1
|
Muste CA, Gu C, Vandeveer HG, Sciabola S, Himmelbauer MK. Macrocyclic Rearrangement Ion Fragmentation of Glutathione Conjugates of Cyclobutane-Containing Covalent BTK Inhibitors. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:930-941. [PMID: 40091568 DOI: 10.1021/jasms.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Covalent BTK-inhibitor drugs often contain reactive acrylamide warheads designed to irreversibly bind to their protein targets at free thiol cysteines in the kinase active site. This reactivity also makes covalent inhibitors susceptible to conjugation to endogenous tripeptide glutathione (GSH), leading to clearance. During lead optimization efforts for the drug discovery of covalent BTK inhibitor BIIB129, some expected GSH adducts resulted in an unexpected and highly abundant rearrangement fragment ion in LC-MS/MS. By examining more than 30 inhibitors, the rearrangements were found to be dependent on the presence of a cycloalkane linker that connects the warhead to the kinase hinge binder motif of drug molecules. The proposed mechanism includes the formation of a 16-membered macrocyclic intermediate between the γ-glutamic acid residue (Glu) of GSH and a methyl-cyclobutyl cation, resulting in a rearrangement fragment originating from two distant parts of the adduct molecule separated by the warhead conjugated with the cysteine residue in between. Rich sets of chemical analogues available during the lead optimization enabled confirmation of the macrocyclic rearrangement. Proposed macrocyclic rearrangement was verified using GSH derivatives: N-acetylation of the γ-Glu blocked the rearrangement, and esterification of the γ-Glu side chain resulted in an expected shift in the mass of rearranged fragment ion. Proposed rearranged ion structures were supported by MS3 and MS4 fragmentations. Comparisons of the ion fragmentation of GSH conjugates between cis and trans matched pairs suggest a concerted mechanism for the cyclobutane linker and a stepwise mechanism for the methylcyclobutane linker, respectively.
Collapse
Affiliation(s)
- Cathy A Muste
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 225 Binney St, Cambridge, Massachusetts 02142, United States
| | - Chungang Gu
- Drug Metabolism and Pharmacokinetics, Biogen Inc., 225 Binney St, Cambridge, Massachusetts 02142, United States
| | - H George Vandeveer
- Medicinal Chemistry, Biogen Inc., 225 Binney St, Cambridge, Massachusetts 02142, United States
| | - Simone Sciabola
- Medicinal Chemistry, Biogen Inc., 225 Binney St, Cambridge, Massachusetts 02142, United States
| | - Martin K Himmelbauer
- Medicinal Chemistry, Biogen Inc., 225 Binney St, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Kim HO. BTK inhibitors and next-generation BTK-targeted therapeutics for B-cell malignancies. Arch Pharm Res 2025; 48:426-449. [PMID: 40335884 DOI: 10.1007/s12272-025-01546-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 05/01/2025] [Indexed: 05/09/2025]
Abstract
Bruton's tyrosine kinase (BTK) is a therapeutically validated drug target. Small-molecule inhibitors of BTK have changed the treatment paradigms of multiple B-cell malignancies and evolved over three generations to overcome clinical challenges. Four drugs are now approved by the FDA, including the first-in-class drug ibrutinib and successively approved acalabrutinib, zanubrutinib, and pirtobrutinib. The third-generation drug pirtobrutinib, which binds non-covalently to BTK, is expected to overcome resistance mutations at the covalent binding Cys481 residue of the first and second-generation drugs that covalently bind to BTK. However, some newly identified non-Cys481 resistance mutations to pirtobrutinib have shown their co-resistance to some of the covalent inhibitors, and this leaves a major unmet need that is promoting the development of next-generation BTK-targeted therapeutics. More non-covalent BTK inhibitors with differentiated binding modes are under development, and the ongoing development focus of next-generation therapeutics involves new and alternative directions to target BTK using dual-binding inhibitors and degraders of BTK, as well as its allosteric inhibitors. Recent exploration of the differentiated features of BTK inhibitors in various aspects has shown the possible link between their different features and different functional and therapeutic consequences. This review summarizes the key differentiated features of the BTK inhibitors approved by the FDA and others under development to add knowledge for their therapeutic application and future development. Long-term follow-up updates of clinical outcomes of the earlier developed drugs are also included, together with direct and indirect comparisons of efficacy and safety between the different generations of drugs. The ongoing development status of next-generation BTK-targeted therapeutics is described, with a discussion on their therapeutic potential and some limitations.
Collapse
Affiliation(s)
- Hyung-Ook Kim
- Department of Clinical Medicinal Sciences, Konyang University, 121 Daehakro, Nonsan, 32992, Republic of Korea.
| |
Collapse
|
3
|
Wang Y, Luo S, Sun H, Huang S, Shan L, Zhang J. Covalent inhibitors possessing autophagy-modulating capabilities: charting novel avenues in drug design and discovery. Drug Discov Today 2025; 30:104347. [PMID: 40180310 DOI: 10.1016/j.drudis.2025.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
Autophagy is a crucial cellular process in degrading damaged organelles and maintaining cellular homeostasis. By forming irreversible bonds with specific proteins, covalent inhibitors present a distinct advantage in regulating autophagy and its related pathways. These inhibitors can provide sustained modulation of autophagy at lower doses, improving therapeutic efficacy while minimizing adverse effects. We discuss their mechanisms, including how they affect autophagy-related enzymes and pathways, and their potential applications in the treatment of cancers and other autophagy-related disorders. Studying autophagy-related pathway targets will provide new insights for the development of covalent inhibitors and enhance therapeutic strategies for complex conditions.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Shiyu Luo
- Chengdu Shishi High School, Chengdu 610041 Sichuan, China
| | - Hongbao Sun
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China
| | - Shuai Huang
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu 610031 Sichuan, China.
| | - Lianhai Shan
- School of Life Science and Engineering Southwest Jiaotong University, Chengdu 610031 Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041 Sichuan, China.
| |
Collapse
|
4
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2025 update. Pharmacol Res 2025; 216:107723. [PMID: 40252783 DOI: 10.1016/j.phrs.2025.107723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
Because of the deregulation of protein kinase action in many inflammatory diseases and cancer, the protein kinase family has become one of the most significant drug targets in the 21st century. There are 85 FDA-approved protein kinase antagonists that target about two dozen different enzymes and four of these drugs were approved in 2024 and a fifth was approved in 2025. Of these drugs, five target dual specificity protein kinases (MEK1/2), fourteen inhibit protein-serine/threonine protein kinases, twenty-one block nonreceptor protein-tyrosine kinases, and 45 target receptor protein-tyrosine kinases. The data indicate that 75 of these drugs are prescribed for the treatment of neoplasms. Seven drugs (abrocitinib, baricitinib, deucravacitinib, deuruxolitinib, ritlecitinib, tofacitinib, upadacitinib) are prescribed for the management of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 85 FDA-approved agents, about two dozen are used in the treatment of multiple diseases. The following four drugs received FDA approval in 2024 - deuruxolitinib (alopecia areata), ensartinib and lazertinib (non-small cell lung cancer), and tovorafenib (pediatric glioma) while mirdametinib was approved in 2025 for the treatment of type I neurofibromatosis (von Recklinghausen disease). Apart from netarsudil, temsirolimus, and trilaciclib, the approved protein kinase blockers are orally bioavailable. This article summarizes the physicochemical properties of all 85 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, ligand efficiency, lipophilic efficiency, polar surface area, and solubility. A total of 39 of the 85 FDA-approved drugs have a least one Lipinski rule of 5 violation.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
5
|
Hong Y, He J, Deng D, Liu Q, Zu X, Shen Y. Targeting kinases that regulate programmed cell death: a new therapeutic strategy for breast cancer. J Transl Med 2025; 23:439. [PMID: 40229646 PMCID: PMC11995514 DOI: 10.1186/s12967-025-06367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/08/2025] [Indexed: 04/16/2025] Open
Abstract
Breast cancer is one of the most prevalent malignant tumors among women and ranks as the second leading cause of cancer-related deaths in females, primarily due to delays in diagnosis and shortcomings in treatment strategies. Consequently, there is a pressing need to identify reliable therapeutic targets and strategies. In recent years, the identification of effective biomarkers-particularly novel molecular therapeutic targets-has become a focal point in breast cancer research, aimed at predicting disease aggressiveness and monitoring treatment responses. Simultaneously, advancements in understanding the molecular mechanisms underlying cellular programmed death have opened new avenues for targeting kinase-regulated programmed cell death as a viable therapeutic strategy. This review summarizes the latest research progress regarding kinase-regulated programmed death (including apoptosis, pyroptosis, autophagy, necroptosis, and ferroptosis) in breast cancer treatment. It covers the key kinases involved in this mechanism, their roles in the onset and progression of breast cancer, and strategies for modulating these kinases through pharmacological interventions.
Collapse
Affiliation(s)
- Yun Hong
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Spine Surgery, The Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Dan Deng
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qinyue Liu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-Incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuyu Zu
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| | - Yingying Shen
- Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
- Hunan Provincial Clinical Medical Research Center for Drug Evaluation of major chronic diseases, Hengyang, China.
| |
Collapse
|
6
|
Luo P, Hong H, Zhang B, Li J, Zhang S, Yue C, Cao J, Wang J, Dai Y, Liao Q, Xu P, Yang B, Liu X, Lin X, Yu Y, Feng XH. ERBB4 selectively amplifies TGF-β pro-metastatic responses. Cell Rep 2025; 44:115210. [PMID: 39854208 DOI: 10.1016/j.celrep.2024.115210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Transforming growth factor β (TGF-β) is well known to play paradoxical roles in tumorigenesis as it has both growth-inhibitory and pro-metastatic effects. However, the underlying mechanisms of how TGF-β drives the opposing responses remain largely unknown. Here, we report that ERBB4, a member of the ERBB receptor tyrosine kinase family, specifically promotes TGF-β's metastatic response but not its anti-growth response. ERBB4 directly phosphorylates Tyr162 in the linker region of SMAD4, which enables SMAD4 to achieve a higher DNA-binding ability and potentiates TGF-β-induced gene transcription associated with epithelial-to-mesenchymal transition (EMT), cell migration, and invasion without affecting the genes involved in growth inhibition. These selective effects facilitate lung cancer metastasis in mouse models. This discovery sheds light on the previously unrecognized role of SMAD4 as a substrate of ERBB4 and highlights the selective involvement of the ERBB4-SMAD4 regulatory axis in tumor metastasis.
