1
|
Shi Y, Li X, Li Z, Sun J, Gao T, Wei G, Guo Q. Nano-formulations in disease therapy: designs, advances, challenges, and future directions. J Nanobiotechnology 2025; 23:396. [PMID: 40448105 DOI: 10.1186/s12951-025-03442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 05/05/2025] [Indexed: 06/02/2025] Open
Abstract
Nano-formulations, as an innovative drug delivery system, offer distinct advantages in enhancing drug administration methods, improving bioavailability, promoting biodegradability, and enabling targeted delivery. By exploiting the unique size advantages of nano-formulations, therapeutic agents, including drugs, genes, and proteins, can be precisely reorganized at the microscale level. This modification not only facilitates the precise release of these agents but also significantly enhances their efficacy while minimizing adverse effects, thereby creating novel opportunities for treatment of a wide range of diseases. In this review, we discuss recent advancements, challenges, and future perspectives in nano-formulations for therapeutic applications. For this aim, we firstly introduce the development, design, synthesis, and action mechanisms of nano-formulations. Then, we summarize their applications in disease diagnosis and treatment, especially in fields of oncology, pulmonology, cardiology, endocrinology, dermatology, and ophthalmology. Furthermore, we address the challenges associated with the medical applications of nanomaterials, and provide an outlook on future directions based on these considerations. This review offers a comprehensive examination of the current applications and potential significance of nano-formulations in disease diagnosis and treatment, thereby contributing to the advancement of modern medical therapies.
Collapse
Affiliation(s)
- YunYan Shi
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Xiao Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Zhiyuan Li
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Tong Gao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China.
| | - Qie Guo
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Shaikh MAJ, Gupta G, Bagiyal P, Gupta S, Singh SK, Pillappan R, Chellappan DK, Prasher P, Jakhmola V, Singh TG, Dureja H, Singh SK, Dua K. Enhancing drug bioavailability for Parkinson's disease: The promise of chitosan delivery mechanisms. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:195-210. [PMID: 39089365 DOI: 10.1016/j.pharma.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/20/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Parkinson's disease (PD) is a widely seen neurodegenerative condition recognized by misfolded α-synuclein (αSyn) protein, a prominent indicator for PD and other synucleinopathies. Motor symptoms like stiffness, akinesia, rest tremor, and postural instability coexist with nonmotor symptoms that differ from person to person in the development of PD. These symptoms arise from a progressive loss of synapses and neurons, leading to a widespread degenerative process in multiple organs. Implementing medical and surgical interventions, such as deep brain stimulation, has enhanced individuals' overall well-being and long-term survival with PD. It should be mentioned that these treatments cannot stop the condition from getting worse. The complicated structure of the brain and the existence of a semi-permeable barrier, commonly known as the BBB, have traditionally made medication delivery for the treatment of PD a challenging endeavor. The drug's low lipophilic nature, enormous size, and peculiarity for various ATP-dependent transport mechanisms hinder its ability to enter brain cells. This article delves at the potential of drug delivery systems based on chitosan (CS) to treat PD.
Collapse
Affiliation(s)
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pawan Bagiyal
- HLL Lifecare Limited, AMRIT Pharmacy, AIIMS Rishikesh, Rishikesh, Uttarakhand, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh, India
| | | | - Ramkumar Pillappan
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences [NGSMIPS], Mangaluru, Karnataka, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, India
| | | | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
3
|
Sevim S, Sanlier N. Cyclodextrin as a singular oligosaccharide: Recent advances of health benefit and in food applications. J Food Sci 2024; 89:8215-8230. [PMID: 39581621 DOI: 10.1111/1750-3841.17527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharides derived from the enzymatic degradation of starch. Their distinct molecular shape, which resembles a truncated cone with a hydrophobic interior and a hydrophilic outer surface, enables the formation of inclusion complexes via host-guest interactions. These complexes facilitate beneficial modifications such as enhancing the solubility and stabilizing unstable guest molecules. By forming inclusion complexes with bioactive components and drugs, CDs can increase the bioavailability of these compounds, providing benefits in the treatment of various diseases. Particularly, β-CD can form complexes by trapping hydrophobic molecules such as cholesterol in its hydrophobic cavity. Moreover, CDs are considered significant soluble dietary fibers due to their resistance against human digestive enzymes and their utilization by intestinal microbiota. All these features suggest that CDs could encapsulate phospholipids and food components, potentially improving or preventing metabolic diseases such as cardiovascular diseases, diabetes, and neurological disorders by blocking the absorption of carbohydrates, fats, and cholesterol. This review seeks to investigate the clinical effects and mechanisms of action considering all their potential properties and their relevance to health by utilizing in vivo, in vitro, animal, and human studies.
