1
|
Li M, Duan M, Yang Y, Li X, Li D, Gao W, Ji X, Bai J. Combination of brefeldin A and tunicamycin induces apoptosis in HepG2 cells through the endoplasmic reticulum stress-activated PERK-eIF2α-ATF4-CHOP signaling pathway. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:49-56. [PMID: 40206437 PMCID: PMC11977284 DOI: 10.1016/j.livres.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 01/15/2025] [Indexed: 04/11/2025]
Abstract
Background and aims Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate, but there are still no effective treatments. The aim of this study was to investigate the anticancer potential of the combined use of brefeldin A (BFA) and tunicamycin (TM) in HepG2 cells, as well as the underlying mechanisms. Methods HepG2 cells were treated with different concentrations of BFA (0.1-2.5 mg/L) and TM (1-5 mg/L) for 24 h. DMSO (0.1 %, v/v) was used as a vehicle control. Cell viability and cell migration were measured using MTT assay and scratch wound assay, respectively. Apoptosis was detected using flow cytometry and acridine orange (AO) staining. The protein and mRNA levels of various factors involved in apoptosis (poly (ADP-ribose) polymerase-1 (PARP-1), caspase-12, caspase-3, and stearoyl-CoA desaturase 1) and endoplasmic reticulum (ER) stress (binding immunoglobulin protein (BiP), protein kinase R-like endoplasmic reticulum kinase (PERK), p-PERK, phosphorylation of eukaryotic translation initiation factor 2alpha (p-eIF2α), activating transcription factor (ATF) 4, and C/EBP homologous protein (CHOP)) were measured using Western blotting and qRT-PCR, respectively. Results Both BFA and TM alone significantly reduced the viability of HepG2 cells in a dose-dependent way. The co-incubation with TM (1 mg/L) further significantly reduced the viability of HepG2 cells treated with BFA (0.25 mg/L) alone (P < 0.05). BFA significantly increased the protein and mRNA levels of caspase-3 and PARP-1 (P < 0.05) compared to control and DMSO-treated cells, indicating that BFA induced apoptosis in HepG2 cells by increasing the expression of caspase-3 and PARP-1. The induction of apoptosis by BFA could be further significantly enhanced by co-incubation with TM. In addition, BFA significantly increased the mRNA levels of BiP, PERK and ATF4 (P < 0.05) compared to control and DMSO-treated cells. After co-incubation of BFA and TM, the protein levels of BiP, p-PERK, p-eIF2α and CHOP were significantly increased, indicating that TM could enhance BFA-induced ER stress in HepG2 cells through the PERK-eIF2α-ATF4-CHOP pathway. Conclusions BFA could induce apoptosis and ER stress, and TM could enhance the ability of BFA to induce apoptosis and ER stress in HepG2 cells through the PERK-eIF2ɑ-ATF4-CHOP pathway. The findings highlight the therapeutic potential of the combined use of BFA and TM in treating HCC.
Collapse
Affiliation(s)
- Minghong Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Occupational Disease Control, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Mengyi Duan
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ying Yang
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xingdao Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dan Li
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenting Gao
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Taiyuan, Shanxi, China
- Center for Ecological Public Health Security of Yellow River Basin, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Wang Y, Li Q, Ding Y, Luo C, Yang J, Wang N, Jiang N, Yao T, Wang G, Shi G, Hou SX. Novel Arf1 Inhibitors Drive Cancer Stem Cell Aging and Potentiate Anti-Tumor Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404442. [PMID: 39225354 PMCID: PMC11497069 DOI: 10.1002/advs.202404442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Indexed: 09/04/2024]
Abstract
The small G protein Arf1 has been identified as playing a selective role in supporting cancer stem cells (CSCs), making it an attractive target for cancer therapy. However, the current Arf1 inhibitors have limited translational potential due to their high toxicity and low specificity. In this study, two new potent small-molecule inhibitors of Arf1, identified as DU101 and DU102, for cancer therapy are introduced. Preclinical tumor models demonstrate that these inhibitors triggered a cascade of aging in CSCs and enhance anti-tumor immunity in mouse cancer and PDX models. Through single-cell sequencing, the remodeling of the tumor immune microenvironment induced by these new Arf1 inhibitors is analyzed and an increase in tumor-associated CD8+ CD4+ double-positive T (DPT) cells is identified. These DPT cells exhibit superior features of active CD8 single-positive T cells and a higher percentage of TCF1+PD-1+, characteristic of stem-like T cells. The frequency of tumor-infiltrating stem-like DPT cells correlates with better disease-free survival (DFS) in cancer patients, indicating that these inhibitors may offer a novel cancer immunotherapy strategy by converting the cold tumor immune microenvironment into a hot one, thus expanding the potential for immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Yuetong Wang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Qiaoming Li
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Yahui Ding
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Chenfei Luo
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Jun Yang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Na Wang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Ning Jiang
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Tiange Yao
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Guohao Wang
