1
|
Lin R, Han J, He Y, Xie L, Gao T, Chen Y, Zhong Y, Ding Q, Cheng K, Yao X, Chen Z. Design, synthesis and biological evaluation of dapsone derivatives with broad-spectrum antiviral activity. Eur J Med Chem 2025; 293:117717. [PMID: 40344737 DOI: 10.1016/j.ejmech.2025.117717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/21/2025] [Accepted: 04/30/2025] [Indexed: 05/11/2025]
Abstract
Inhibition of STAT2 degradation has emerged as a promising strategy for flaviviruses. The NS5 protein of the ZIKV and DENV-2 inhibits the IFN-Ⅰ antiviral response by degrading STAT2, thereby evading the host's immune defense. Therefore, the development of novel agents capable of inhibiting STAT2 degradation via targeted modulation constitutes a pivotal therapeutic strategy for controlling viral infections. In this study, HEK293TSTAT2-mCherry-Flag/rtTA-HA-NS5 cells were used as reporter tools. Through screening the ZINC drug-like database, the lead compound ZINC000060514583 was obtained and structurally modified to yield the optimized compounds SMU-1k, which significantly inhibited the degradation of STAT2. We verified its activity against ZIKV and DENV-2 through Western blotting, RT-qPCR, plaque formation assays, and immunofluorescence experiments. The results showed that SMU-1k significantly inhibited the expression of NS5 protein and restored the level of STAT2 to a certain extent. Additionally, the EC50 values of SMU-1k against ZIKV and DENV-2 were 7.08 ± 0.06 μM and 3.96 ± 0.11 μM, respectively, which helped to alleviate the cytopathic effects caused by ZIKV and DENV-2 infection. Here, we have successfully characterized a novel small-molecule compound that selectively blocks STAT2 proteasomal degradation while exhibiting potent dual antiviral efficacy against both ZIKV and DENV-2, thereby revealing a promising lead candidate for developing broad-spectrum antiviral therapeutics.
Collapse
Affiliation(s)
- Renjie Lin
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiajia Han
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yun He
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Xie
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Tianyu Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yaoming Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ye Zhong
- School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou, 510515, China
| | - Qiang Ding
- Center for Infection Biology, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Bourgeois NM, Wei L, Kaushansky A, Aitchison JD. Exploiting Host Kinases to Combat Dengue Virus Infection and Disease. Antiviral Res 2025:106172. [PMID: 40348023 DOI: 10.1016/j.antiviral.2025.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
The burden of dengue on human health has dramatically increased in recent years, underscoring the urgent need for effective therapeutic interventions. Despite decades of research since the discovery of the dengue virus, no specific antiviral treatments are available and strategies to reliably prevent severe disease remain limited. Direct-acting antivirals against dengue are under active investigation but have shown limited efficacy to date. An underappreciated Achille's heal of the virus is its dependence on host factors for infection and pathogenesis, each of which presents a potential avenue for therapeutic intervention. We and others have demonstrated that dengue virus relies on multiple host kinases, some of which are already targeted by clinically approved inhibitors. These offer drug repurposing opportunities for host-directed dengue treatment. Here, we summarize findings on the role of kinases in dengue infection and disease and highlight potential kinase targets for the development of innovative host-directed therapeutics.
Collapse
Affiliation(s)
- Natasha M Bourgeois
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA
| | - Alexis Kaushansky
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| | - John D Aitchison
- Department of Global Health, University of Washington, Seattle WA 98195, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle WA 98109, USA.