Collapse
Affiliation(s)
- Sumeyra Sevim
- Department of Nutrition and Dietetics Ankara, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Nevin Sanlier
- Department of Nutrition and Dietetics Ankara, School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
4
|
Guo X, Liu H, Hou R, Chen G, Xiao H, Liu L, Ciftci ON, Liu L. Design strategies of polysaccharide, protein and lipid-based nano-delivery systems in improving the bioavailability of polyphenols and regulating gut homeostasis. Int J Biol Macromol 2024; 283:137463. [PMID: 39547604 DOI: 10.1016/j.ijbiomac.2024.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Polyphenols are plant secondary metabolites that have attracted much attention due to their anti-inflammatory, antioxidant, and gut homeostasis promoting effects. However, food matrix interaction, poor solubility, and strong digestion and metabolism of polyphenols cause barriers to their absorption in the gastrointestinal tract, which further reduces bioavailability and limits polyphenols' application in the food industry. Nano-delivery systems composed of biocompatible macromolecules (polysaccharides, proteins and lipids) are an effective way to improve the bioavailability of polyphenols. Therefore, this review introduces the construction of biopolymer-based nano-delivery systems and their application in polyphenols, with emphasis on improving the solubility, stability, sustained release and intestinal targeting of polyphenols. In addition, there are possible positive effects of polyphenol-loaded nano-delivery systems on modulating gut microbiota and gut homeostasis, with particular emphasis on modulating intestinal inflammation, metabolic syndrome, and gut-brain axis. It is worth noting that the safety of bio-based nano-delivery systems still need to be further studied. In summary, the application of the bio-based nano-delivery system to deliver polyphenols provides insights for improving the bioavailability of polyphenols and for the treatment of potential diseases in the future.
Collapse
Affiliation(s)
- Xue Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Hongyan Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ruyan Hou
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Guijie Chen
- Anhui Agricultural University, School Tea & Food Science & Technololgy, State Key Lab Tea Plant Biolology & Utilizatilizaytion, Key Lab Food Nutrion & Safety, Hefei 230036, PR China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst 01003, USA
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Ozan N Ciftci
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Technology, Ningbo University, Ningbo, Zhejiang, PR China.
| |
Collapse
|
5
|
Liu X, Guo Y, Pan J, Wu T, Zhao B, Wei S, Jiang W, Liu Y. Nanoparticles constructed from natural polyphenols are used in acute kidney injury. J Mater Chem B 2024; 12:8883-8896. [PMID: 39177039 DOI: 10.1039/d4tb00837e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Acute kidney injury (AKI) is a severe clinical syndrome characterized by rapid deterioration of renal function caused by a variety of pathogeneses. Natural polyphenols have been considered to have potential in the treatment of AKI due to their powerful antioxidant and anti-inflammatory activities, but their low bioavailability in vivo limits their efficacy. Polyphenol nanoparticles based on a nano-delivery system show good effects in reducing kidney injury, improving renal function and promoting renal tissue repair, and brings new hope and possibility for the treatment of AKI. This review provides an overview of the common characteristics, treatments, and associated adverse effects of AKI. The classification and bioavailability of polyphenols as well as their therapeutic role in AKI and potential possible effects are outlined. The potential therapeutic effects of polyphenol-based nanoparticles on AKI and the underlying mechanisms are discussed.