- The Basic Research LaboratoryCenter for Cancer ResearchNational Cancer Institute at FrederickNational Institutes of HealthFrederickMD21702USA
| | - Guoming Shi
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- Department of Cell and Developmental Biology at School of Life SciencesState Key Laboratory of Genetic EngineeringInstitute of Metabolism and Integrative BiologyHuman Phenome InstituteDepartment of Liver Surgery and Transplantation of Liver Cancer Institute at Zhongshan HospitalFudan UniversityShanghai200438China
- Leading Contact
| |
Collapse
|
3
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
4
|
Bingham R, McCarthy H, Buckley N. Exploring Retrograde Trafficking: Mechanisms and Consequences in Cancer and Disease. Traffic 2024; 25:e12931. [PMID: 38415291 DOI: 10.1111/tra.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Retrograde trafficking (RT) orchestrates the intracellular movement of cargo from the plasma membrane, endosomes, Golgi or endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) in an inward/ER-directed manner. RT works as the opposing movement to anterograde trafficking (outward secretion), and the two work together to maintain cellular homeostasis. This is achieved through maintaining cell polarity, retrieving proteins responsible for anterograde trafficking and redirecting proteins that become mis-localised. However, aberrant RT can alter the correct location of key proteins, and thus inhibit or indeed change their canonical function, potentially causing disease. This review highlights the recent advances in the understanding of how upregulation, downregulation or hijacking of RT impacts the localisation of key proteins in cancer and disease to drive progression. Cargoes impacted by aberrant RT are varied amongst maladies including neurodegenerative diseases, autoimmune diseases, bacterial and viral infections (including SARS-CoV-2), and cancer. As we explore the intricacies of RT, it becomes increasingly apparent that it holds significant potential as a target for future therapies to offer more effective interventions in a wide range of pathological conditions.
Collapse
Affiliation(s)
- Rachel Bingham
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
5
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y, Dong J. Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother 2024; 170:116021. [PMID: 38128187 DOI: 10.1016/j.biopha.2023.116021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a heavy burden on human health with high morbidity and mortality rates. Systematic therapy is crucial for advanced and mid-term HCC, but faces a significant challenge from therapeutic resistance, weakening drug effectiveness. Metabolic reprogramming has gained attention as a key contributor to therapeutic resistance. Cells change their metabolism to meet energy demands, adapt to growth needs, or resist environmental pressures. Understanding key enzyme expression patterns and metabolic pathway interactions is vital to comprehend HCC occurrence, development, and treatment resistance. Exploring metabolic enzyme reprogramming and pathways is essential to identify breakthrough points for HCC treatment. Targeting metabolic enzymes with inhibitors is key to addressing these points. Inhibitors, combined with systemic therapeutic drugs, can alleviate resistance, prolong overall survival for advanced HCC, and offer mid-term HCC patients a chance for radical resection. Advances in metabolic research methods, from genomics to metabolomics and cells to organoids, help build the HCC metabolic reprogramming network. Recent progress in biomaterials and nanotechnology impacts drug targeting and effectiveness, providing new solutions for systemic therapeutic drug resistance. This review focuses on metabolic enzyme changes, pathway interactions, enzyme inhibitors, research methods, and drug delivery targeting metabolic reprogramming, offering valuable references for metabolic approaches to HCC treatment.
Collapse
Affiliation(s)
- Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China
| | - Juan Liu
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Ziye Chen
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Jingjing Zheng
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Yunfang Wang
- Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun 130021, China; Research Unit of Precision Hepatobiliary Surgery Paradigm, Chinese Academy of Medical Sciences, Beijing 100021, China; Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China; Institute for Organ Transplant and Bionic Medicine, Tsinghua University, Beijing 102218, China; Key Laboratory of Digital Intelligence Hepatology (Ministry of Education/Beijing), School of Clinical Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
6
|
Danelius E, Bu G, Wieske LHE, Gonen T. MicroED as a Powerful Tool for Structure Determination of Macrocyclic Drug Compounds Directly from Their Powder Formulations. ACS Chem Biol 2023; 18:2582-2589. [PMID: 37944119 PMCID: PMC10728894 DOI: 10.1021/acschembio.3c00611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Macrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as to act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally, and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles that have previously resisted structural determination. We show that structures of similar complexity can now be obtained rapidly from nanograms of material and that different conformations of flexible compounds can be derived from the same experiment. These results will have an impact on contemporary drug discovery as well as natural product exploration.