| |
Collapse
|
3
|
Zhao X, Qiao R, Hao M, Xu L, Wang D, Lu Y, Li J, Wu J, Li Y, Cheng T, Zhang W, Zhao J, Wang P. Vascular endothelial growth factor receptor 2 as a potential host target for the inhibition of enterovirus replication. J Virol 2024; 98:e0112924. [PMID: 39287389 PMCID: PMC11542593 DOI: 10.1128/jvi.01129-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Because host kinases are key regulators of multiple signaling pathways in response to viral infections, we previously screened a kinase inhibitor library using rhabdomyosarcoma cells and human intestinal organoids in parallel to identify potent inhibitors against EV-A71 infection. We found that Rho-associated coiled-coil-containing protein kinase (Rock) inhibitor efficiently suppressed the EV-A71 replication and further revealed Rock1 as a novel EV-A71 host factor. In this study, subsequent analysis found that a variety of vascular endothelial growth factor receptor (VEGFR) inhibitors also had potent antiviral effects. Among the hits, Pazopanib, with a selectivity index as high as 254, which was even higher than that of Pirodavir, a potent broad-spectrum picornavirus inhibitor targeting viral capsid protein VP1, was selected for further analysis. We demonstrated that Pazopanib not only efficiently suppressed the replication of EV-A71 in a dose-dependent manner, but also exhibited broad-spectrum anti-enterovirus activity. Mechanistically, Pazopanib probably induces alterations in host cells, thereby impeding viral genome replication and transcription. Notably, VEGFR2 knockdown and overexpression suppressed and facilitated EV-A71 replication, respectively, indicating that VEGFR2 is a novel host dependency factor for EV-A71 replication. Transcriptome analysis further proved that VEGFR2 potentially plays a crucial role in combating EV-A71 infection through the TSAd-Src-PI3K-Akt pathway. These findings expand the range of potential antiviral candidates of anti-enterovirus therapeutics and suggest that VEGFR2 may be a key host factor involved in EV-A71 replication, making it a potential target for the development of anti-enterovirus therapeutics. IMPORTANCE As the first clinical case was identified in the United States, EV-A71, a significant neurotropic enterovirus, has been a common cause of hand, foot, and mouth disease (HFMD) in infants and young children. Developing an effective antiviral agent for EV-A71 and other human enteroviruses is crucial, as these viral pathogens consistently cause outbreaks in humans. In this study, we demonstrated that multiple inhibitors against VEGFRs effectively reduced EV-A71 replication, with Pazopanib emerging as the top candidate. Furthermore, Pazopanib also attenuated the replication of other enteroviruses, including CVA10, CVB1, EV-D70, and HRV-A, displaying broad-spectrum anti-enterovirus activity. Given that Pazopanib targets various VEGFRs, we narrowed the focus to VEGFR2 using knockdown and overexpression experiments. Transcriptomic analysis suggests that Pazopanib's potential downstream targets involve the TSAd-Src-PI3K-Akt pathway. Our work may contribute to identifying targets for antiviral inhibitors and advancing treatments for human enterovirus infections.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Shanghai Sci-Tech Inno
Center for Infection & Immunity, National Medical Center for
Infectious Diseases, Huashan Hospital, Institute of Infection and
Health, Fudan University,
Shanghai, China
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| | - Rui Qiao
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| | - Meng Hao
- Greater Bay Area
Institute of Precision Medicine (Guangzhou), Fudan University, Nansha
District, Guangzhou,
China
| | - Longfa Xu
- State Key Laboratory
of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory,
School of Life Sciences, School of Public Health, Xiamen
University, Xiamen,
China
| | - Dong Wang
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
China
| | - Yinying Lu
- Shanghai Sci-Tech Inno
Center for Infection & Immunity, National Medical Center for
Infectious Diseases, Huashan Hospital, Institute of Infection and
Health, Fudan University,
Shanghai, China
| | - Jiayan Li
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| | - Jing Wu
- Department of
Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and
Biosafety Emergency Response, National Medical Center for Infectious
Diseases, Huashan Hospital, Shanghai Medical College, Fudan
University, Shanghai,
China
| | - Yi Li
- Human Phenome
Institute, Fudan University,
Shanghai, China
| | - Tong Cheng
- State Key Laboratory
of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory,