Collapse
Affiliation(s)
- Xiaohua Liu
- Henan Science and Technology Innovation Promotion Center, Zhengzhou 450046, China
| | - Yike Guo
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiangpeng Pan
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Tingting Wu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| | - Bing Zhao
- Henan Finance University, Zhengzhou 450046, China
| | - Shuyi Wei
- Plastic Surgery Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, China.
| | - Wei Jiang
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Pharmacy, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Rocha S, Luísa Corvo M, Freitas M, Fernandes E. Liposomal quercetin: A promising strategy to combat hepatic insulin resistance and inflammation in type 2 diabetes mellitus. Int J Pharm 2024; 661:124441. [PMID: 38977164 DOI: 10.1016/j.ijpharm.2024.124441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
In type 2 diabetes mellitus, hepatic insulin resistance is intricately associated with oxidative stress and inflammation. Nonetheless, the lack of therapeutic interventions directly targeting hepatic dysfunction represents a notable gap in current treatment options. Flavonoids have been explored due to their potential antidiabetic effects. However, these compounds are associated with low bioavailability and high metabolization. In the present study, four flavonoids, kaempferol, quercetin, kaempferol-7-O-glucoside and quercetin-7-O-glucoside, were studied in a cellular model of hepatic insulin resistance using HepG2 cells. Quercetin was selected as the most promising flavonoid and incorporated into liposomes to enhance its therapeutic effect. Quercetin liposomes had a mean size of 0.12 µm, with an incorporation efficiency of 93 %. Quercetin liposomes exhibited increased efficacy in modulating insulin resistance. This was achieved through the modulation of Akt expression and the attenuation of inflammation, particularly via the NF-κB pathway, as well as the regulation of PGE2 and COX-2 expression. Furthermore, quercetin liposomes displayed a significant advantage over free quercetin in attenuating the production of reactive pro-oxidant species. These findings open new avenues for developing innovative therapeutic strategies to manage diabetes, emphasizing the potential of quercetin liposomes as a promising approach for targeting both hepatic insulin resistance and associated inflammation.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal.
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
Kaviani F, Baratpour I, Ghasemi S. The Antidiabetic Mechanisms of Hesperidin: Hesperidin Nanocarriers as Promising Therapeutic Options for Diabetes. Curr Mol Med 2024; 24:1483-1493. [PMID: 37986269 DOI: 10.2174/0115665240268940231113044317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 11/22/2023]
Abstract
A natural flavonoid with exceptional medicinal capabilities, hesperidin, has shown encouraging results in the treatment of diabetes. Thoughts are still being held on the particular processes through which hesperidin exerts its anti-diabetic effects. This work clarifies the complex antidiabetic mechanisms of hesperidin by investigating the molecular pathways involved in glucose homeostasis, insulin signaling, and oxidative stress control. Additionally, the article explores the newly developing field of nanocarrier-based systems as a prospective means of boosting the therapeutic efficiency of hesperidin in the treatment of diabetes. This is because there are difficulties connected with the efficient delivery of hesperidin. These cutting-edge platforms show enormous potential for changing diabetes therapy by utilizing the benefits of nanocarriers, such as enhanced solubility, stability, and targeted delivery. In conclusion, our comprehensive review emphasizes the antidiabetic potential of hesperidin and underscores the intriguing possibilities provided by hesperidin nanocarriers in the search for more effective and individualized diabetes therapies.
