Using the online tool miRDB, we predicted that has-microRNA-4277 (miR-4277), an online miRNA targets the 3’UTR of the transcript of cyp3a4. Furthermore, overexpression of miR-4277 in HCC cells repressed the expression of CYP3A4 and reduced the elimination of sorafenib in HCC cells. Moreover, miR-4277 enhanced the sensitivity of HCC cells to sorafenib in vitro and in vivo. Therefore, our results not only expand our understanding of CYP3A4 regulation in HCC, but also provide evidence for the use of miR-4277 as a potential therapeutic in advanced HCC.
Collapse
Affiliation(s)
- Xi He
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huiwei Sun
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qiyu Jiang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yantao Chai
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojuan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhijie Wang
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bing Zhu
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Boan Li
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Junfeng Hao
- Department of Nephrology, Jin Qiu Hospital of Liaoning Province/Geriatric Hospital of Liaoning Province, Shenyang, China
| | - Shaojie Xin
- Chinese People's Liberation Army (PLA) Medical School, Beijing, China.,Department of Liver Disease of Chinese PLA General Hospital, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
20
|
Jiang Q, Ma Y, Han J, Chu J, Ma X, Shen L, Liu B, Li BA, Hou J, Bi Q. MDM2 Binding Protein Induces the Resistance of Hepatocellular Carcinoma Cells to Molecular Targeting Agents via Enhancing the Transcription Factor Activity of the Pregnane X Receptor. Front Oncol 2021; 11:715193. [PMID: 34249768 PMCID: PMC8264664 DOI: 10.3389/fonc.2021.715193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022] Open
Abstract
The MDM2 binding protein (MTBP) has been considered an important regulator of human malignancies. In this study, we demonstrate that the high level of MTBP’s endogenous expression is correlated with poor prognosis of advanced hepatocellular carcinoma (HCC) patients who received sorafenib. MTBP interacted with the Pregnane X receptor (PXR) and enhanced the transcription factor activity of PXR. Moreover, MTBP enhanced the accumulation of PXR in HCC cells’ nuclear and the recruitment of PXR to its downstream gene’s (cyp3a4’s) promoter region. Mechanically, the knockdown of MTBP in MHCC97-H cells with high levels of MTBP decelerated the clearance or metabolism of sorafenib in HCC cells and led to the resistance of HCC cells to sorafenib. Whereas overexpression of MTBP in in MHCC97-L cells with low levels of MTBP showed the opposite trend. By establishing the interaction between MTBP and PXR, our results indicate that MTBP could function as a co-activator of PXR and could be a promising therapeutic target to enhance the sensitivity of HCC cells to molecular targeting agents.
Collapse
Affiliation(s)
- Qiyu Jiang
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.,Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Ma
- Department of Gastroenterology and Hepatology, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jingjing Han
- Department of Gastroenterology, Sangzhi County National Hospital, Zhangjiajie City, China
| | - Jingdong Chu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xuemei Ma
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Lijun Shen
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo Liu
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bo-An Li
- Department of Clinical Laboratory, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Hou
- Institute of Infectious Disease, Department of Infectious Disease, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qian Bi
- Endoscopy Center, Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Zhao M, Sun B, Wang Y, Qu G, Yang H, Wang P. miR-27-3p Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to the Antitumor Agent Olaparib by Targeting PSEN-1, the Catalytic Subunit of Γ-Secretase. Front Oncol 2021; 11:694491. [PMID: 34169001 PMCID: PMC8217819 DOI: 10.3389/fonc.2021.694491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Olaparib has been used in the treatment of triple-negative breast cancer (TNBC) with BRCA mutations. In the present study, we demonstrated the effect of miR-27-3p on the γ-secretase pathway by regulating the sensitivity of TNBC cells to olaparib. miR-27-3p, a microRNA with the potential to target PSEN-1, the catalytic subunit of γ-secretase mediating the second step of the cleavage of the Notch protein, was identified by the online tool miRDB and found to inhibit the expression of PSEN-1 by directly targeting the 3'-untranslated region (3'-UTR) of PSEN-1. The overexpression of miR-27-3p inhibited the activation of the Notch pathway via the inhibition of the cleavage of the Notch protein, mediated by γ-secretase, and, in turn, enhanced the sensitivity of TNBC cells to the antitumor agent olaparib. Transfection with PSEN-1 containing mutated targeting sites for miR-27-3p or the expression vector of the Notch protein intracellular domain (NICD) almost completely blocked the effect of miR-27-3p on the Notch pathway or the sensitivity of TNBC cells to olaparib, respectively. Therefore, our results suggest that the miR-27-3p/γ-secretase axis participates in the regulation of TNBC and that the overexpression of miR-27-3p represents a potential approach to enhancing the sensitivity of TNBC to olaparib.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Baisheng Sun
- Emergency Department, Fifth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Yan Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Gengbao Qu
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Baoding City, China
| | - Pilin Wang
- Department of Breast Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Zhou Q, Liu M, Shao T, Xie P, Zhu S, Wang W, Miao Q, Peng J, Zhang P. TPX2 Enhanced the Activation of the HGF/ETS-1 Pathway and Increased the Invasion of Endocrine-Independent Prostate Carcinoma Cells. Front Oncol 2021; 11:618540. [PMID: 34123781 PMCID: PMC8193931 DOI: 10.3389/fonc.2021.618540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/06/2021] [Indexed: 01/16/2023] Open