School of Life Sciences, School of Public Health, Xiamen
University, Xiamen,
China
| | - Wenhong Zhang
- Department of
Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and
Biosafety Emergency Response, National Medical Center for Infectious
Diseases, Huashan Hospital, Shanghai Medical College, Fudan
University, Shanghai,
China
| | - Jincun Zhao
- State Key Laboratory
of Respiratory Disease, National Clinical Research Center for
Respiratory Disease, Guangzhou Institute of Respiratory Health, the
First Affiliated Hospital of Guangzhou Medical
University, Guangzhou,
China
- Guangzhou Laboratory,
Bio-Island, Guangzhou,
China
- Shanghai Institute for
Advanced Immunochemical Studies, School of Life Science and Technology,
ShanghaiTech University,
Shanghai, China
- Institute for
Hepatology, National Clinical Research Center for Infectious Disease,
Shenzhen Third People’s Hospital; The Second Affiliated Hospital,
School of Medicine, Southern University of Science and
Technology, Shenzhen,
China
| | - Pengfei Wang
- Shanghai Pudong
Hospital, Fudan University Pudong Medical Center, State Key Laboratory
of Genetic Engineering, MOE Engineering Research Center of Gene
Technology, School of Life Sciences, Shanghai Institute of Infectious
Disease and Biosecurity, Fudan
University, Shanghai,
China
| |
Collapse
|
4
|
Fan L, Xiao H, Ren J, Hou Y, Cai J, Wu W, Xiang B, Lin Q, Liao M, Ren T, Chen L. Newcastle disease virus induces clathrin-mediated endocytosis to establish infection through the activation of PI3K/AKT signaling pathway by VEGFR2. J Virol 2024; 98:e0132224. [PMID: 39254313 PMCID: PMC11494881 DOI: 10.1128/jvi.01322-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
The phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway constitutes a classical phosphorylation cascade that integrates tyrosine, lipid, and serine acid-threonine phosphorylation, affecting cell function. The pathway is vulnerable to viral infection. Newcastle disease virus (NDV) poses a significant threat to the global poultry industry; however, its mechanism of early viral cell invasion and pathogenesis remain unclear. Previous in vivo and in vitro studies have shown that NDV infection activates PI3K/AKT signaling; however, it remains unclear whether NDV establishes infection through endocytosis regulated by this pathway. This study aimed to examine whether different genotypes of NDV strains could activate the PI3K/AKT signaling pathway within 2 h of in vitro infection. This activation, which relies on PI3K phosphorylation, remains unaffected by the phosphorylation-phosphatase and tensin homolog/phosphatase and tensin homolog (p-PTEN/PTEN) signaling pathway. Moreover, inhibition of PI3K activity impedes NDV replication. Additionally, interfering with the PI3K regulatory subunit p85 has no significant effect on NDV replication. Conversely, the tyrosine kinase activity upstream of PI3K can influence AKT activation and viral replication, particularly through vascular endothelial growth factor receptor 2 (VEGFR2). Additionally, NDV F protein primarily mediates PI3K and AKT phosphorylation to activate the PI3K/AKT signaling pathway. NDV F and VEGFR2 proteins, along with the PI3K p85α subunit, interact and co-localize at the cell membrane. NDV-induced PI3K/AKT signaling pathway activation impacts clathrin-mediated endocytosis, with VEGFR2 playing a pivotal role. In conclusion, this study shows that NDV infection is established early through F protein binding to VEGFR2, activating the PI3K/AKT signaling pathway and inducing clathrin-mediated endocytosis, supporting infection prevention and control measures. IMPORTANCE Newcastle disease virus (NDV) is a threat to the global poultry industry; however, the mechanisms of NDV infection remain unclear. NDV affects the phosphatidyl-inositol 3-kinase/serine-threonine kinase (PI3K/ AKT) signaling pathway, requiring endocytosis for successful infection. Based on previous studies, we identified a close correlation between NDV infection and replication and the PI3K/AKT signaling pathway activity. This study examined the molecular mechanisms through which NDV activates the PI3K/AKT signaling pathway to regulate endocytosis and facilitate infection. This study showed that early-stage in vitro NDV infection activated the PI3K/AKT signaling pathway, enhancing clathrin-mediated endocytosis, crucial for infection onset. Notably, this process involves the interaction between NDV F protein and the vascular endothelial growth factor receptor 2 tyrosine kinase, leading to the subsequent binding and phosphorylation of the PI3K p85α regulatory subunit. This activation primes PI3K, initiating a cascade that promotes clathrin-mediated endocytosis. Our findings elucidate how NDV capitalizes on the PI3K/AKT signaling pathway to establish infection through endocytosis.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Hongtao Xiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yuechi Hou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Juncheng Cai