Collapse
Affiliation(s)
- Fatemeh Kaviani
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Iraj Baratpour
- Students Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Moldovan M, Păpurică AM, Muntean M, Bungărdean RM, Gheban D, Moldovan B, Katona G, David L, Filip GA. Effects of Gold Nanoparticles Phytoreduced with Rutin in an Early Rat Model of Diabetic Retinopathy and Cataracts. Metabolites 2023; 13:955. [PMID: 37623898 PMCID: PMC10456405 DOI: 10.3390/metabo13080955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Diabetic retinopathy (DR) and cataracts (CA) have an early onset in diabetes mellitus (DM) due to the redox imbalance and inflammation triggered by hyperglycaemia. Plant-based therapies are characterised by low tissue bioavailability. The study aimed to investigate the effect of gold nanoparticles phytoreduced with Rutin (AuNPsR), as a possible solution. Insulin, Rutin, and AuNPsR were administered to an early, six-week rat model of DR and CA. Oxidative stress (MDA, CAT, SOD) was assessed in serum and eye homogenates, and inflammatory cytokines (IL-1 beta, IL-6, TNF alpha) were quantified in ocular tissues. Eye fundus of retinal arterioles, transmission electron microscopy (TEM) of lenses, and histopathology of retinas were also performed. DM was linked to constricted retinal arterioles, reduced endogen antioxidants, and eye inflammation. Histologically, retinal wall thickness decreased. TEM showed increased lens opacity and fibre disorganisation. Rutin improved retinal arteriolar diameter, while reducing oxidative stress and inflammation. Retinas were moderately oedematous. Lens structure was preserved on TEM. Insulin restored retinal arteriolar diameter, while increasing MDA, and amplifying TEM lens opacity. The best outcomes were obtained for AuNPsR, as it improved fundus appearance of retinal arterioles, decreased MDA and increased antioxidant capacity. Retinal edema and disorganisation in lens fibres were still present.
Collapse
Affiliation(s)
- Mădălina Moldovan
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| | - Ana-Maria Păpurică
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| | - Mara Muntean
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, Pasteur Street, No. 6, 400349 Cluj-Napoca, Romania;
| | - Raluca Maria Bungărdean
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 3-5, 400340 Cluj-Napoca, Romania; (R.M.B.); (D.G.)
| | - Dan Gheban
- Department of Pathology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 3-5, 400340 Cluj-Napoca, Romania; (R.M.B.); (D.G.)
- Department of Pathology, Emergency Clinical Hospital for Children, Motilor Street, No. 41T-42T, 400370 Cluj-Napoca, Romania
| | - Bianca Moldovan
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Gabriel Katona
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Luminița David
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Street, No. 11, 400028 Cluj-Napoca, Romania; (B.M.); (G.K.); (L.D.)
| | - Gabriela Adriana Filip
- Department of Physiology, Iuliu Hatieganu University of Medicine and Pharmacy, Clinicilor Street, No. 1, 400006 Cluj-Napoca, Romania; (A.-M.P.); (G.A.F.)
| |
Collapse
|
9
|
Cai J, Wen H, Zhou H, Zhang D, Lan D, Liu S, Li C, Dai X, Song T, Wang X, He Y, He Z, Tan J, Zhang J. Naringenin: A flavanone with anti-inflammatory and anti-infective properties. Biomed Pharmacother 2023; 164:114990. [PMID: 37315435 DOI: 10.1016/j.biopha.2023.114990] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Although a growing body of research has recently shown how crucial inflammation and infection are to all major diseases, several of the medications currently available on the market have various unfavourable side effects, necessitating the development of alternative therapeutic choices. Researchers are increasingly interested in alternative medications or active components derived from natural sources. Naringenin is a commonly consumed flavonoid found in many plants, and since it was discovered to have nutritional benefits, it has been utilized to treat inflammation and infections caused by particular bacteria or viruses. However, the absence of adequate clinical data and naringenin's poor solubility and stability severely restrict its usage as a medicinal agent. In this article, we discuss naringenin's effects and mechanisms of action on autoimmune-induced inflammation, bacterial infections, and viral infections based on recent research. We also present a few suggestions for enhancing naringenin's solubility, stability, and bioavailability. This paper emphasizes the potential use of naringenin as an anti-inflammatory and anti-infective agent and the next prophylactic substance for the treatment of various inflammatory and infectious diseases, even though some mechanisms of action are still unclear, and offers some theoretical support for its clinical application.
Collapse
Affiliation(s)
- Ji Cai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Hongli Wen
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China.
| | - He Zhou
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Dan Zhang
- Zunyi Medical University Library, Zunyi 563000, China.
| | - Dongfeng Lan
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Songpo Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Chunyang Li
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xiaofang Dai
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Xianyao Wang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China.