Abstract
The prognosis for endocrine-independent prostate carcinoma is still poor due to its highly metastatic feature. In the present work, TPX2 (the targeting protein for Xklp2), which is known as a micro-tubulin interacted protein, was identified as a novel coactivator of ETS-1, a transcription factor that plays a central role in mediating the metastasis of human malignancies. TPX2 enhanced the transcription factor activation of ETS-1 and increased the expression of ETS-1's downstream metastasis-related genes, such as mmp3 or mmp9, induced by HGF (hepatocyte growth factor), a typical agonist of the HGF/c-MET/ETS-1 pathway. The protein-interaction between TPX2 and ETS-1 was examined using immunoprecipitation (IP). TPX2 enhanced the accumulation of ETS-1 in the nuclear and the recruitment of its binding element (EST binding site, EBS) located in the promoter region of its downstream gene, mmp9. Moreover, TPX2 enhanced the in vitro or in vivo invasion of a typical endocrine-independent prostate carcinoma cell line, PC-3. Therefore, TPX2 enhanced the activation of the HGF/ETS-1 pathway to enhance the invasion of endocrine-independent prostate carcinoma cells and thus it would be a promising target for prostate carcinoma treatment.
Collapse
Affiliation(s)
- Qinghong Zhou
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Mingsheng Liu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Tao Shao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Pingbo Xie
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Shaojie Zhu
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Wei Wang
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Qiong Miao
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Jiaxi Peng
- The Second Ward of Urology, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Peng Zhang
- Department of Urology, Chinese People's Liberation Army (PLA) General Hospital/Chinese PLA Medical Academy, Beijing, China
| |
Collapse
|
23
|
Du Y, Shi X, Ma W, Wen P, Yu P, Wang X, Fang P, Chen A, Gao Z, Cui K. Phthalates promote the invasion of hepatocellular carcinoma cells by enhancing the interaction between Pregnane X receptor and E26 transformation specific sequence 1. Pharmacol Res 2021; 169:105648. [PMID: 33965509 DOI: 10.1016/j.phrs.2021.105648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Phthalates (PAEs) are considered endocrine-disrupting chemicals (EDCs), a series of compounds able to disrupt the normal regulation of the human endocrine-system. In the present study, we investigated the roles of four PAEs, butyl benzyl phthalate (BBP), dibutyl phthalate (DBP), dimethyl phthalate (DMP), and diethyl phthalate (DEP), in hepatocellular carcinoma (HCC) cells. We define novel roles for the PAEs on the migration of HCC cells via their enhancing of the interaction between the pregnane X receptor (PXR) and E26 transformation specific sequence 1 (ETS-1). Our results indicate that PAEs induced the transcriptional activation of ETS-1 and PXR. PXR activated by PAEs could bind to ETS-1 directly and enhanced the activity of ETS-1, which resulted in the induction of invasion-related ETS-1 target genes. The "LXXLL" motif in the ETS-1C-terminal was essential for the interaction between PXR and ETS-1 induced by PAEs. Treatment of PAEs promoted the nuclear accumulation of ETS-1 or the recruitment of ETS-1, but not in cells expressing ETS-1 with a mutated LXXLL motif in its downstream gene promoter region, or following transfection of PXR siRNA. Treatment with the PXR antagonist ketoconazole almost completely inhibited the effects of PAEs. Moreover, PAEs enhanced the in vitro or in vivo invasion of HCC cells via PXR/ETS-1. Therefore, our results not only contribute to a better understanding of HCC, but also extended the roles of EDCs regulating human malignancies.
Collapse
Affiliation(s)
- Yabing Du
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery/Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities/ZhengZhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Wang Ma
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Pu Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Xin Wang
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710064, Shaanxi Province, PR China.
| | - Pengli Fang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Aixia Chen
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Zhiqiang Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| | - Kang Cui
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, PR China.
| |
Collapse
|
24
|
Wang Y, Liu S, Chen Q, Ren Y, Li Z, Cao S. Novel small molecular inhibitor of Pit-Oct-Unc transcription factor 1 suppresses hepatocellular carcinoma cell proliferation. Life Sci 2021; 277:119521. [PMID: 33891940 DOI: 10.1016/j.lfs.2021.119521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent fatal malignancies in the Chinese population, due to high rates of hepatitis virus infection. Molecular targeted drugs such as sorafenib are the anti-tumor agents of choice for HCC treatment, but their results are generally unsatisfactory. In the present study the use of Pit-Oct-Unc transcription factor 1 (OCT1/POU2F1) as a potential therapeutic target for HCC was investigated, and a novel small molecular inhibitor of OCT1 (SMIO-1) was designed and its therapeutic efficacy against HCC was assessed. OCT1 expression was higher in HCC specimens than in corresponding non-tumor tissues, and higher OCT1 was associated with poorer prognosis in advanced HCC patients undergoing sorafenib treatment. For the first time, the novel SMIO-1 was investigated in conjunction with OCT1 via molecular docking. Interaction between SMIO-1 and OCT1 was confirmed via OCT1 point mutation. Treatment with SMIO-1 repressed OCT1 transcription factor activation by disrupting the interaction between OCT1 and its cofactors. It also repressed the proliferation and metastasis of HCC cells, and inhibited proliferation-related and metastasis-related genes downstream of OCT1. Therefore, SMIO-1 is a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Number 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, People's Republic of China.