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Wanyan Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Stalin A, Han J, Daniel Reegan A, Ignacimuthu S, Liu S, Yao X, Zou Q. Exploring the antiviral inhibitory activity of Niloticin against the NS2B/NS3 protease of Dengue virus (DENV2). Int J Biol Macromol 2024; 277:133791. [PMID: 38992553 DOI: 10.1016/j.ijbiomac.2024.133791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Dengue virus (DENV2) is the cause of dengue disease and a worldwide health problem. DENV2 replicates in the host cell using polyproteins such as NS3 protease in conjugation with NS2B cofactor, making NS3 protease a promising antiviral drug-target. This study investigated the efficacy of 'Niloticin' against NS2B/NS3-protease. In silico and in vitro analyses were performed which included interaction of niloticin with NS2B/NS3-protease, protein stability and flexibility, mutation effect, betweenness centrality of residues and analysis of cytotoxicity, protein expression and WNV NS3-protease activity. Similar like acyclovir, niloticin forms strong H-bonds and hydrophobic interactions with residues LEU149, ASN152, LYS74, GLY148 and ALA164. The stability of the niloticin-NS2B/NS3-protease complex was found to be stable compared to the apo NS2B/NS3-protease in structural deviation, PCA, compactness and FEL analysis. The IC50 value of niloticin was 0.14 μM in BHK cells based on in vitro cytotoxicity analysis and showed significant activity at 2.5 μM in a concentration-dependent manner. Western blotting and qRT-PCR analyses showed that niloticin reduced DENV2 protein transcription in a dose-dependent manner. Besides, niloticin confirmed the inhibition of NS3-protease by the SensoLyte 440 WNV protease detection kit. These promising results suggest that niloticin could be an effective antiviral drug against DENV2 and other flaviviruses.
Collapse
Affiliation(s)
- Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610 054, China.
| | - Jiajia Han
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Appadurai Daniel Reegan
- National Centre for Disease Control, Bengaluru Branch, No. 8, NTI Campus, Bellary Road, Bengaluru 560 003, Karnataka, India; ICMR-Vector Control Research Centre, Indira Nagar, Gorimedu, Puducherry 605 006, India
| | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Affiliated to Manonmaniam Sundaranar University, Palayamkottai 627 002, Tamil Nadu, India
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Xingang Yao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China.
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610 054, China.
| |
Collapse
|
6
|
Wan Y, Li L, Chen R, Han J, Lei Q, Chen Z, Tang X, Wu W, Liu S, Yao X. Engineered extracellular vesicles efficiently deliver CRISPR-Cas9 ribonucleoprotein (RNP) to inhibit herpes simplex virus1 infection in vitro and in vivo. Acta Pharm Sin B 2024; 14:1362-1379. [PMID: 38486996 PMCID: PMC10934336 DOI: 10.1016/j.apsb.2023.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 03/17/2024] Open
Abstract
Extracellular vesicles (EVs) have recently emerged as a promising delivery platform for CRISPR/Cas9 ribonucleoproteins (RNPs), owing to their ability to minimize off-target effects and immune responses. However, enhancements are required to boost the efficiency and safety of Cas9 RNP enrichment within EVs. In response, we employed the Fc/Spa interaction system, in which the human Fc domain was fused to the intracellular domain of PTGFRN-Δ687 and anchored to the EV membrane. Simultaneously, the B domain of the Spa protein was fused to the C domain of cargos such as Cre or spCas9. Due to the robust interaction between Fc and Spa, this method enriched nearly twice the amount of cargo within the EVs. EVs loaded with spCas9 RNP targeting the HSV1 genome exhibited significant inhibition of viral replication in vitro and in vivo. Moreover, following neuron-targeting peptide RVG modification, the in vivo dosage in neural tissues substantially increased, contributing to the clearance of the HSV1 virus in neural tissues and exhibiting a lower off-target efficiency. These findings establish a robust platform for efficient EV-based SpCas9 delivery, offering potential therapeutic advantages for HSV1 infections and other neurological disorders.