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Zhixu He
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| | - Jun Tan
- Department of Histology and Embryology, Zunyi Medical University, Zunyi 563000, China.
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China; Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563000, China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
10
|
Wang T, Xu ZH. Natural Compounds with Aldose Reductase (AR) Inhibition: A Class of Medicative Agents for Fatty Liver Disease. Comb Chem High Throughput Screen 2023; 26:1929-1944. [PMID: 36655533 DOI: 10.2174/1386207326666230119101011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023]
Abstract
Fatty liver disease (FLD), which includes both non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease (ALD), is a worldwide health concern. The etiology of ALD is long-term alcohol consumption, while NAFLD is defined as an abnormal amount of lipid present in liver cells, which is not caused by alcohol intake and has recently been identified as a hepatic manifestation of metabolic syndrome (such as type 2 diabetes, obesity, hypertension, and obesity). Inflammation, oxidative stress, and lipid metabolic dysregulation are all known to play a role in FLD progression. Alternative and natural therapies are desperately needed to treat this disease since existing pharmaceuticals are mostly ineffective. The aldose reductase (AR)/polyol pathway has recently been shown to play a role in developing FLD by contributing to inflammation, oxidative stress, apoptosis, and fat accumulation. Herein, we review the effects of plantderived compounds capable of inhibiting AR in FLD models. Natural AR inhibitors have been found to improve FLD in part by suppressing inflammation, oxidative stress, and steatosis via the regulation of several critical pathways, including the peroxisome proliferator-activated receptor (PPAR) pathway, cytochrome P450 2E1 (CYP2E1) pathway, AMP-activated protein kinase (AMPK) pathway, etc. This review revealed that natural compounds with AR inhibitory effects are a promising class of therapeutic agents for FLD.
Collapse
Affiliation(s)
- Tong Wang
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zi-Hui Xu
- Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
11
|
Silica-Based Nanomaterials for Diabetes Mellitus Treatment. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010040. [PMID: 36671612 PMCID: PMC9855068 DOI: 10.3390/bioengineering10010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus, a chronic metabolic disease with an alarming global prevalence, is associated with several serious health threats, including cardiovascular diseases. Current diabetes treatments have several limitations and disadvantages, creating the need for new effective formulations to combat this disease and its associated complications. This motivated the development of therapeutic strategies to overcome some of these limitations, such as low therapeutic drug bioavailability or poor compliance of patients with current therapeutic methodologies. Taking advantage of silica nanoparticle characteristics such as tuneable particle and pore size, surface chemistry and biocompatibility, silica-based nanocarriers have been developed with the potential to treat diabetes and regulate blood glucose concentration. This review discusses the main topics in the field, such as oral administration of insulin, glucose-responsive devices and innovative administration routes.
Collapse
|
12
|
Petrisor G, Motelica L, Ficai D, Trusca RD, Surdu VA, Voicu G, Oprea OC, Ficai A, Andronescu E. New Mesoporous Silica Materials Loaded with Polyphenols: Caffeic Acid, Ferulic Acid and p-Coumaric Acid as Dietary Supplements for Oral Administration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15227982. [PMID: 36431468 PMCID: PMC9696098 DOI: 10.3390/ma15227982] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 11/02/2022] [Indexed: 05/13/2023]
Abstract
In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols-caffeic acid, p-coumaric acid and trans-ferulic acid-in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer-Emmet-Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH-simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.