Collapse
Affiliation(s)
- Peihong Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanyu Hong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Baoling Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuyi Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chaomin Yue
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin Cao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yuhan Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qingqing Liao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Pinglong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Xia Lin
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yi Yu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xin-Hua Feng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, Zhejiang 321000, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China; The Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
7
|
Wang G, Seidler NJ, Röhm S, Pan Y, Liang XJ, Haarer L, Berger BT, Sivashanmugam SA, Wydra VR, Forster M, Laufer SA, Chaikuad A, Gehringer M, Knapp S. Probing the Protein Kinases' Cysteinome by Covalent Fragments. Angew Chem Int Ed Engl 2025; 64:e202419736. [PMID: 39716901 DOI: 10.1002/anie.202419736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
Protein kinases are important drug targets, yet specific inhibitors have been developed for only a fraction of the more than 500 human kinases. A major challenge in designing inhibitors for highly related kinases is selectivity. Unlike their non-covalent counterparts, covalent inhibitors offer the advantage of selectively targeting structurally similar kinases by modifying specific protein side chains, particularly non-conserved cysteines. Previously, covalent fragment screens yielded potent and selective inhibitors for individual kinases such as ERK1/2 but have not been applied to the broader kinome. Furthermore, many of the accessible cysteine positions have not been addressed so far. Here, we outline a generalizable approach to sample ATP-site cysteines with fragment-like covalent inhibitors. We present the development of a kinase-focused covalent fragment library and its systematic screening against a curated selection of 47 kinases, with 60 active site-proximal cysteines using LC/MS and differential scanning fluorimetry (DSF) assays, followed by hit validation through various complementary techniques. Our findings expand the repertoire of targetable cysteines within protein kinases, provide insight into unique binding modes identified from crystal structures and deliver isoform-specific hits with promising profiles as starting points for the development of highly potent and selective covalent inhibitors.
Collapse
Affiliation(s)
- Guiqun Wang
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Nico J Seidler
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Sandra Röhm
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Yufeng Pan
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Xiaojun Julia Liang
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Lisa Haarer
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Saran Aswathaman Sivashanmugam
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Valentin R Wydra
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
| | - Michael Forster
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan A Laufer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
| | - Matthias Gehringer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Faculty of Medicine, Institute for Biomedical Engineering, Department for Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, D-72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, D-72076, Tübingen, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 9, D-60438, Frankfurt am Main, Germany
- Structure Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), DKTK Site Frankfurt-Mainz, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| |
Collapse
|
8
|
Chen AL, Lin ZJ, Chang HY, Wang TSA. Chemoselective Stabilized Triphenylphosphonium Probes for Capturing Reactive Carbonyl Species and Regenerating Covalent Inhibitors with Acrylamide Warheads in Cellulo. J Am Chem Soc 2025; 147:1518-1528. [PMID: 39730301 PMCID: PMC11744745 DOI: 10.1021/jacs.4c09727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
Reactive carbonyl species (RCS) are important biomarkers of oxidative stress-related diseases because of their highly reactive electrophilic nature. Despite their potential as triggers for prodrug activation, selective labeling approaches for RCS remain limited. Here, we utilized triphenylphosphonium groups to chemoselectively capture RCS via an aqueous Wittig reaction, forming α,β-unsaturated carbonyls that enable further functionalization. We first designed native (light) and deuterated (heavy) probes to facilitate RCS metabolomic identification through distinct MS isotope patterns. This approach allowed us to capture and relatively quantify several endogenous RCS related to advanced lipoxidation/glycation end products (ALEs/AGEs). Second, we demonstrated that various endogenous RCS can trigger the in situ generation of acrylamide warheads of targeted covalent inhibitors (TCIs) with different substituents. These structural variations influence their protein binding profiles and consequently alter their cytotoxicity, which is beneficial for the development of inhibitor cocktails.
Collapse
Affiliation(s)
- Ai-Lin Chen
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Zih-Jheng Lin
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Hsiao-Yu Chang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| | - Tsung-Shing Andrew Wang
- Department of Chemistry and
Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei 106319, Taiwan (R.O.C.)
| |
Collapse
|
9
|
Roskoski R. Targeted and cytotoxic inhibitors used in the treatment of breast cancer. Pharmacol Res 2024; 210:107534. [PMID: 39631485 DOI: 10.1016/j.phrs.2024.107534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is the most commonly diagnosed malignancy and the fifth leading cause of cancer deaths worldwide. Surgery and radiation therapy are localized therapies for early-stage and metastatic breast cancer. The management of breast cancer is determined in large part by the HER2 (human epidermal growth factor receptor 2), HR (hormone receptor), ER (estrogen receptor), and PR (progesterone receptor) status. Our views of breast cancer are evolving as its molecular hallmarks are examined, which now include immunohistochemical markers (ER, PR, HER2, and proliferation marker protein Ki-67), genomic markers (BRCA1/2 and PIK3CA), and immunomarkers (tumor-infiltrating lymphocytes and PDL1). About two-thirds of malignancies of the breast are HR-positive/HER2-negative; accordingly, endocrine-based therapy is a major treatment option for these patients. Hormonal or endocrine therapy includes selective estrogen receptor modulators (SERMs) such as raloxifene, tamoxifen and toremifene, selective estrogen-receptor degraders (SERDs) including elacestrant and fulvestrant, and aromatase inhibitors such as anastrozole, letrozole, and exemestane. A variety of cytotoxic chemotherapeutic agents are used to treat HR-negative breast cancer patients. These agents include taxanes (docetaxel, nab-paclitaxel, and paclitaxel), anthracyclines (doxorubicin, epirubicin), anti-metabolites (capecitabine, gemcitabine, fluorouracil, methotrexate), alkylating agents (carboplatin, cisplatin, and cyclophosphamide), and drugs that target microtubules (eribulin, ixabepilone, ado-trastuzumab emtansine). Patients with ER-positive tumors are treated with 5-10 years of endocrine therapy and chemotherapy. For patients with metastatic breast cancer, standard first-line and follow-up therapy options include targeted approaches such as CDK4/6 inhibitors, PI3K inhibitors, PARP inhibitors, and anti-PDL1 immunotherapy, depending on the tumor type and molecular profile.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
10
|
Hawash M. Advances in Cancer Therapy: A Comprehensive Review of CDK and EGFR Inhibitors. Cells 2024; 13:1656. [PMID: 39404419 PMCID: PMC11476325 DOI: 10.3390/cells13191656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Protein kinases have essential responsibilities in controlling several cellular processes, and their abnormal regulation is strongly related to the development of cancer. The implementation of protein kinase inhibitors has significantly transformed cancer therapy by modifying treatment strategies. These inhibitors have received substantial FDA clearance in recent decades. Protein kinases have emerged as primary objectives for therapeutic interventions, particularly in the context of cancer treatment. At present, 69 therapeutics have been approved by the FDA that target approximately 24 protein kinases, which are specifically prescribed for the treatment of neoplastic illnesses. These novel agents specifically inhibit certain protein kinases, such as receptor protein-tyrosine kinases, protein-serine/threonine kinases, dual-specificity kinases, nonreceptor protein-tyrosine kinases, and receptor protein-tyrosine kinases. This review presents a comprehensive overview of novel targets of kinase inhibitors, with a specific focus on cyclin-dependent kinases (CDKs) and epidermal growth factor receptor (EGFR). The majority of the reviewed studies commenced with an assessment of cancer cell lines and concluded with a comprehensive biological evaluation of individual kinase targets. The reviewed articles provide detailed information on the structural features of potent anticancer agents and their specific activity, which refers to their ability to selectively inhibit cancer-promoting kinases including CDKs and EGFR. Additionally, the latest FDA-approved anticancer agents targeting these enzymes were highlighted accordingly.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
11
|
Bálint D, Póti ÁL, Alexa A, Sok P, Albert K, Torda L, Földesi-Nagy D, Csókás D, Turczel G, Imre T, Szarka E, Fekete F, Bento I, Bojtár M, Palkó R, Szabó P, Monostory K, Pápai I, Soós T, Reményi A. Reversible covalent c-Jun N-terminal kinase inhibitors targeting a specific cysteine by precision-guided Michael-acceptor warheads. Nat Commun 2024; 15:8606. [PMID: 39366946 PMCID: PMC11452492 DOI: 10.1038/s41467-024-52573-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/13/2024] [Indexed: 10/06/2024] Open
Abstract
There has been a surge of interest in covalent inhibitors for protein kinases in recent years. Despite success in oncology, the off-target reactivity of these molecules is still hampering the use of covalent warhead-based strategies. Herein, we disclose the development of precision-guided warheads to mitigate the off-target challenge. These reversible warheads have a complex and cyclic structure with optional chirality center and tailored steric and electronic properties. To validate our proof-of-concept, we modified acrylamide-based covalent inhibitors of c-Jun N-terminal kinases (JNKs). We show that the cyclic warheads have high resilience against off-target thiols. Additionally, the binding affinity, residence time, and even JNK isoform specificity can be fine-tuned by adjusting the substitution pattern or using divergent and orthogonal synthetic elaboration of the warhead. Taken together, the cyclic warheads presented in this study will be a useful tool for medicinal chemists for the deliberate design of safer and functionally fine-tuned covalent inhibitors.
Collapse
Affiliation(s)
- Dániel Bálint
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Ádám Levente Póti
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Anita Alexa
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Péter Sok
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Krisztián Albert
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Lili Torda
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dóra Földesi-Nagy
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Dániel Csókás
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tímea Imre
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Eszter Szarka
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Ferenc Fekete
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Isabel Bento
- European Molecular Biology Laboratory, EMBL, Hamburg, Germany
| | - Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Roberta Palkó
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Pál Szabó
- MS Metabolomic Research Laboratory, Centre for Structural Science, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Katalin Monostory
- Metabolic Drug-interactions Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Imre Pápai
- Theoretical Chemistry Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary
| | - Tibor Soós
- Organocatalysis Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| | - Attila Reményi
- Biomolecular Interaction Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, 1117, Budapest, Hungary.
| |
Collapse
|
12
|
Sun J, Lou L, Zhu C, Chen P, Tang G, Gu M, Xia S, Dong X, Zhang ZM, Gao L, Yao SQ, Xiao Q. Rationally designed BCR-ABL kinase inhibitors for improved leukemia treatment via covalent and pro-/dual-drug targeting strategies. J Adv Res 2024:S2090-1232(24)00392-8. [PMID: 39255927 DOI: 10.1016/j.jare.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Chronic Myeloid Leukemia (CML) is a blood cancer that remains challenging to cure due to drug resistance and side effects from current BCR-ABL inhibitors. There is an urgent need for novel and more effective BCR-ABL targeting inhibitors and therapeutic strategies to combat this deadly disease. METHOD We disclose an "OH-implant" strategy to improve a noncovalent BCR-ABL inhibitor, PPY-A, by adding a hydroxyl group to its scaffold. By taking advantage of this OH "hot spot", we designed a panel of irreversible covalent kinase inhibitors and hypoxia-responsive pro-/dual-drugs, and their biological activities were studied in vitro, in cellulo and in vivo. RESULT The resulting compound B1 showed enhanced solubility and biological activity. B4 achieved sustained BCR-ABL inhibition by forming a stable covalent bond with ABL kinase. Hypoxia-responsive prodrug P1 and dual-drugs D1/D2/D3 demonstrated significant anti-tumor effects under hypoxic conditions. The in vivo studies using K562-xenografted mice showed that B1 displayed superior antitumor activity than PPY-A, while P1 and D3 offered better safety profiles alongside significant tumor control. CONCLUSION We have successfully developed a chemical biology approach to convert a known noncovalent BCR-ABL inhibitor into more potent and safer inhibitors through covalent and pro-/dual-drug targeting strategies. Our "OH-implant" approach and the resulting drug design strategies have general applicability and hold promise for improvement the performance of various other reported drugs/drug candidates, thereby providing advanced medicines for disease treatment.