Collapse
Affiliation(s)
- Yuanda Wan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Liren Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Center of Clinical Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruilin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiajia Han
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiyun Lei
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaodong Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenyu Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shuwen Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| | - Xingang Yao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangzhou 510515, China
| |
Collapse
|
7
|
Wu D, Huang W, Zhang J, He L, Chen S, Zhu S, Sang Y, Liu K, Hou G, Chen B, Xu Y, Liu B, Yao H. Downregulation of VEGFA accelerates AGEs-mediated nucleus pulposus degeneration through inhibiting protective mitophagy in high glucose environments. Int J Biol Macromol 2024; 262:129950. [PMID: 38320636 DOI: 10.1016/j.ijbiomac.2024.129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Intervertebral disc degeneration (IVDD) contributes largely to low back pain. Recent studies have highlighted the exacerbating role of diabetes mellitus (DM) in IVDD, mainly due to the influence of hyperglycemia (HG) or the accumulation of advanced glycation end products (AGEs). Vascular endothelial growth factor A (VEGFA) newly assumed a distinct impact in nonvascular tissues through mitophagy regulation. However, the combined actions of HG and AGEs on IVDD and the involved role of VEGFA remain unclear. We confirmed the potential relation between VEGFA and DM through bioinformatics and biological specimen detection. Then we observed that AGEs induced nucleus pulposus (NP) cell degeneration by upregulating cellular reactive oxygen species (ROS), and HG further aggravated ROS level through breaking AGEs-induced protective mitophagy. Furthermore, this adverse effect could be strengthened by VEGFA knockdown. Importantly, we identified that the regulation of VEGFA and mitophagy were vital mechanisms in AGEs-HG-induced NP cell degeneration through Parkin/Akt/mTOR and AMPK/mTOR pathway. Additionally, VEGFA overexpression through local injection with lentivirus carrying VEGFA plasmids significantly alleviated NP degeneration and IVDD in STZ-induced diabetes and puncture rat models. In conclusion, the findings first confirmed that VEGFA protects against AGEs-HG-induced IVDD, which may represent a therapeutic strategy for DM-related IVDD.
Collapse
Affiliation(s)
- Depeng Wu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Weijun Huang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Junbin Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Lei He
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Siyu Chen
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, PR China
| | - Sihan Zhu
- University Hospital, LMU Munich, 81377 Munich, Germany
| | - Yuan Sang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Kaihua Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Gang Hou
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Biying Chen
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yichun Xu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Bin Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China.
| | - Hui Yao
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
8
|
Acetyl-CoA Carboxylase (ACC) Inhibitor, CP640186, Effectively Inhibited Dengue Virus (DENV) Infection via Regulating ACC Phosphorylation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238583. [PMID: 36500675 PMCID: PMC9739643 DOI: 10.3390/molecules27238583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Dengue fever is the most common mosquito-borne viral disease and is caused by the dengue virus (DENV). There is still a lack of efficient drugs against DENV infection, so it is urgent to develop new inhibitors for future clinical use. Our previous research indicated the role of VEGFR2/AMPK in regulating cellular metabolism during DENV infection, while acetyl-CoA carboxylase (ACC) is located downstream of AMPK and plays a crucial role in mediating cellular lipid synthesis; therefore, we speculated that an ACC inhibitor could serve as an antiviral agent against DENV. Luckily, we found that CP640186, a reported noncompetitive ACC inhibitor, significantly inhibited DENV proliferation, and CP640186 clearly reduced DENV2 proliferation at an early stage with an EC50 of 0.50 μM. A mechanism study indicated that CP640186 inhibited ACC activation and destroyed the cellular lipid environment for viral proliferation. In the DENV2 infection mice model, oral CP640186 administration (10 mg/kg/day) significantly improved the mice survival rate after DENV2 infection. In summary, our research suggests that lipid synthesis plays an important role during DENV2 proliferation and indicates that CP640186 is a promising drug candidate against DNEV2 in the future.