Collapse
Affiliation(s)
- Gabriela Petrisor
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Denisa Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Correspondence:
| | - Roxana Doina Trusca
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Georgeta Voicu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
13
|
Stepanova DA, Pigareva VA, Berkovich AK, Bolshakova AV, Spiridonov VV, Grozdova ID, Sybachin AV. Ultrasonic Film Rehydration Synthesis of Mixed Polylactide Micelles for Enzyme-Resistant Drug Delivery Nanovehicles. Polymers (Basel) 2022; 14:4013. [PMID: 36235958 PMCID: PMC9571646 DOI: 10.3390/polym14194013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
A facile technique for the preparation of mixed polylactide micelles from amorphous poly-D,L-lactide-block-polyethyleneglycol and crystalline amino-terminated poly-L-lactide is described. In comparison to the classical routine solvent substitution method, the ultrasonication assisted formation of polymer micelles allows shortening of the preparation time from several days to 15-20 min. The structure and morphology of mixed micelles were analyzed with the assistance of electron microscopy, dynamic and static light scattering and differential scanning calorimetery. The resulting polymer micelles have a hydrodynamic radius of about 150 nm and a narrow size distribution. The average molecular weight of micelles was found to be 2.1 × 107 and the aggregation number was calculated to be 6000. The obtained biocompatible particles were shown to possess low cytotoxicity, high colloid stability and high stability towards enzymatic hydrolysis. The possible application of mixed polylactide micelles as drug delivery vehicles was studied for the antitumor hydrophobic drug paclitaxel. The lethal concentration (LC50) of paclitaxel encapsulated in polylactide micelles was found to be 42 ± 4 µg/mL-a value equal to the LC50 of paclitaxel in the commercial drug Paclitaxel-Teva.
Collapse
Affiliation(s)
- Darya A. Stepanova
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladislava A. Pigareva
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anna K. Berkovich
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia V. Bolshakova
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vasiliy V. Spiridonov
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Irina D. Grozdova
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey V. Sybachin
- Leninskie Gory, 1-3, Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
14
|
Xiao J. Recent advances in dietary flavonoids for management of type 2 diabetes. Curr Opin Food Sci 2022; 44:100806. [DOI: 10.1016/j.cofs.2022.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
Zou M, Chi J, Jiang Z, Zhang W, Hu H, Ju R, Liu C, Xu T, Wang S, Feng Z, Liu W, Han B. Functional thermosensitive hydrogels based on chitin as RIN-m5F cell carrier for the treatment of diabetes. Int J Biol Macromol 2022; 206:453-466. [PMID: 35247418 DOI: 10.1016/j.ijbiomac.2022.02.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 12/19/2022]
Abstract
Herein, the thermosensitive hydroxypropyl chitin (HPCT) hydrogel was prepared and the chemical structures, microstructures, rheological properties and degradation in vitro were investigated. The HPCT hydrogel possessed satisfactory biocompatibility in mouse fibroblast cells and Sprague Dawley rats. On the other hand, N-acetylglucosamine (NAG) and carboxymethyl chitosan (CMCS) provided favorable capacity for promoting cell proliferation, delaying cell apoptosis, and facilitating the insulin secretion of rat pancreatic beta cells (RIN-m5F) in three-dimensional culture. Most importantly, the effects of HPCT/NAG and HPCT/CMCS thermosensitive hydrogels as RIN-m5F cells carriers were evaluated via injection into different areas of diabetic rats. Our results demonstrated that HPCT/NAG and HPCT/CMCS hydrogels loaded RIN-m5F cells could keep cells survival, maintain insulin secretion and reduce blood glucose for one week. Overall, the functional thermosensitive hydrogels based on HPCT were effective cell carriers for RIN-m5F cells and might provide novel strategy for the treatment of diabetes via cell engineering.
Collapse
Affiliation(s)
- Mingyu Zou
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinhua Chi
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhiwen Jiang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China
| | - Wei Zhang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Huiwen Hu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ruibao Ju
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chenqi Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Tianjiao Xu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Shuo Wang
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Zhilong Feng
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Wanshun Liu
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Baoqin Han
- Laboratory of Biochemistry and Biomedical Materials, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, PR China.