Collapse
Affiliation(s)
- Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Liang Lou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Mingxi Gu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Shu Xia
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Xiao Dong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, and Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
13
|
Ma S, Patel H, Peeples CA, Shen J. QM/MM Simulations of Afatinib-EGFR Addition: The Role of β-Dimethylaminomethyl Substitution. J Chem Theory Comput 2024; 20:5528-5538. [PMID: 38877999 DOI: 10.1021/acs.jctc.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Acrylamides are the most commonly used warheads of targeted covalent inhibitors (TCIs) directed at cysteines; however, the reaction mechanisms of acrylamides in proteins remain controversial, particularly for those involving protonated or unreactive cysteines. Using the combined semiempirical quantum mechanics (QM)/molecular mechanics (MM) free energy simulations, we investigated the reaction between afatinib, the first TCI drug for cancer treatment, and Cys797 in the EGFR kinase. Afatinib contains a β-dimethylaminomethyl (β-DMAM) substitution which has been shown to enhance the intrinsic reactivity and potency against EGFR for related inhibitors. Two hypothesized reaction mechanisms were tested. Our data suggest that Cys797 becomes deprotonated in the presence of afatinib, and the reaction proceeds via a classical Michael addition mechanism, with Asp800 stabilizing the ion-pair reactant state β-DMAM+/C797- and the transition state of the nucleophilic attack. Our work elucidates an important structure-activity relationship of acrylamides in proteins.
Collapse
Affiliation(s)
- Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Heeral Patel
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, Maryland 21252, United States
| | - Craig A Peeples
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
14
|
Liang C, Zhou Y, Xin L, Kang K, Tian L, Zhang D, Li H, Zhao Q, Gao H, Shi Z. Hijacking monopolar spindle 1 (MPS1) for various cancer types by small molecular inhibitors: Deep insights from a decade of research and patents. Eur J Med Chem 2024; 273:116504. [PMID: 38795520 DOI: 10.1016/j.ejmech.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Monopolar spindle 1 (MPS1) has garnered significant attention due to its pivotal role in regulating the cell cycle. Anomalous expression and hyperactivation of MPS1 have been associated with the onset and advancement of diverse cancers, positioning it as a promising target for therapeutic interventions. This review focuses on MPS1 small molecule inhibitors from the past decade, exploring design strategies, structure-activity relationships (SAR), safety considerations, and clinical performance. Notably, we propose prospects for MPS1 degraders based on proteolysis targeting chimeras (PROTACs), as well as reversible covalent bonding as innovative MPS1 inhibitor design strategies. The objective is to provide valuable information for future development and novel perspectives on potential MPS1 inhibitors.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China.
| | - Ying Zhou
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Liang Xin
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Kairui Kang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science& Technology, Xi'an, 710021, China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, China
| |
Collapse
|
15
|
Ma S, Patel H, Peeples CA, Shen J. QM/MM simulations of EFGR with afatinib reveal the role of the β-dimethylaminomethyl substitution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.18.580887. [PMID: 38766221 PMCID: PMC11100610 DOI: 10.1101/2024.02.18.580887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Acrylamides are the most commonly used warheads of targeted covalent inhibitors (TCIs) directed at cysteines; however, the reaction mechanisms of acrylamides in proteins remain controversial, particularly for those involving protonated or unreactive cysteines. Using the combined semiempirical quantum mechanics (QM)/molecular mechanics (MM) free energy simulations, we investigated the reaction between afatinib, the first TCI drug for cancer treatment, and Cys797 in the EGFR kinase. Afatinib contains a β-dimethylaminomethyl (β-DMAM) substitution which has been shown to enhance the intrinsic reactivity and potency against EGFR for related inhibitors. Two hypothesized reaction mechanisms were tested. Our data suggest that Cys797 becomes deprotonated in the presence of afatinib and the reaction proceeds via a classical Michael addition mechanism, with Asp800 stabilizing the ion-pair reactant state β-DMAM+/C797- and the transition state of the nucleophilic attack. Our work elucidates an important structure-activity relationship of acrylamides in proteins.
Collapse
Affiliation(s)
- Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, MD 21252
| | - Heeral Patel
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, Towson, MD 21252
| | - Craig A Peeples
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201
| |
Collapse
|
16
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Aziz M, Abdel-Rahman HM. Quinazoline-chalcone hybrids as HDAC/EGFR dual inhibitors: Design, synthesis, mechanistic, and in-silico studies of potential anticancer activity against multiple myeloma. Arch Pharm (Weinheim) 2024; 357:e2300626. [PMID: 38297894 DOI: 10.1002/ardp.202300626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB), Beni-Suef, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA), Assiut, Egypt
| |
Collapse
|
17
|
Tillmanns J, Kicuntod J, Lösing J, Marschall M. 'Getting Better'-Is It a Feasible Strategy of Broad Pan-Antiherpesviral Drug Targeting by Using the Nuclear Egress-Directed Mechanism? Int J Mol Sci 2024; 25:2823. [PMID: 38474070 DOI: 10.3390/ijms25052823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The herpesviral nuclear egress represents an essential step of viral replication efficiency in host cells, as it defines the nucleocytoplasmic release of viral capsids. Due to the size limitation of the nuclear pores, viral nuclear capsids are unable to traverse the nuclear envelope without a destabilization of this natural host-specific barrier. To this end, herpesviruses evolved the regulatory nuclear egress complex (NEC), composed of a heterodimer unit of two conserved viral NEC proteins (core NEC) and a large-size extension of this complex including various viral and cellular NEC-associated proteins (multicomponent NEC). Notably, the NEC harbors the pronounced ability to oligomerize (core NEC hexamers and lattices), to multimerize into higher-order complexes, and, ultimately, to closely interact with the migrating nuclear capsids. Moreover, most, if not all, of these NEC proteins comprise regulatory modifications by phosphorylation, so that the responsible kinases, and additional enzymatic activities, are part of the multicomponent NEC. This sophisticated basis of NEC-specific structural and functional interactions offers a variety of different modes of antiviral interference by pharmacological or nonconventional inhibitors. Since the multifaceted combination of NEC activities represents a highly conserved key regulatory stage of herpesviral replication, it may provide a unique opportunity towards a broad, pan-antiherpesviral mechanism of drug targeting. This review presents an update on chances, challenges, and current achievements in the development of NEC-directed antiherpesviral strategies.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Josephine Lösing
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
18
|
Cheke RS, Kharkar PS. Covalent inhibitors: An ambitious approach for the discovery of newer oncotherapeutics. Drug Dev Res 2024; 85:e22132. [PMID: 38054744 DOI: 10.1002/ddr.22132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/04/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023]
Abstract
Covalent inhibitors have been used to treat several diseases for over a century. However, strategic approaches for the rational design of covalent drugs have taken a definitive shape in recent times. Since the first appearance of covalent inhibitors in the late 18th century, the field has grown tremendously and around 30% of marketed drugs are covalent inhibitors especially, for oncology indications. However, the off-target toxicity and safety concerns can be significant issues related to the covalent drugs. Covalent kinase inhibitor (CKI) targeted oncotherapeutics has advanced dramatically over the last two decades since the discovery of afatinib (Gilotrif®), an EGFR inhibitor. Since then, US FDA has approved 10 CKIs for diverse cancer targets. The present review broadly summarizes the ongoing development in the discovery of newer CKIs from 2016 till the end of 2022. We believe that these efforts will assist the modern medicinal chemist actively working in the field of CKI discovery for varied indications.
Collapse
Affiliation(s)
- Rameshwar S Cheke
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
19
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res 2024; 200:107059. [PMID: 38216005 DOI: 10.1016/j.phrs.2024.107059] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
20
|
Yu D, Wagner S, Schütz M, Jeon Y, Seo M, Kim J, Brückner N, Kicuntod J, Tillmanns J, Wangen C, Hahn F, Kaufer BB, Neipel F, Eickhoff J, Klebl B, Nam K, Marschall M. An Antiherpesviral Host-Directed Strategy Based on CDK7 Covalently Binding Drugs: Target-Selective, Picomolar-Dose, Cross-Virus Reactivity. Pharmaceutics 2024; 16:158. [PMID: 38399219 PMCID: PMC10892818 DOI: 10.3390/pharmaceutics16020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The repertoire of currently available antiviral drugs spans therapeutic applications against a number of important human pathogens distributed worldwide. These include cases of the pandemic severe acute respiratory coronavirus type 2 (SARS-CoV-2 or COVID-19), human immunodeficiency virus type 1 (HIV-1 or AIDS), and the pregnancy- and posttransplant-relevant human cytomegalovirus (HCMV). In almost all cases, approved therapies are based on direct-acting antivirals (DAAs), but their benefit, particularly in long-term applications, is often limited by the induction of viral drug resistance or side effects. These issues might be addressed by the additional use of host-directed antivirals (HDAs). As a strong input from long-term experiences with cancer therapies, host protein kinases may serve as HDA targets of mechanistically new antiviral drugs. The study demonstrates such a novel antiviral strategy by targeting the major virus-supportive host kinase CDK7. Importantly, this strategy focuses on highly selective, 3D structure-derived CDK7 inhibitors carrying a warhead moiety that mediates covalent target binding. In summary, the main experimental findings of this study are as follows: (1) the in vitro verification of CDK7 inhibition and selectivity that confirms the warhead covalent-binding principle (by CDK-specific kinase assays), (2) the highly pronounced antiviral efficacies of the hit compounds (in cultured cell-based infection models) with half-maximal effective concentrations that reach down to picomolar levels, (3) a particularly strong potency of compounds against strains and reporter-expressing recombinants of HCMV (using infection assays in primary human fibroblasts), (4) additional activity against further herpesviruses such as animal CMVs and VZV, (5) unique mechanistic properties that include an immediate block of HCMV replication directed early (determined by Western blot detection of viral marker proteins), (6) a substantial drug synergism in combination with MBV (measured by a Loewe additivity fixed-dose assay), and (7) a strong sensitivity of clinically relevant HCMV mutants carrying MBV or ganciclovir resistance markers. Combined, the data highlight the huge developmental potential of this host-directed antiviral targeting concept utilizing covalently binding CDK7 inhibitors.