Collapse
Affiliation(s)
- Emma Danelius
- Howard
Hughes Medical Institute, University of
California Los Angeles, Los Angeles, California 90095, United States
- Department
of Biological Chemistry, University of California
Los Angeles, 615 Charles E.Young Drive South, Los Angeles, California 90095, United States
| | - Guanhong Bu
- Department
of Biological Chemistry, University of California
Los Angeles, 615 Charles E.Young Drive South, Los Angeles, California 90095, United States
| | - Lianne H. E. Wieske
- Department
of Chemistry − BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Tamir Gonen
- Howard
Hughes Medical Institute, University of
California Los Angeles, Los Angeles, California 90095, United States
- Department
of Biological Chemistry, University of California
Los Angeles, 615 Charles E.Young Drive South, Los Angeles, California 90095, United States
- Department
of Physiology, University of California
Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Zhang C, Liu Z, Wang F, Zhang B, Zhang X, Guo P, Li T, Tai S, Zhang C. Nanomicelles for GLUT1-targeting hepatocellular carcinoma therapy based on NADPH depletion. Drug Deliv 2023; 30:2162160. [PMID: 36579634 PMCID: PMC9809347 DOI: 10.1080/10717544.2022.2162160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor leading cancer-associated high mortality worldwide. Unfortunately, the most commonly used drug therapeutics not only lack of target ability and efficiency, but also exhibit severe systemic toxicity to normal tissues. Thus, effective and targeted nanodrug of HCC therapy is emerging as a more important issue. Here, we design and develop the novel nanomicelles, namely Mannose-polyethylene glycol 600-Nitroimidazole (Man-NIT). This micelle compound with high purity comprise two parts, which can self-assemble into nanoscale micelle. The outer shell is selected mannose as hydrophilic moiety, while the inner core is nitroimidazole as hydrophobic moiety. In the cell experiment, Man-NIT was more cellular uptake by HCCLM3 cells due to the mannose modification. Mannose as a kind of glucose transporter 1 (GLUT1) substrate, can specifically recognize and bind to over-expressed GLUT1 on carcinoma cytomembrane. The nitroimidazole moiety of Man-NIT was reduced by the over-expressed nitroreductase with reduced nicotinamide adenine dinucleotide phosphate (NADPH) as the cofactor, resulting in transient deletion of NADPH and glutathione (GSH). The increase of reactive oxygen species (ROS) in HCCLM3 cells disturbed the balance of redox, and finally caused the death of tumor cells. Additional in vivo experiment was conducted using twenty-four male BALB/c nude mice to build the tumor model. The results showed that nanomicelles were accumulated in the liver of mice. The tumor size and pathological features were obviously improved after nanomicelles treatment. It indicates that namomicelles have a tumor inhibition effect, especially Man-NIT, which may be a potential nanodrug of chemotherapeutics for HCC therapy.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zehui Liu
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Bin Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xirui Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Peiwen Guo
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China
| | - Tianwei Li
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China,CONTACT Sheng Tai
| | - Changmei Zhang
- Department of Children’s and Adolescent Health, Public Health College, Harbin Medical University, Harbin, China,Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China,Changmei Zhang Department of Pharmaceutics, Daqing Campus of Harbin Medical University, Daqing, China
| |
Collapse
|
8
|
Liu T, Liu L, Li L, Cai J. Exploiting targeted nanomedicine for surveillance, diagnosis, and treatment of hepatocellular carcinoma. Mater Today Bio 2023; 22:100766. [PMID: 37636988 PMCID: PMC10457457 DOI: 10.1016/j.mtbio.2023.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/26/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the cancers that has the highest morbidity and mortality rates. In clinical practice, there are still many limitations in surveilling, diagnosing, and treating HCC, such as the poor detection of early HCC, the frequent post-surgery recurrence, the low local tumor control rate, the therapy resistance and side effects. Therefore, improved, or innovative modalities are urgently required for early diagnosis as well as refined and effective management. In recent years, nanotechnology research in the field of HCC has received great attention, with various aspects of diagnosis and treatment including biomarkers, ultrasound, diagnostic imaging, intraoperative imaging, ablation, transarterial chemoembolization, radiotherapy, and systemic therapy. Different from previous reviews that discussed from the perspective of nanoparticles' structure, design and function, this review systematically summarizes the methods and limitations of diagnosing and treating HCC in clinical guidelines and practices, as well as nanomedicine applications. Nanomedicine can overcome the limitations to improve diagnosis accuracy and therapeutic effect via enhancement of targeting, biocompatibility, bioavailability, controlled releasing, and combination of different clinical treatment modalities. Through an in-depth understanding of the logic of nanotechnology to conquer clinical limitations, the main research directions of nanotechnology in HCC are sorted out in this review. It is anticipated that nanomedicine will play a significant role in the future clinical practices of HCC.