| |
Collapse
|
16
|
Yang Z, Dan Wang, Li Y, Zhou X, Liu T, Shi C, Li R, Zhang Y, Zhang J, Yan J, Zhu X, Li Y, Gong M, Wang C, Yuan C, Cui Y, Wu X. Untargeted metabolomics analysis of the anti-diabetic effect of Red ginseng extract in Type 2 diabetes Mellitus rats based on UHPLC-MS/MS. Biomed Pharmacother 2022; 146:112495. [PMID: 34891123 DOI: 10.1016/j.biopha.2021.112495] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
Red ginseng is a traditional Chinese herbal medicine that has long been used to treat diabetes, and its blood sugar-lowering activity has been confirmed. However, the mechanism of action of red ginseng on type 2 diabetes mellitus (T2DM) at the metabolic level is still unclear. The purpose of this study is to investigate the effect of red ginseng extract in the treatment of T2DM rats based on untargeted metabolomics. The rat model of T2DM was induced by a high-fat diet (HFD) combined with streptozotocin (STZ), and serum samples were collected after four weeks of treatment. The ultra-high-performance liquid chromatography coupled with Q Exactive HF-X Mass Spectrometer was used to analyze the level of metabolites in serum to evaluate the differences in metabolic levels between different groups. The results of biochemical analysis showed that red ginseng extract intervention significantly improved the levels of total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), serum glucose (GLU), and fasting insulin (FINS) after four weeks. Orthogonal partial least squares discriminant analysis was used to study the overall changes of rat metabolomics. After the intervention of red ginseng extract, 50 biomarkers showed a callback trend. Metabolic pathway enrichment analysis showed that the regulated pathways were D-arginine and D-ornithine metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Generally, the results demonstrated that red ginseng extract had beneficial effects on T2DM, which could be mediated via ameliorating the metabolic disorders.
Collapse
MESH Headings
- Amino Acids/metabolism
- Animals
- Biomarkers/blood
- Chromatography, High Pressure Liquid
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Lipid Metabolism
- Male
- Metabolic Networks and Pathways/drug effects
- Metabolomics
- Panax
- Pancreas/drug effects
- Pancreas/pathology
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Rats, Sprague-Dawley
- Tandem Mass Spectrometry
- Rats
Collapse
Affiliation(s)
- Zijun Yang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Dan Wang
- Department of Pharmacy, Chu Hisen-I Memorial Hospital, Tianjin Medical University, Tianjin 300134, China
| | - Yuanyuan Li
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China; Department of Pharmacy, Tianjin Fourth Central Hospital, Tianjin 300140, China
| | - Xinfeng Zhou
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Tiantian Liu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Chang Shi
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Rongshan Li
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Yanwen Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jiuxing Yan
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Xuehui Zhu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Ying Li
- Tianjin Neurological Institute, Tianjin Medical University, Tianjin 300052, China
| | - Min Gong
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Chongzhi Wang
- Tang Center for Herbal Medicine Research, University of Chicago, Illinois 60637, USA
| | - Chunsu Yuan
- Tang Center for Herbal Medicine Research, University of Chicago, Illinois 60637, USA
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaohui Wu
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
17
|
Rocha S, Aniceto N, Guedes RC, Albuquerque HMT, Silva VLM, Silva AMS, Corvo ML, Fernandes E, Freitas M. An In Silico and an In Vitro Inhibition Analysis of Glycogen Phosphorylase by Flavonoids, Styrylchromones, and Pyrazoles. Nutrients 2022; 14:nu14020306. [PMID: 35057487 PMCID: PMC8781192 DOI: 10.3390/nu14020306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glycogen phosphorylase (GP) is a key enzyme in the glycogenolysis pathway. GP inhibitors are currently under investigation as a new liver-targeted approach to managing type 2 diabetes mellitus (DM). The aim of the present study was to evaluate the inhibitory activity of a panel of 52 structurally related chromone derivatives; namely, flavonoids, 2-styrylchromones, 2-styrylchromone-related derivatives [2-(4-arylbuta-1,3-dien-1-yl)chromones], and 4- and 5-styrylpyrazoles against GP, using in silico and in vitro microanalysis screening systems. Several of the tested compounds showed a potent inhibitory effect. The structure–activity relationship study indicated that for 2-styrylchromones and 2-styrylchromone-related derivatives, the hydroxylations at the A and B rings, and in the flavonoid family, as well as the hydroxylation of the A ring, were determinants for the inhibitory activity. To support the in vitro experimental findings, molecular docking studies were performed, revealing clear hydrogen bonding patterns that favored the inhibitory effects of flavonoids, 2-styrylchromones, and 2-styrylchromone-related derivatives. Interestingly, the potency of the most active compounds increased almost four-fold when the concentration of glucose increased, presenting an IC50 < 10 µM. This effect may reduce the risk of hypoglycemia, a commonly reported side effect of antidiabetic agents. This work contributes with important considerations and provides a better understanding of potential scaffolds for the study of novel GP inhibitors.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
| | - Natália Aniceto
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Rita C. Guedes
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Hélio M. T. Albuquerque
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Vera L. M. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (H.M.T.A.); (V.L.M.S.); (A.M.S.S.)