Collapse
Affiliation(s)
- DongHoon Yu
- Qurient Co., Ltd., C-Dong, 242 Pangyo-ro, C801 Bundang-gu, Seongnam-si 13487, Republic of Korea
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Martin Schütz
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Yeejin Jeon
- Qurient Co., Ltd., C-Dong, 242 Pangyo-ro, C801 Bundang-gu, Seongnam-si 13487, Republic of Korea
| | - Mooyoung Seo
- Qurient Co., Ltd., C-Dong, 242 Pangyo-ro, C801 Bundang-gu, Seongnam-si 13487, Republic of Korea
| | - Jaeseung Kim
- Qurient Co., Ltd., C-Dong, 242 Pangyo-ro, C801 Bundang-gu, Seongnam-si 13487, Republic of Korea
| | - Nadine Brückner
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Julia Tillmanns
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Benedikt B. Kaufer
- Institute of Virology, Freie Universität Berlin, Robert-von-Ostertag-Straße 7–13, 14163 Berlin, Germany
| | - Frank Neipel
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227 Dortmund, Germany
- The Norwegian College of Fishery Science UiT, Arctic University of Norway, 9037 Tromsø, Norway
| | - Kiyean Nam
- Qurient Co., Ltd., C-Dong, 242 Pangyo-ro, C801 Bundang-gu, Seongnam-si 13487, Republic of Korea
| | - Manfred Marschall
- Institute for Clinical and Molecular Virolosgy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Schlossgarten 4, 91054 Erlangen, Germany
| |
Collapse
|
21
|
Roskoski R. Cost in the United States of FDA-approved small molecule protein kinase inhibitors used in the treatment of neoplastic and non-neoplastic diseases. Pharmacol Res 2024; 199:107036. [PMID: 38096958 DOI: 10.1016/j.phrs.2023.107036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023]
Abstract
Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs worldwide. The FDA has approved 80 small molecule protein kinase inhibitors with 77 drugs orally bioavailable. The data indicate that 69 of these medicinals are approved for the management of neoplasms including solid tumors such as breast and lung cancer as well as non-solid tumors such as leukemia. Moreover, the remaining 11 drugs target non-neoplastic diseases including psoriasis, rheumatoid arthritis, and ulcerative colitis. The cost of drugs was obtained from www.pharmacychecker.com using the FDA label to determine the dosage and number of tablets required per day. This methodology excludes any private or governmental insurance coverage, which would cover the entire cost or more likely a fraction of the stated price. The average monthly cost for the treatment of neoplastic diseases was $17,900 with a price of $44,000 for futibatinib (used to treat cholangiocarcinomas with FGFR2 fusions) and minimum of $5100 for binimetinib (melanoma). The average monthly cost for the treatment of non-neoplastic diseases was $6800 with a maximum of $17,000 for belumosudil (graft vs. host disease) and a minimum of $200 for netarsudil eye drops (glaucoma). There is a negative correlation of the cost of the drugs and the incidence of the targeted disease. Many of these agents are or were designated as orphan drugs meaning that there are fewer than 200,000 potential patients in the United States.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
22
|
Rajan S, Yoon HS. Covalent ligands of nuclear receptors. Eur J Med Chem 2023; 261:115869. [PMID: 37857142 DOI: 10.1016/j.ejmech.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nuclear receptors (NRs) are ligand-induced transcriptional factors implicated in several physiological pathways. Naïve ligands bind to their cognate receptors and modulate gene expression as agonists or antagonists. It has been observed that some ligands bind via covalent bonding with the NR Ligand Binding Domain (LBD) residues. While many such instances have been known since the 1980s, a consolidated account of these ligands and their interactions with NR-LBD is yet to be documented. To negate this, we have culled out the human NR-LBDs that form a covalent attachment with ligands. According to the study, 16 of the 48 human NRs have been targeted by covalent ligands. It was found that conserved cysteines prone to covalent attachment are predominantly located in NR-LBD helices 3 and 11. These conserved cysteines are also observed in many of the remaining NRs, which can be probed for their reactivity. Thus, the structural insights into NR-LBD interactions with covalent ligands presented here would aid drug discovery efforts targeting NRs.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea; CHA Advanced Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
23
|
Xu L, Zhuang C. Profiling of small-molecule necroptosis inhibitors based on the subpockets of kinase-ligand interactions. Med Res Rev 2023; 43:1974-2024. [PMID: 37119044 DOI: 10.1002/med.21968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Necroptosis is a highly regulated cell death (RCD) form in various inflammatory diseases. Receptor-interacting protein kinase 1 (RIPK1) and RIPK3 are involved in the pathway. Targeting the kinase domains of RIPK1 and/or 3 is a drug design strategy for related diseases. It is generally accepted that essential reoccurring features are observed across the human kinase domains, including RIPK1 and RIPK3. They present common N- and C-terminal domains that are built up mostly by α-helices and β-sheets, respectively. The current RIPK1/3 kinase inhibitors mainly interact with the kinase catalytic cleft. This article aims to present an in-depth profiling for ligand-kinase interactions in the crucial cleft areas by carefully aligning the kinase-ligand cocrystal complexes or molecular docking models. The similarity and differential structural segments of ligands are systematically evaluated. New insights on the adaption of the conserved and selective kinase domains to the diversity of chemical scaffolds are also provided. In a word, our analysis can provide a better structural requirement for RIPK1 and RIPK3 inhibition and a guide for inhibitor discovery and optimization of their potency and selectivity.
Collapse
Affiliation(s)
- Lijuan Xu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- School of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
24
|
Pratap Reddy Gajulapalli V. Development of Kinase-Centric Drugs: A Computational Perspective. ChemMedChem 2023; 18:e202200693. [PMID: 37442809 DOI: 10.1002/cmdc.202200693] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023]
Abstract
Kinases are prominent drug targets in the pharmaceutical and research community due to their involvement in signal transduction, physiological responses, and upon dysregulation, in diseases such as cancer, neurological and autoimmune disorders. Several FDA-approved small-molecule drugs have been developed to combat human diseases since Gleevec was approved for the treatment of chronic myelogenous leukemia. Kinases were considered "undruggable" in the beginning. Several FDA-approved small-molecule drugs have become available in recent years. Most of these drugs target ATP-binding sites, but a few target allosteric sites. Among kinases that belong to the same family, the catalytic domain shows high structural and sequence conservation. Inhibitors of ATP-binding sites can cause off-target binding. Because members of the same family have similar sequences and structural patterns, often complex relationships between kinases and inhibitors are observed. To design and develop drugs with desired selectivity, it is essential to understand the target selectivity for kinase inhibitors. To create new inhibitors with the desired selectivity, several experimental methods have been designed to profile the kinase selectivity of small molecules. Experimental approaches are often expensive, laborious, time-consuming, and limited by the available kinases. Researchers have used computational methodologies to address these limitations in the design and development of effective therapeutics. Many computational methods have been developed over the last few decades, either to complement experimental findings or to forecast kinase inhibitor activity and selectivity. The purpose of this review is to provide insight into recent advances in theoretical/computational approaches for the design of new kinase inhibitors with the desired selectivity and optimization of existing inhibitors.
Collapse
|
25
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
26
|
Roskoski R. Small molecule protein kinase inhibitors approved by regulatory agencies outside of the United States. Pharmacol Res 2023; 194:106847. [PMID: 37454916 DOI: 10.1016/j.phrs.2023.106847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Owing to genetic alterations and overexpression, the dysregulation of protein kinases plays a significant role in the pathogenesis of many autoimmune and neoplastic disorders and protein kinase antagonists have become an important drug target. Although the efficacy of imatinib in the treatment of chronic myelogenous leukemia in the United States in 2001 was the main driver of protein kinase inhibitor drug discovery, this was preceded by the approval of fasudil (a ROCK antagonist) in Japan in 1995 for the treatment of cerebral vasospasm. There are 21 small molecule protein kinase inhibitors that are approved in China, Japan, Europe, and South Korea that are not approved in the United Sates and 75 FDA-approved inhibitors in the United States. Of the 21 agents, eleven target receptor protein-tyrosine kinases, eight inhibit nonreceptor protein-tyrosine kinases, and two block protein-serine/threonine kinases. All 21 drugs are orally bioavailable or topically effective. Of the non-FDA approved drugs, sixteen are prescribed for the treatment of neoplastic diseases, three are directed toward inflammatory disorders, one is used for glaucoma, and fasudil is used in the management of vasospasm. The leading targets of kinase inhibitors approved by both international regulatory agencies and by the FDA are members of the EGFR family, the VEGFR family, and the JAK family. One-third of the 21 internationally approved drugs are not compliant with Lipinski's rule of five for orally bioavailable drugs. The rule of five relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791-8717, United States.
| |
Collapse
|
27
|
Roskoski R. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol Res 2023; 191:106774. [PMID: 37075870 DOI: 10.1016/j.phrs.2023.106774] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Because genetic alterations including mutations, overexpression, translocations, and dysregulation of protein kinases are involved in the pathogenesis of many illnesses, this enzyme family is the target of many drug discovery programs in the pharmaceutical industry. Overall, the US FDA has approved 74 small molecule protein kinase inhibitors, nearly all of which are orally effective. Of the 74 approved drugs, forty block receptor protein-tyrosine kinases, eighteen target nonreceptor protein-tyrosine kinases, twelve are directed against protein-serine/threonine protein kinases, and four target dual specificity protein kinases. The data indicate that 63 of these medicinals are approved for the management of neoplasms (51 against solid tumors such as breast, colon, and lung cancers, eight against nonsolid tumors such as leukemia, and four against both types of tumors). Seven of the FDA-approved kinase inhibitors form covalent bonds with their target enzymes and they are accordingly classified as TCIs (targeted covalent inhibitors). Medicinal chemists have examined the physicochemical properties of drugs that are orally effective. Lipinski's rule of five (Ro5) is a computational procedure that is used to estimate solubility, membrane permeability, and pharmacological effectiveness in the drug-discovery setting. It relies on four parameters including molecular weight, number of hydrogen bond donors and acceptors, and the Log of the partition coefficient. Other important descriptors include the lipophilic efficiency, the polar surface area, and the number of rotatable bonds and aromatic rings. We tabulated these and other properties of the FDA-approved kinase inhibitors. Of the 74 approved drugs, 30 fail to comply with the rule of five.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791-8717, United States.