Collapse
|
9
|
Fiestas Solórzano VE, de Lima RC, de Azeredo EL. The Role of Growth Factors in the Pathogenesis of Dengue: A Scoping Review. Pathogens 2022; 11:1179. [PMID: 36297236 PMCID: PMC9608673 DOI: 10.3390/pathogens11101179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 12/07/2022] Open
Abstract
Growth factors (GFs) have a role in tissue repair and in the modulation of the expression of inflammatory cells in damage caused by pathogens. This study aims to systematize the evidence on the role of GFs in the pathogenesis of dengue. This scoping review considered all published peer-reviewed studies in the MEDLINE and Embase databases. Ultimately, 58 studies that analyzed GFs in dengue patients, published between 1998 and 2021, were included. DENV-2 infection and secondary infection were more frequent in the patients studied. ELISA and multiplex immunoassay (Luminex) were the most used measurement techniques. Increased levels of vascular endothelial growth factor, granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor, transforming growth factor beta, and hepatocyte growth factor as well as reduced levels of platelet-derived growth factor and epidermal growth factor were observed in severe dengue in most studies. Vascular endothelial growth factor and hepatocyte growth factor were identified as biomarkers of severity. In addition, there is evidence that the dengue virus can use the growth factor pathway to facilitate its entry into the cell and promote its viral replication. The use of tyrosine kinase inhibitors is an alternative treatment for dengue that is being studied.
Collapse
|
10
|
Yang C, Xie W, Zhang H, Xie W, Tian T, Qin Z. Recent two-year advances in anti-dengue small-molecule inhibitors. Eur J Med Chem 2022; 243:114753. [PMID: 36167010 DOI: 10.1016/j.ejmech.2022.114753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/04/2022]
Abstract
Dengue is an acute tropical infectious disease transmitted by mosquitoes, which has posed a major challenge to global public health. Unfortunately, there is a lack of clinically proven dengue-specific drugs for its prevention and treatment. As the pathogenesis of dengue has not been fully elucidated, the development of specific drugs is seriously hindered. This article briefly describes the pathogenesis of dengue fever, the molecular characteristics, and epidemiology of dengue virus, and focuses on the potential small-molecule inhibitors of dengue virus, including on-target and multi-targeted inhibitors, which have been reported in the past two years.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macao University of Science and Technology, Macao, 999078, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, 570206, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China
| | - Wenjian Xie
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, PR China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong, 519087, China.
| |
Collapse
|
11
|
Chen W, Zhang J, Qi X, Zhao K, Pang X, Lin X, Liao S, Yang B, Zhou X, Liu S, Wang J, Yao X, Liu Y. p-Terphenyls as Anti-HSV-1/2 Agents from a Deep-Sea-Derived Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2021; 84:2822-2831. [PMID: 34766503 DOI: 10.1021/acs.jnatprod.1c00400] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guided by Global Natural Products Social molecular networking, two p-terphenyl derivatives and one 4,5-diphenyl-2-pyrone analogue, peniterphenyls A-C (1-3), together with five known p-terphenyl derivatives (4-8) and sulochrin (9), were obtained from a deep-sea-derived Penicillium sp. SCSIO41030. Their structures were elucidated using extensive NMR spectroscopic and HRESIMS data and by comparing the information with literature data. Peniterphenyl B (2) represented the first reported natural product possessing a 4,5-diphenyl-substituted 2-pyrone derivative. The p-terphenyl derivatives displayed inhibitory activities against HSV-1/2 with EC50 values ranging from 1.4 ± 0.6 to 9.3 ± 3.7 μM in Vero cells, which showed that they possessed antiviral activities with low cytotoxicity, superior to the current clinical drug acyclovir (EC50 3.6 ± 0.7 μM). Peniterphenyl A (1) inhibited HSV-1/2 virus entry into cells and may block HSV-1/2 infection through direct interaction with virus envelope glycoprotein D to interfere with virus adsorption and membrane fusion, and thus differs from the nucleoside analogues such as acyclovir. Our study indicated peniterphenyl A (1) could be a promising lead compound against HSV-1/2.
Collapse
Affiliation(s)
- Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
| | - Jiawen Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xin Qi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Kai Zhao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Shengrong Liao
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| | - Xingang Yao
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, People's Republic of China
- Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, People's Republic of China
| |
Collapse
|