| | - Maria Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; (N.A.); (R.C.G.); (M.L.C.)
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
| | - Marisa Freitas
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.); (E.F.)
- Correspondence: ; Tel.: +351-220-428-664
| |
Collapse
|
18
|
Sinan KI, Akpulat U, Aldahish AA, Celik Altunoglu Y, Baloğlu MC, Zheleva-Dimitrova D, Gevrenova R, Lobine D, Mahomoodally MF, Etienne OK, Zengin G, Mahmud S, Capasso R. LC-MS/HRMS Analysis, Anti-Cancer, Anti-Enzymatic and Anti-Oxidant Effects of Boerhavia diffusa Extracts: A Potential Raw Material for Functional Applications. Antioxidants (Basel) 2021; 10:2003. [PMID: 34943106 PMCID: PMC8698501 DOI: 10.3390/antiox10122003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Boerhavia diffusa is a great tropical plant and is widely used for various traditional purposes. In the present study, we examined the influence of solvents (dichloromethane, ethyl acetate, methanol and infusion (water)) on chemical composition and biological capabilities of B. diffusa. An UHPLC-HRMS method was used to determine the chemical characterization. The biological ability was examined for antioxidant, enzyme inhibitory and anti-cancer effects. To evaluate antioxidant effects, different chemical methods (ABTS, DPPH, CUPRAC, FRAP, metal chelating and phosphomolybdenum) were applied. With regard to enzyme inhibitory properties, cholinesterases, amylase, glucosidase and tyrosinase were used. The MDA-MB-231 breast cancer cell line was chosen to determine anticancer activity. Based on the UHPLC-HRMS analysis, 37 specialized metabolites were dereplicated and identified in the studied extracts. Results revealed the presence of 15 hydroxybenzoic, hydroxycinnamic, acylquinic acids, and their glycosides, one rotenoid, seven flavonoids, 12 fatty acids and two other glycosides. Among the tested extracts, the methanol extract showed a stronger antioxidant ability compared with other extracts. The methanol extract also showed the best inhibitory effects on tyrosinase and glucosidase. In the anti-cancer evaluation, the methanol extract showed stronger anticancer effects compared with water extract. In summary, our observations can contribute to the establishment of B. diffusa as a potential candidate for functional applications in the preparation.
Collapse
Affiliation(s)
- Kouadio Ibrahime Sinan
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Uğur Akpulat
- Department of Medical Biology, Faculty of Medicine, Kastamonu University, Kastamonu 37150, Turkey;
| | - Afaf A. Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Asir, Saudi Arabia;
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu 37150, Turkey; (Y.C.A.); (M.C.B.)
| | - Dimitrina Zheleva-Dimitrova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Reneta Gevrenova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University-Sofia, 1431 Soifa, Bulgaria; (D.Z.-D.); (R.G.)
| | - Devina Lobine
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Mohamad Fawzi Mahomoodally
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Réduit 80837, Mauritius; (D.L.); (M.F.M.)
| | - Ouattara Katinan Etienne
- Laboratoire de Botanique, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan 00225, Côte d’Ivoire;
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey;
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|