| |
Collapse
|
28
|
Tillmanns J, Häge S, Borst EM, Wardin J, Eickhoff J, Klebl B, Wagner S, Wangen C, Hahn F, Socher E, Marschall M. Assessment of Covalently Binding Warhead Compounds in the Validation of the Cytomegalovirus Nuclear Egress Complex as an Antiviral Target. Cells 2023; 12:cells12081162. [PMID: 37190072 DOI: 10.3390/cells12081162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Herpesviral nuclear egress is a regulated process of viral capsid nucleocytoplasmic release. Due to the large capsid size, a regular transport via the nuclear pores is unfeasible, so that a multistage-regulated export pathway through the nuclear lamina and both leaflets of the nuclear membrane has evolved. This process involves regulatory proteins, which support the local distortion of the nuclear envelope. For human cytomegalovirus (HCMV), the nuclear egress complex (NEC) is determined by the pUL50-pUL53 core that initiates multicomponent assembly with NEC-associated proteins and capsids. The transmembrane NEC protein pUL50 serves as a multi-interacting determinant that recruits regulatory proteins by direct and indirect contacts. The nucleoplasmic core NEC component pUL53 is strictly associated with pUL50 in a structurally defined hook-into-groove complex and is considered as the potential capsid-binding factor. Recently, we validated the concept of blocking the pUL50-pUL53 interaction by small molecules as well as cell-penetrating peptides or an overexpression of hook-like constructs, which can lead to a pronounced degree of antiviral activity. In this study, we extended this strategy by utilizing covalently binding warhead compounds, originally designed as binders of distinct cysteine residues in target proteins, such as regulatory kinases. Here, we addressed the possibility that warheads may likewise target viral NEC proteins, building on our previous crystallization-based structural analyses that revealed distinct cysteine residues in positions exposed from the hook-into-groove binding surface. To this end, the antiviral and NEC-binding properties of a selection of 21 warhead compounds were investigated. The combined findings are as follows: (i) warhead compounds exhibited a pronounced anti-HCMV potential in cell-culture-based infection models; (ii) computational analysis of NEC primary sequences and 3D structures revealed cysteine residues exposed to the hook-into-groove interaction surface; (iii) several of the active hit compounds exhibited NEC-blocking activity, as shown at the single-cell level by confocal imaging; (iv) the clinically approved warhead drug ibrutinib exerted a strong inhibitory impact on the pUL50-pUL53 core NEC interaction, as demonstrated by the NanoBiT assay system; and (v) the generation of recombinant HCMV ∆UL50-ΣUL53, allowing the assessment of viral replication under conditional expression of the viral core NEC proteins, was used for characterizing viral replication and a mechanistic evaluation of ibrutinib antiviral efficacy. Combined, the results point to a rate-limiting importance of the HCMV core NEC for viral replication and to the option of exploiting this determinant by the targeting of covalently NEC-binding warhead compounds.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Sigrun Häge
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Wardin
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), 44227 Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH (LDC), 44227 Dortmund, Germany
- The Norwegian College of Fishery Science UiT, The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Eileen Socher
- Institute of Anatomy, Functional and Clinical Anatomy, FAU, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
29
|
Zhang M, Liu Y, Jang H, Nussinov R. Strategy toward Kinase-Selective Drug Discovery. J Chem Theory Comput 2023; 19:1615-1628. [PMID: 36815703 PMCID: PMC10018734 DOI: 10.1021/acs.jctc.2c01171] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Kinase drug selectivity is the ground challenge in cancer research. Due to the structurally similar kinase drug pockets, off-target inhibitor toxicity has been a major cause for clinical trial failures. The pockets are similar but not identical. Here, we describe a transformation invariant protocol to identify distinct geometric features in the drug pocket that can distinguish one kinase from all others. We integrate available experimental structures with the artificial intelligence-based structural kinome, performing a kinome-wide structural bioinformatic analysis to establish the structural principles of kinase drug selectivity. We generate the structural landscape from the experimental kinase-ligand complexes and propose a binary network that encapsulates the information. The results show that all kinases contain binary units that are shared by less than seven other kinases in the kinome. 331 kinases contain unique binary units that may distinguish them from all others. The structural features encoded by these binary units in the network represent the inhibitor-accessible geometric space that may capture the kinome-wide selectivity. Our proposed binary network with the unsupervised clustering can serve as a general structural bioinformatic protocol for extracting the distinguishing structural features for any protein from their families. We apply the binary network to epidermal growth factor receptor tyrosine kinase inhibitor selectivity by targeting the gate area and the AKT1 serine/threonine kinase selectivity by binding to the αC-helix region and the allosteric pocket. Finally, we develop the cross-platform software, KDS (Kinase Drug Selectivity), for customized visualization and analysis of the binary networks in the human kinome (https://github.com/CBIIT/KDS).
Collapse
Affiliation(s)
- Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States.,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
30
|
Nietzold F, Rubner S, Labuzek B, Golik P, Surmiak E, Del Corte X, Kitel R, Protzel C, Reppich-Sacher R, Stichel J, Magiera-Mularz K, Holak TA, Berg T. Nutlin-3a-aa: Improving the Bioactivity of a p53/MDM2 Interaction Inhibitor by Introducing a Solvent-Exposed Methylene Group. Chembiochem 2023; 24:e202300006. [PMID: 36602436 DOI: 10.1002/cbic.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Nutlin-3a is a reversible inhibitor of the p53/MDM2 interaction. We have synthesized the derivative Nutlin-3a-aa bearing an additional exocyclic methylene group in the piperazinone moiety. Nutlin-3a-aa is more active than Nutlin-3a against purified wild-type MDM2, and is more effective at increasing p53 levels and releasing transcription of p53 target genes from MDM2-induced repression. X-ray analysis of wild-type MDM2-bound Nutlin-3a-aa indicated that the orientation of its modified piperazinone ring was altered in comparison to the piperazinone ring of MDM2-bound Nutlin-3a, with the exocyclic methylene group of Nutlin-3a-aa pointing away from the protein surface. Our data point to the introduction of exocyclic methylene groups as a useful approach by which to tailor the conformation of bioactive molecules for improved biological activity.
Collapse
Affiliation(s)
- Florian Nietzold
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Stefan Rubner
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Beata Labuzek
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Przemysław Golik
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Ewa Surmiak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Xabier Del Corte
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.,Present address: Departamento de Química Orgánica I, Centro de Investigación y Estudios Avanzados "Lucio Lascaray", Facultad de Farmacia, University of the Basque Country, UPV/EHU Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Christoph Protzel
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| | - Regina Reppich-Sacher
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Leipzig University, Brüderstraße 34, 04103, Leipzig, Germany
| | - Katarzyna Magiera-Mularz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Thorsten Berg
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
31
|
Roskoski R. Deucravacitinib is an allosteric TYK2 protein kinase inhibitor FDA-approved for the treatment of psoriasis. Pharmacol Res 2023; 189:106642. [PMID: 36754102 DOI: 10.1016/j.phrs.2022.106642] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 02/09/2023]
Abstract
Psoriasis is a heterogeneous, inflammatory, autoimmune skin disease that affects up to 2% of the world's population. There are many treatment modalities including topical medicines, ultraviolet light therapy, monoclonal antibodies, and several oral medications. Cytokines play a central role in the pathogenesis of this disorder including TNF-α, (tumor necrosis factor-α) IL-17A (interleukin-17A), IL-17F, IL-22, and IL-23. Cytokine signaling involves transduction mediated by the JAK-STAT pathway. There are four JAKS (JAK1/2/3 and TYK2) and six STATS (signal transducer and activators of transcription). Janus kinases contain an inactive JH2 domain that is aminoterminal to the active JH1 domain. Under basal conditions, the JH2 domain inhibits the activity of the JH1 domain. Deucravacitinib is an orally effective N-trideuteromethyl-pyridazine derivative that targets and stabilizes the TYK2 JH2 domain and thereby blocks TYK2 JH1 activity. Seven other JAK inhibitors, which target the JAK family JH1 domain, are prescribed for the treatment of neoplastic and other inflammatory diseases. The use of deuterium in the trimethylamide decreases the rate of demethylation and slows the production of a metabolite that is active against a variety of targets in addition to TYK2. A second unique aspect in the development of deucravacitinib is the targeting of a pseudokinase domain. Deucravacitinib is rather specific for TYK2 and its toxic effects are much less than those of the other FDA-approved JAK inhibitors. The successful development of deucravacitinib may stimulate the development of additional pseudokinase ligands for the JAK family and for other kinase families as well.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
32
|
Panknin TM, Howe CL, Hauer M, Bucchireddigari B, Rossi AM, Funk JL. Curcumin Supplementation and Human Disease: A Scoping Review of Clinical Trials. Int J Mol Sci 2023; 24:4476. [PMID: 36901908 PMCID: PMC10003109 DOI: 10.3390/ijms24054476] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Medicinal properties of turmeric (Curcuma longa L.), a plant used for centuries as an anti-inflammatory, are attributed to its polyphenolic curcuminoids, where curcumin predominates. Although "curcumin" supplements are a top-selling botanical with promising pre-clinical effects, questions remain regarding biological activity in humans. To address this, a scoping review was conducted to assess human clinical trials reporting oral curcumin effects on disease outcomes. Eight databases were searched using established guidelines, yielding 389 citations (from 9528 initial) that met inclusion criteria. Half focused on obesity-associated metabolic disorders (29%) or musculoskeletal disorders (17%), where inflammation is a key driver, and beneficial effects on clinical outcomes and/or biomarkers were reported for most citations (75%) in studies that were primarily double-blind, randomized, and placebo-controlled trials (77%, D-RCT). Citations for the next most studied disease categories (neurocognitive [11%] or gastrointestinal disorders [10%], or cancer [9%]), were far fewer in number and yielded mixed results depending on study quality and condition studied. Although additional research is needed, including systematic evaluation of diverse curcumin formulations and doses in larger D-RCT studies, the preponderance of current evidence for several highly studied diseases (e.g., metabolic syndrome, osteoarthritis), which are also clinically common, are suggestive of clinical benefits.
Collapse
Affiliation(s)
| | - Carol L. Howe
- The University of Arizona Health Science Library, Tucson, AZ 85724, USA
| | - Meg Hauer
- College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | - Anthony M. Rossi
- Department of Physiology, Honors College, University of Arizona, Tucson, AZ 85724, USA
| | - Janet L. Funk
- Department of Medicine and School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
33
|
Targeting Breast Cancer: An Overlook on Current Strategies. Int J Mol Sci 2023; 24:ijms24043643. [PMID: 36835056 PMCID: PMC9959993 DOI: 10.3390/ijms24043643] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Breast cancer (BC) is one of the most widely diagnosed cancers and a leading cause of cancer death among women worldwide. Globally, BC is the second most frequent cancer and first most frequent gynecological one, affecting women with a relatively low case-mortality rate. Surgery, radiotherapy, and chemotherapy are the main treatments for BC, even though the latter are often not aways successful because of the common side effects and the damage caused to healthy tissues and organs. Aggressive and metastatic BCs are difficult to treat, thus new studies are needed in order to find new therapies and strategies for managing these diseases. In this review, we intend to give an overview of studies in this field, presenting the data from the literature concerning the classification of BCs and the drugs used in therapy for the treatment of BCs, along with drugs in clinical studies.