| | - Shuo Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Number 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, People's Republic of China
| | - Qin Chen
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Number 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, People's Republic of China
| | - Yixin Ren
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, Hubei Province, People's Republic of China
| | - Zhongxiang Li
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, People's Republic of China.
| | - Shuang Cao
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430072, Hubei Province, People's Republic of China.
| |
Collapse
|
25
|
Zhou W, Gao Y, Tong Y, Wu Q, Zhou Y, Li Y. Anlotinib enhances the antitumor activity of radiofrequency ablation on lung squamous cell carcinoma. Pharmacol Res 2021; 164:105392. [PMID: 33348023 DOI: 10.1016/j.phrs.2020.105392] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Anlotinib is a novel molecular targeted drug that has been approved for the treatment of lung adenocarcinoma. Currently these agents are rarely used in the treatment of lung squamous cell carcinoma (LSCC). Bronchoscope-guided radiofrequency ablation (RFA) is a new strategy proposed for the treatment of LSCC that is able to alleviate the obstruction of the respiratory tract caused by LSCC by direct destruction of the tumor tissues. The presence work aims to reveal whether Anlotinib could enhance the antitumor activity of RFA on LSCC cells. The results from real-time PCR (qPCR) confirmed overexpression of targets of anlotinib activity, including receptor tyrosine kinase or the MPAK/PI3K-AKT pathway kinases, in LSCC tissues. Treatment with anlotinib inhibited the survival, in vitro invasion, and migration of LSCC cells. Moreover, the antitumor effects of RFA were investigated using a rodent model of LSCC. The combination of RFA and anlotinib treatment enhanced the antitumor effect of RFA treatment. We propose a combinative strategy of RFA and anlotinib as a novel approach for successful management of LSCC.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yongping Gao
- Department of Respiratory Medicine, Emergency General Hospital, Beijing, 100028, PR China.
| | - Yaqi Tong
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Qingjun Wu
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yunzhi Zhou
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| | - Yanming Li
- Department of Respiratory and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, PR China.
| |
Collapse
|
26
|
Yang H, Ren L, Wang Y, Bi X, Li X, Wen M, Zhang Q, Yang Y, Jia Y, Li Y, Zang A, Wei Y, Dai G. FBI-1 enhanced the resistance of triple-negative breast cancer cells to chemotherapeutic agents via the miR-30c/PXR axis. Cell Death Dis 2020; 11:851. [PMID: 33051436 PMCID: PMC7554048 DOI: 10.1038/s41419-020-03053-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
The factor that binds to the inducer of short transcripts-1 (FBI-1) is a transcription suppressor and an important proto-oncogene that plays multiple roles in carcinogenesis and therapeutic resistance. In the present work, our results indicated that FBI-1 enhanced the resistance of triple-negative breast cancer (TNBC) cells to chemotherapeutic agents by repressing the expression of micoRNA-30c targeting the pregnane X receptor (PXR). The expression of FBI-1 was positively related to PXR and its downstream drug resistance-related genes in TNBC tissues. FBI-1 enhanced the expression of PXR and enhanced the activation of the PXR pathway. The miR-30c decreased the expression of PXR by targeting the 3'-UTR of PXR, and FBI-1 increased the expression of PXR by repressing miR-30c's expression. Through the miR-30c/PXR axis, FBI-1 accelerated the clearance or elimination of antitumor agents in TNBC cells (the TNBC cell lines or the patients derived cells [PDCs]) and induced the resistance of cells to antitumor agents. Therefore, the results indicated that the miR-30c/PXR axis participates in the FBI-1-mediated drug-resistance of TNBC cells.
Collapse
Affiliation(s)
- Hua Yang
- Department of the Medical Oncology, the PLA General Hospital, Beijing, 100853, China.,Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Lili Ren
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yanan Wang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Xuebing Bi
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Xiaoli Li
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Ming Wen
- Department of the Gastrointestinal Surgery, the Affiliated Hospital of Hebei University, Baoding City, 071000, Hebei province, P.R. China
| | - Qian Zhang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yang Yang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Youchao Jia
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yumiao Li
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Aimin Zang
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China
| | - Yaning Wei
- Department of the Medical Oncology/the Hebei Key Laboratory of the Cancer Radiotherapy and Chemotherapy, Baoding City, 071000, Hebei province, P.R. China.
| | - Guanghai Dai
- Department of the Medical Oncology, the PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|