Collapse
|
34
|
Oguchi K, Araki H, Tsuji S, Nakamura M, Miura A, Funabashi K, Osada A, Tanaka S, Suzuki T, Kobayashi SS, Mizuarai S. TAS2940, a novel brain-penetrable pan-ERBB inhibitor, for tumors with HER2 and EGFR aberrations. Cancer Sci 2023; 114:654-664. [PMID: 36282234 PMCID: PMC9899605 DOI: 10.1111/cas.15617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/01/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Genetic alterations in human epidermal growth factor receptor type 2 (HER2)/epidermal growth factor receptor (EGFR) are commonly associated with breast and lung cancers and glioblastomas. Cancers with avian erythroblastosis oncogene B (ERBB) deregulation are highly metastatic and can cause primary brain tumors. Currently, no pan-ERBB inhibitor with remarkable brain penetration is available. Here, TAS2940, a novel irreversible pan-ERBB inhibitor with improved brain penetrability, was evaluated for its efficacy against several ERBB aberrant cancer models. The selectivity of TAS2940 was evaluated by enzymatic kinase assays. The inhibitory effects of TAS2940 against ERBB genetic alterations were examined using MCF10A cells expressing various HER2 or EGFR mutations and other generic cell lines harboring deregulated ERBB expression. In vivo efficacy of TAS2940 was examined following oral treatment in subcutaneous or intracranial xenograft cancer models. TAS2940 was highly potent against cells harboring HER2/EGFR alterations. TAS2940 could selectively inhibit phosphorylation of targets and the growth of cancer cells with ERBB aberrations in vitro. TAS2940 also inhibited tumor growth in xenograft mouse models with ERBB aberrations: HER2 amplification, HER2/EGFR exon 20 insertions, and EGFR vIII mutation. TAS2940 was effective in the intracranial xenograft models of HER2/EGFR cancers and improved the survival of these mice. TAS2940 has promising therapeutic effects in preclinical study against cancers harboring HER2/EGFR mutations, especially metastatic and primary brain tumors. Our results highlight potential novel strategies against lung cancers with brain metastases harboring HER2/EGFR exon 20 insertions and glioblastomas with EGFR aberrations.
Collapse
Affiliation(s)
- Kei Oguchi
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
- Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Hikari Araki
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Shingo Tsuji
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Masayuki Nakamura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Akihiro Miura
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Kaoru Funabashi
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Akiko Osada
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Sakiho Tanaka
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Takamasa Suzuki
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| | - Susumu S. Kobayashi
- Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial CenterNational Cancer CenterKashiwaJapan
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Shinji Mizuarai
- Discovery and Preclinical Research DivisionTaiho Pharmaceutical Co., LtdTsukubaJapan
| |
Collapse
|
35
|
Hermann MR, Tautermann CS, Sieger P, Grundl MA, Weber A. BIreactive: Expanding the Scope of Reactivity Predictions to Propynamides. Pharmaceuticals (Basel) 2023; 16:ph16010116. [PMID: 36678612 PMCID: PMC9866037 DOI: 10.3390/ph16010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/22/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
We present the first comprehensive study on the prediction of reactivity for propynamides. Covalent inhibitors like propynamides often show improved potency, selectivity, and unique pharmacologic properties compared to their non-covalent counterparts. In order to achieve this, it is essential to tune the reactivity of the warhead. This study shows how three different in silico methods can predict the in vitro properties of propynamides, a covalent warhead class integrated into approved drugs on the market. Whereas the electrophilicity index is only applicable to individual subclasses of substitutions, adduct formation and transition state energies have a good predictability for the in vitro reactivity with glutathione (GSH). In summary, the reported methods are well suited to estimate the reactivity of propynamides. With this knowledge, the fine tuning of the reactivity is possible which leads to a speed up of the design process of covalent drugs.
Collapse
|
36
|
Properties of FDA-approved small molecule protein kinase inhibitors: A 2023 update. Pharmacol Res 2023; 187:106552. [PMID: 36403719 DOI: 10.1016/j.phrs.2022.106552] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 72 FDA-approved therapeutic agents that target about two dozen different protein kinases and three of these drugs were approved in 2022. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), sixteen block nonreceptor protein-tyrosine kinases, and 40 target receptor protein-tyrosine kinases. The data indicate that 62 of these drugs are prescribed for the treatment of neoplasms (57 against solid tumors including breast, lung, and colon, ten against nonsolid tumors such as leukemia, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Four drugs (abrocitinib, baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, psoriatic arthritis, rheumatoid arthritis, Crohn disease, and ulcerative colitis). Of the 72 approved drugs, eighteen are used in the treatment of multiple diseases. The following three drugs received FDA approval in 2022 for the treatment of these specified diseases: abrocitinib (atopic dermatitis), futibatinib (cholangiocarcinomas), pacritinib (myelofibrosis). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 72 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.
Collapse
|
37
|
Gai C, Harnor SJ, Zhang S, Cano C, Zhuang C, Zhao Q. Advanced approaches of developing targeted covalent drugs. RSC Med Chem 2022; 13:1460-1475. [PMID: 36561076 PMCID: PMC9749957 DOI: 10.1039/d2md00216g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
In recent years, the development of targeted covalent inhibitors has gained popularity around the world. Specific groups (electrophilic warheads) form irreversible bonds with the side chain of nucleophilic amino acid residues, thus changing the function of biological targets such as proteins. Since the first targeted covalent inhibitor was disclosed in the 1990s, great efforts have been made to develop covalent ligands from known reversible leads or drugs by addition of tolerated electrophilic warheads. However, high reactivity and "off-target" toxicity remain challenging issues. This review covers the concept of targeted covalent inhibition to diseases, discusses traditional and interdisciplinary strategies of cysteine-focused covalent drug discovery, and exhibits newly disclosed electrophilic warheads majorly targeting the cysteine residue. Successful applications to address the challenges of designing effective covalent drugs are also introduced.
Collapse
Affiliation(s)
- Conghao Gai
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Suzannah J Harnor
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Shihao Zhang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Céline Cano
- Cancer Research UK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, School of Natural and Environmental Sciences, Bedson Building, Newcastle University Newcastle upon Tyne NE1 7RU UK
| | - Chunlin Zhuang
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| | - Qingjie Zhao
- Organic Chemistry Group, College of Pharmacy, Naval Medical University Shanghai 200433 P. R. China
| |
Collapse
|
38
|
Shi S, Li H, Zheng X, Lv L, Liao S, Lu P, Liu M, Zhao H, Mei Z. Visualization system based on hierarchical targeting for diagnosis and treatment of hepatocellular carcinoma. Mater Today Bio 2022; 16:100398. [PMID: 36081579 PMCID: PMC9445383 DOI: 10.1016/j.mtbio.2022.100398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 01/20/2023] Open
Abstract
The accuracy and enrichment rate of targeted drugs largely determine the clinical diagnosis and treatment effect. Therefore, the accuracy and enrichment rate of targeted drugs should be improved. We designed a visual diagnosis and treatment system based on hierarchical targeting. It consists of multifunctional magnetic nanoparticles and a bio magnetic material. Bio-magnet mediated primary targeting can effectively improve the drug enrichment rate in the target tissue. SNF peptide/epithelial cell adhesion molecule antibody mediated targeting liver cancer stem cells (LCSCs) (secondary target) can improve the accuracy of the treatment and its outcomes. Low intensity focused ultrasound irradiation can explode nanoparticles around LCSCs, which can cause physical damage to cells. The combination of released interferon gamma and its receptor (tertiary target) can be used to initiate chemotherapy and immunotherapy. Using the optical properties of Fe3O4 and the phase transformation ability of perfluoropentane, the system can enhance photoacoustic and ultrasonic molecular imaging enabling diagnosis and treatment visualization. Targeting LCSCs can accurately provide physical, chemical, and immune treatment of Hepatocellular carcinoma, making the therapeutic effect more effective and thorough. This system may provide a new method for a more accurate visual diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Shasha Shi
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Department of Gastroenterology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, PR China
| | - Huipu Li
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400020, PR China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, 400030, PR China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Peng Lu
- Second Department of Geriatrics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, 621000, PR China
| | - Maoxia Liu
- Outpatient Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400030, PR China
| | - Hongyun Zhao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
- Corresponding author. Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China..
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
- Corresponding author.
| |
Collapse
|
39
|
Ashar F, Hani U, Osmani RAM, Kazim SM, Selvamuthukumar S. Preparation and Optimization of Ibrutinib-Loaded Nanoliposomes Using Response Surface Methodology. Polymers (Basel) 2022; 14:polym14183886. [PMID: 36146030 PMCID: PMC9504964 DOI: 10.3390/polym14183886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The main aim of this study was to optimize the formulation and process variables for the preparation of ibrutinib nanoliposomes and to evaluate the stability of nanoliposomes. The influence of four formulations and process parameters, namely, the phosphatidylcholine-to-cholesterol ratio (A), conc. of ibrutinib (B), sonication time (C), and stirring time (D) on the drug encapsulation efficiency (Y1) and particle size (Y2) of ibrutinib nanoliposomes were investigated by using response surface methodology. Reverse-phase evaporation was used to prepare ibrutinib nanoliposomes. Twenty-nine trial experiments were performed as per the design and the response parameters were noted. Multiple linear regression analysis was used to assess each response parameter. The effect of each factor on the response parameters was depicted using perturbation, response surface, and contour plots. A numerical optimization technique was used to estimate the optimum process parameters to obtain the desired responses. Ibrutinib nanoliposomes prepared under optimal conditions were evaluated for stability at a different temperature, pH, and sonication time. It is evident from the results that the phosphatidylcholine-to-cholesterol ratio (A) was the major factor influencing the encapsulation efficiency. All the factors were found to have noteworthy influences on particle size. A statistical evaluation provided the information about the individual and interactive effects of independent factors on the response parameters in order to obtain optimum experimental conditions that lead to preparing nanoliposomes with improved characteristics. The optimum level of the independent variables was phosphatidylcholine:cholesterol (6.76:1), ibrutinib concentration (2 mg/mL), sonication time (15.13 min), and stirring time (45 min). At optimal conditions, Y1 and Y2 were found to be 90.76 ± 1.56% and 208.24 ± 3.16 nm, respectively. The ibrutinib nanoliposomes were found to be stable both in simulated gastric and intestinal fluids at 37 °C for 6 h. At elevated conditions of temperature and pH, the prepared nanoliposomes were found to be unstable. Sonication for shorter periods resulted in decreased particle size, whereas longer periods can be helpful for ultrasound-assisted drug delivery. The closeness between the obtained results and predicted results indicates the reliability of the optimization technique for the preparation of ibrutinib nanoliposomes.
Collapse
Affiliation(s)
- Fareeaa Ashar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, SS Nagara, Mysuru 570015, India
| | | | - S. Selvamuthukumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, India
- Correspondence:
| |
Collapse
|
40
|
Kumar A, Aglyamova G, Yim Y, Bailey AO, Lynch H, Powell R, Nguyen N, Rosenthal Z, Zhao WN, Li Y, Chen J, Fan S, Lee H, Russell W, Stephan C, Robison A, Haggarty S, Nestler E, Zhou J, Machius M, Rudenko G. Chemically targeting the redox switch in AP1 transcription factor ΔFOSB. Nucleic Acids Res 2022; 50:9548-9567. [PMID: 36039764 PMCID: PMC9458432 DOI: 10.1093/nar/gkac710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/24/2022] Open
Abstract
The AP1 transcription factor ΔFOSB, a splice variant of FOSB, accumulates in the brain in response to chronic insults such as exposure to drugs of abuse, depression, Alzheimer's disease and tardive dyskinesias, and mediates subsequent long-term neuroadaptations. ΔFOSB forms heterodimers with other AP1 transcription factors, e.g. JUND, that bind DNA under control of a putative cysteine-based redox switch. Here, we reveal the structural basis of the redox switch by determining a key missing crystal structure in a trio, the ΔFOSB/JUND bZIP domains in the reduced, DNA-free form. Screening a cysteine-focused library containing 3200 thiol-reactive compounds, we identify specific compounds that target the redox switch, validate their activity biochemically and in cell-based assays, and show that they are well tolerated in different cell lines despite their general potential to bind to cysteines covalently. A crystal structure of the ΔFOSB/JUND bZIP domains in complex with a redox-switch-targeting compound reveals a deep compound-binding pocket near the DNA-binding site. We demonstrate that ΔFOSB, and potentially other, related AP1 transcription factors, can be targeted specifically and discriminately by exploiting unique structural features such as the redox switch and the binding partner to modulate biological function despite these proteins previously being thought to be undruggable.
Collapse
Affiliation(s)
| | | | - Yun Young Yim
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron O Bailey
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haley M Lynch
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Reid T Powell
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Nghi D Nguyen
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jianping Chen
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shanghua Fan
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Hubert Lee
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Clifford Stephan
- HTS Screening Core, Texas A&M University School of Medicine, Institute of Biosciences and Technology, Center for Translational Cancer Research, Houston, TX 77030, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Departments of Psychiatry & Neurology, Harvard Medical School, Boston, MA 02114, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA,Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gabby Rudenko
- To whom correspondence should be addressed. Tel: +1 409 772 6292; Fax: +1 409 772 9642;
| |
Collapse
|
41
|
Sõrmus T, Lavogina D, Teearu A, Enkvist E, Uri A, Viht K. Construction of Covalent Bisubstrate Inhibitor of Protein Kinase Reacting with Cysteine Residue at Substrate-Binding Site. J Med Chem 2022; 65:10975-10991. [PMID: 35960538 DOI: 10.1021/acs.jmedchem.2c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent clinical success with targeted covalent inhibitors points to new possibilities for development of protein kinase (PK)-targeted drugs by exploiting reactive cysteine residues in and around the ATP-binding site. However, more than 300 human PKs lack cysteine residues in the ATP-binding site. Here, we report the first covalent bisubstrate PK inhibitor whose electrophilic warhead reaches outside the ATP-binding site and reacts with a distant cysteine residue. A series of covalent inhibitors and their reversible counterparts were synthesized and characterized. The most potent reversible inhibitor possessed picomolar affinity and its cysteine-reactive counterpart revealed high value of kinact/KI ratio (6.2 × 107 M-1 s-1) for the reaction with the catalytic subunit of cAMP-dependent PK (PKAc). Under optimized conditions, fluorescent dye-labeled covalent inhibitors demonstrated PKA-selectivity in the cell lysate and reacted with several proteins inside live cells, including PKAc. The disclosed compounds serve as leads for targeting PKs possessing an analogously positioned cysteine residue.
Collapse
Affiliation(s)
- Tanel Sõrmus
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Darja Lavogina
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Anu Teearu
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Erki Enkvist
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Asko Uri
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| | - Kaido Viht
- Institute of Chemistry, University of Tartu, 14A Ravila St., 50411 Tartu, Estonia
| |
Collapse
|
42
|
Roskoski R. Janus kinase (JAK) inhibitors in the treatment of neoplastic and inflammatory disorders. Pharmacol Res 2022; 183:106362. [PMID: 35878738 DOI: 10.1016/j.phrs.2022.106362] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023]
Abstract
The Janus kinase (JAK) family of nonreceptor protein-tyrosine kinases consists of JAK1, JAK2, JAK3, and TYK2 (Tyrosine Kinase 2). Each of these proteins contains a JAK homology pseudokinase (JH2) domain that interacts with and regulates the activity of the adjacent protein kinase domain (JH1). The Janus kinase family is regulated by numerous cytokines including interferons, interleukins, and hormones such as erythropoietin and thrombopoietin. Ligand binding to cytokine receptors leads to the activation of associated Janus kinases, which then catalyze the phosphorylation of the receptors. The SH2 domain of signal transducers and activators of transcription (STAT) binds to the cytokine receptor phosphotyrosines thereby promoting STAT phosphorylation and activation by the Janus kinases. STAT dimers are then translocated into the nucleus where they participate in the regulation and expression of dozens of proteins. JAK1/3 signaling participates in the pathogenesis of inflammatory disorders while JAK1/2 signaling contributes to the development of myeloproliferative neoplasms as well as several malignancies including leukemias and lymphomas. An activating JAK2 V617F mutation occurs in 95% of people with polycythemia vera and about 50% of cases of myelofibrosis and essential thrombocythemia. Abrocitinib, ruxolitinib, and upadacitinib are JAK inhibitors that are FDA-approved for the treatment of atopic dermatitis. Baricitinib is used for the treatment of rheumatoid arthritis and covid 19. Tofacitinib and upadacitinib are JAK antagonists that are used for the treatment of rheumatoid arthritis and ulcerative colitis. Additionally, ruxolitinib is approved for the treatment of polycythemia vera while fedratinib, pacritinib, and ruxolitinib are approved for the treatment of myelofibrosis.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742, United States.
| |
Collapse
|
43
|
Wilding B, Scharn D, Böse D, Baum A, Santoro V, Chetta P, Schnitzer R, Botesteanu DA, Reiser C, Kornigg S, Knesl P, Hörmann A, Köferle A, Corcokovic M, Lieb S, Scholz G, Bruchhaus J, Spina M, Balla J, Peric-Simov B, Zimmer J, Mitzner S, Fett TN, Beran A, Lamarre L, Gerstberger T, Gerlach D, Bauer M, Bergner A, Schlattl A, Bader G, Treu M, Engelhardt H, Zahn S, Fuchs JE, Zuber J, Ettmayer P, Pearson M, Petronczki M, Kraut N, McConnell DB, Solca F, Neumüller RA. Discovery of potent and selective HER2 inhibitors with efficacy against HER2 exon 20 insertion-driven tumors, which preserve wild-type EGFR signaling. NATURE CANCER 2022; 3:821-836. [PMID: 35883003 DOI: 10.1038/s43018-022-00412-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Oncogenic alterations in human epidermal growth factor receptor 2 (HER2) occur in approximately 2% of patients with non-small cell lung cancer and predominantly affect the tyrosine kinase domain and cluster in exon 20 of the ERBB2 gene. Most clinical-grade tyrosine kinase inhibitors are limited by either insufficient selectivity against wild-type (WT) epidermal growth factor receptor (EGFR), which is a major cause of dose-limiting toxicity or by potency against HER2 exon 20 mutant variants. Here we report the discovery of covalent tyrosine kinase inhibitors that potently inhibit HER2 exon 20 mutants while sparing WT EGFR, which reduce tumor cell survival and proliferation in vitro and result in regressions in preclinical xenograft models of HER2 exon 20 mutant non-small cell lung cancer, concomitant with inhibition of downstream HER2 signaling. Our results suggest that HER2 exon 20 insertion-driven tumors can be effectively treated by a potent and highly selective HER2 inhibitor while sparing WT EGFR, paving the way for clinical translation.
Collapse
Affiliation(s)
| | | | | | - Anke Baum
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | | | | | - Petr Knesl
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gerd Bader
- Boehringer Ingelheim RCV, Vienna, Austria
| | | | | | | | | | - Johannes Zuber
- Institute of Molecular Pathology (IMP), Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hall A, Abendroth J, Bolejack MJ, Ceska T, Dell’Aiera S, Ellis V, Fox D, François C, Muruthi MM, Prével C, Poullennec K, Romanov S, Valade A, Vanbellinghen A, Yano J, Geraerts M. Discovery and Characterization of a Novel Series of Chloropyrimidines as Covalent Inhibitors of the Kinase MSK1. ACS Med Chem Lett 2022; 13:1099-1108. [PMID: 35859861 PMCID: PMC9290008 DOI: 10.1021/acsmedchemlett.2c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
We describe the identification and
characterization of a series
of covalent inhibitors of the C-terminal kinase domain (CTKD) of MSK1.
The initial hit was identified via a high-throughput screening and
represents a rare example of a covalent inhibitor which acts via an
SNAr reaction of a 2,5-dichloropyrimidine with a
cysteine residue (Cys440). The covalent mechanism of action was supported
by in vitro biochemical experiments and was confirmed
by mass spectrometry. Ultimately, the displacement of the 2-chloro
moiety was confirmed by crystallization of an inhibitor with the CTKD.
We also disclose the crystal structures of three compounds from this
series bound to the CTKD of MSK1, in addition to the crystal structures
of two unrelated RSK2 covalent inhibitors bound to the CTKD of MSK1.
Collapse
Affiliation(s)
- Adrian Hall
- UCB, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | - Jan Abendroth
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Madison J. Bolejack
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Tom Ceska
- UCB, 216 Bath Road, Slough SL1 3WE, U.K
| | | | | | - David Fox
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Cyril François
- NovAliX, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | - Muigai M. Muruthi
- UCB Seattle, 7869 NE Day Road West, Bainbridge Island, Washington 98110, United States
| | - Camille Prével
- UCB, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | | | - Sergei Romanov
- NANOSYN, 3100 Central Expressway, Santa Clara, California 95051, United States
| | - Anne Valade
- UCB, Avenue de l’Industrie, Braine-L’Alleud 1420, Belgium
| | | | - Jason Yano
- UCB Boston, 87 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | | |
Collapse
|
45
|
Yuan Y, Hu Q, Liu L, Xie F, Yang L, Li Y, Zhang C, Chen H, Tang J, Shen X. Dehydrocostus Lactone Suppresses Dextran Sulfate Sodium-Induced Colitis by Targeting the IKKα/β-NF-κB and Keap1-Nrf2 Signalling Pathways. Front Pharmacol 2022; 13:817596. [PMID: 35321327 PMCID: PMC8936814 DOI: 10.3389/fphar.2022.817596] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Dehydrocostus lactone (DCL) is a major sesquiterpene lactone isolated from Aucklandia lappa Decne, a traditional Chinese herbal medicine that used to treat gastrointestinal diseases. This study aimed to examine the therapeutic effects of DCL on dextran sulfate sodium (DSS)-induced colitis with a focus on identifying the molecular mechanisms involved in DCL-mediated anti-inflammatory activity in macrophages. First, oral administration of DCL (5–15 mg/kg) not only ameliorated symptoms of colitis and colonic barrier injury, but also inhibited the expression of proinflammatory cytokines and myeloperoxidase in colon tissues in DSS-challenged mice. Furthermore, DCL also exhibited significant anti-inflammatory activity in LPS/IFNγ-stimulated RAW264.7 macrophages. Importantly, DCL significantly suppressed the phosphorylation and degradation of IκBα and subsequent NF-κB nuclear translocation, and enhanced the nuclear accumulation of Nrf2 in LPS/IFNγ-treated RAW264.7 cells. Mechanistically, DCL could directly interact with IKKα/β and Keap1, thereby leading to the inhibition of NF-κB signalling and the activation of Nrf2 pathway. Furthermore, DCL-mediated actions were abolished by dithiothreitol, suggesting a thiol-mediated covalent linkage between DCL and IKKα/β or Keap1. These findings demonstrated that DCL ameliorates colitis by targeting NF-κB and Nrf2 signalling, suggesting that DCL may be a promising candidate in the clinical treatment of colitis.
Collapse
Affiliation(s)
- Yun Yuan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luyao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongqing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiaofei Shen,
| |
Collapse
|
46
|
M Serafim RA, da Silva Santiago A, Schwalm MP, Hu Z, Dos Reis CV, Takarada JE, Mezzomo P, Massirer KB, Kudolo M, Gerstenecker S, Chaikuad A, Zender L, Knapp S, Laufer S, Couñago RM, Gehringer M. Development of the First Covalent Monopolar Spindle Kinase 1 (MPS1/TTK) Inhibitor. J Med Chem 2022; 65:3173-3192. [PMID: 35167750 DOI: 10.1021/acs.jmedchem.1c01165] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1/TTK) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors such as triple-negative breast cancer. While long drug-target residence times have been suggested to be beneficial in the context of therapeutic MPS1 inhibition, no irreversible inhibitors have been reported. Here we present the design and characterization of the first irreversible covalent MPS1 inhibitor, RMS-07, targeting a poorly conserved cysteine in the kinase's hinge region. RMS-07 shows potent MPS1 inhibitory activity and selectivity against all protein kinases with an equivalent cysteine but also in a broader kinase panel. We demonstrate potent cellular target engagement and pronounced activity against various cancer cell lines. The covalent binding mode was validated by mass spectrometry and an X-ray crystal structure. This proof of MPS1 covalent ligandability may open new avenues for the design of MPS1-specific chemical probes or drugs.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - André da Silva Santiago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Martin P Schwalm
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Zexi Hu
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| | - Caio V Dos Reis
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Jessica E Takarada
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Priscila Mezzomo
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Katlin B Massirer
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Mark Kudolo
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Gerstenecker
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Apirat Chaikuad
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany.,German Consortium for Translational Cancer Research (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), 72076 Tübingen, Germany
| | - Stefan Knapp
- Structural Genomics Consortium, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany.,Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany.,Frankfurt Cancer Institute (FCI) and German Translational Cancer Network (DKTK) Site Frankfurt/Mainz, 60596 Frankfurt am Main, Germany
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Rafael M Couñago
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-875, Brazil.,Structural Genomics Consortium, Departamento de Genética e Evolução, Instituto de Biologia, UNICAMP, Campinas, SP 13083-886, Brazil
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) 'Image-Guided & Functionally Instructed Tumor Therapies', University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
47
|
Shan Y, Ni Q, Zhang Q, Zhang M, Wei B, Cheng L, Zhong C, Wang X, Wang Q, Liu J, Zhang J, Wu J, Wang G, Zhou F. Targeting tumor endothelial hyperglycolysis enhances immunotherapy through remodeling tumor microenvironment. Acta Pharm Sin B 2022; 12:1825-1839. [PMID: 35847509 PMCID: PMC9279856 DOI: 10.1016/j.apsb.2022.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/17/2021] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Vascular abnormality is a hallmark of most solid tumors and facilitates immune evasion. Targeting the abnormal metabolism of tumor endothelial cells (TECs) may provide an opportunity to improve the outcome of immunotherapy. Here, in comparison to vascular endothelial cells from adjacent peritumoral tissues in patients with colorectal cancer (CRC), TECs presented enhanced glycolysis with higher glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression. Then an unbiased screening identified that osimertinib could modify the GAPDH and thus inhibit its activity in TECs. Low-dose osimertinib treatment caused tumor regression with vascular normalization and increased infiltration of immune effector cells in tumor, which was due to the reduced secretion of lactate from TECs by osimertinib through the inhibition of GAPDH. Moreover, osimertinib and anti-PD-1 blockade synergistically retarded tumor growth. This study provides a potential strategy to enhance immunotherapy by targeting the abnormal metabolism of TECs.
Collapse
|
48
|
Funk JL, Schneider C. Perspective on Improving the Relevance, Rigor, and Reproducibility of Botanical Clinical Trials: Lessons Learned From Turmeric Trials. Front Nutr 2021; 8:782912. [PMID: 34926556 PMCID: PMC8678600 DOI: 10.3389/fnut.2021.782912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plant-derived compounds, without doubt, can have significant medicinal effects since many notable drugs in use today, such as morphine or taxol, were first isolated from botanical sources. When an isolated and purified phytochemical is developed as a pharmaceutical, the uniformity and appropriate use of the product are well defined. Less clear are the benefits and best use of plant-based dietary supplements or other formulations since these products, unlike traditional drugs, are chemically complex and variable in composition, even if derived from a single plant source. This perspective will summarize key points-including the premise of ethnobotanical and preclinical evidence, pharmacokinetics, metabolism, and safety-inherent and unique to the study of botanical dietary supplements to be considered when planning or evaluating botanical clinical trials. Market forces and regulatory frameworks also affect clinical trial design since in the United States, for example, botanical dietary supplements cannot be marketed for disease treatment and submission of information on safety or efficacy is not required. Specific challenges are thus readily apparent both for consumers comparing available products for purchase, as well as for commercially sponsored vs. independent researchers planning clinical trials to evaluate medicinal effects of botanicals. Turmeric dietary supplements, a top selling botanical in the United States and focus of over 400 clinical trials to date, will be used throughout to illustrate both the promise and pitfalls associated with the clinical evaluation of botanicals.
Collapse
Affiliation(s)
- Janet L Funk
- Department of Medicine, University of Arizona, Tucson, AZ, United States
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
49
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol Res 2021; 175:106037. [PMID: 34921994 DOI: 10.1016/j.phrs.2021.106037] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/03/2023]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 68 FDA-approved therapeutic agents that target about two dozen different protein kinases and six of these drugs were approved in 2021. Of the approved drugs, twelve target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), thirteen block nonreceptor protein-tyrosine kinases, and 39 target receptor protein-tyrosine kinases. The data indicate that 58 of these drugs are prescribed for the treatment of neoplasms (49 against solid tumors including breast, lung, and colon, five against nonsolid tumors such as leukemias, and four against both solid and nonsolid tumors: acalabrutinib, ibrutinib, imatinib, and midostaurin). Three drugs (baricitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases including rheumatoid arthritis. Of the 68 approved drugs, eighteen are used in the treatment of multiple diseases. The following six drugs received FDA approval in 2021 for the treatment of these specified diseases: belumosudil (graft vs. host disease), infigratinib (cholangiocarcinomas), mobocertinib and tepotinib (specific forms of non-small cell lung cancer), tivozanib (renal cell carcinoma), and trilaciclib (to decrease chemotherapy-induced myelosuppression). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and the newly approved trilaciclib. This review summarizes the physicochemical properties of all 68 FDA-approved small molecule protein kinase inhibitors including lipophilic efficiency and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 3754 Brevard Road, Suite 106, Box 19, Horse Shoe, NC 28742-8814, United States.
| |
Collapse
|
50
|
Khouri C, Mahé J, Caquelin L, Locher C, Despas F. Pharmacology and pharmacovigilance of protein kinase inhibitors. Therapie 2021; 77:207-217. [PMID: 34895753 DOI: 10.1016/j.therap.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/31/2021] [Indexed: 11/19/2022]
Abstract
Protein kinase inhibitors experienced their advent in the 2000s. Their market introduction made it possible to constitute a class of targeted therapies administered orally. This name was chosen to mark a break with conventional chemotherapy drugs, but it is important to stress that these are multi-target drugs with complex affinity profiles. Adverse effects can be explained by direct interactions with their targets of interest, chosen for their indications (on-target) but also interactions with other targets (off-target). The adverse effect profiles of these drugs are therefore varied and it is possible to identify common profiles related to inhibitions of common targets. Identification of these targets has improved the global understanding of the pathophysiological mechanisms underlying the onset of adverse drug reactions as well as of the related diseases, and makes it possible to predict the adverse effect profile of new protein kinase inhibitors based on their affinities. In this review, we describe the main adverse drug reactions associated with protein kinase inhibitors, their frequency and their plausible mechanisms of action.
Collapse
Affiliation(s)
- Charles Khouri
- Pharmacovigilance Department, Grenoble Alpes University Hospital, 38000 Grenoble, France; Inserm UMR 1300-HP2 Laboratory, University Grenoble Alpes, 38000 Grenoble, France
| | - Julien Mahé
- Department of Pharmacology, Regional Pharmacovigilance Center, CHU de Nantes, 44093 Nantes, France
| | - Laura Caquelin
- Inserm, CIC 1414 (centre d'investigation clinique de Rennes), Université Rennes, CHU de Rennes, 35000 Rennes, France
| | - Clara Locher
- Inserm, CIC 1414 (centre d'investigation clinique de Rennes), Université Rennes, CHU de Rennes, 35000 Rennes, France
| | - Fabien Despas
- Inserm 1297, CIC 1436, Department of Medical and Clinical Pharmacology, Faculty of Medicine, CHU de Toulouse, University Paul-Sabatier, 31000 Toulouse, France.
| |
Collapse
|