Collapse
Affiliation(s)
- Tingting Liu
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Li Liu
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Li Li
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
| | - Jing Cai
- Department of Medical Imaging, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, PR China
| |
Collapse
|
9
|
Danelius E, Bu G, Wieske H, Gonen T. MicroED as a powerful tool for structure determination of macrocyclic drug compounds directly from their powder formulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551405. [PMID: 37577574 PMCID: PMC10418104 DOI: 10.1101/2023.07.31.551405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Macrocycles are important drug leads with many advantages including the ability to target flat and featureless binding sites as well as act as molecular chameleons and thereby reach intracellular targets. However, due to their complex structures and inherent flexibility, macrocycles are difficult to study structurally and there are limited structural data available. Herein, we use the cryo-EM method MicroED to determine the novel atomic structures of several macrocycles which have previously resisted structural determination. We show that structures of similar complexity can now be obtained rapidly from nanograms of material, and that different conformations of flexible compounds can be derived from the same experiment. These results will have impact on contemporary drug discovery as well as natural product exploration.
Collapse
Affiliation(s)
- E Danelius
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
| | - G Bu
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
| | - H Wieske
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - T Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, 615 Charles E.Young Drive South, Los Angeles, CA 90095, USA
- Department of Physiology, University of California Los Angeles, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Wang M, Sun B, Ye T, Wang Y, Hou Y, Wang S, Pan H, Hua H, Li D. 5-(4-Hydroxyphenyl)-3H-1,2-dithiole-3-thione derivatives of brefeldin A: Design, synthesis and cytotoxicity in MDA-MB-231 human breast cancer cells. Bioorg Med Chem 2023; 90:117380. [PMID: 37329677 DOI: 10.1016/j.bmc.2023.117380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
27 novel 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione derivatives of brefeldin A were designed and synthesized to make them more conducive to the cancer treatment. The antiproliferative activity of all the target compounds was tested against six human cancer cell lines and one human normal cell line. Compound 10d exhibited nearly the most potent cytotoxicity with IC50 values of 0.58, 0.69, 1.82, 0.85, 0.75, 0.33 and 1.75 μM against A549, DU-145, A375, HeLa, HepG2, MDA-MB-231 and L-02 cell lines. Moreover, 10d inhibited metastasis and induced apoptosis of MDA-MB-231 cells in a dose-dependent manner. The potent anticancer effects of 10d were prompted based on the aforementioned results, the therapeutic potential of 10d for breast cancer was worth further exploration.
Collapse
Affiliation(s)
- Mingying Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China
| | - Baojia Sun
- Yantai Valiant Pharmaceutical Co. Ltd., 60, Taiyuan Road, Dajijia Industrial Park, YEDA Yantai, Shandong 264006, PR China
| | - Tao Ye
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China
| | - Yanbing Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yonglian Hou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China
| | - Siyuan Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, PR China
| | - Huaqi Pan
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, PR China
| | - Huiming Hua
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China.
| | - Dahong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
11
|
Effect of Lactobacillus plantarum and Lactobacillus acidophilus fermentation on antioxidant activity and metabolomic profiles of loquat juice. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Jiang YY, Gao Y, Liu JY, Xu Y, Wei MY, Wang CY, Gu YC, Shao CL. Design and Characterization of a Natural Arf-GEFs Inhibitor Prodrug CHNQD-01255 with Potent Anti-Hepatocellular Carcinoma Efficacy In Vivo. J Med Chem 2022; 65:11970-11984. [DOI: 10.1021/acs.jmedchem.2c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yao-Yao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| | - Yang Gao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jian-Yu Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Ying Xu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China
| |
Collapse
|
13
|
New brefeldin A-cinnamic acid ester derivatives as potential antitumor agents: Design, synthesis and biological evaluation. Eur J Med Chem 2022; 240:114598. [PMID: 35849940 DOI: 10.1016/j.ejmech.2022.114598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and ranks third in mortality rate worldwide. Brefeldin A (BFA, 1), a natural Arf1 inhibitor, qualifies extremely superior antitumor activity against HCC while its low aqueous solubility, poor bioavailability, and high toxicity have greatly hindered its translation to the clinic. Herein, a series of BFA-cinnamic acid ester derivatives was rationally designed and synthesized via introducing active cinnamic acid and its analogues into the structure of 1. Their in vitro cytotoxic activities on five cancer cell lines, including HepG2, BEL-7402, HeLa, Eca-109 and PANC-1, were evaluated using MTT assay. As expected, favorable cytotoxic activity was observed on majority of the mono-substituted derivatives. Especially, the most potent brefeldin A 4-O-(4)-dimethylaminocinnamate (CHNQD-01269, 33) with improved aqueous solubility, demonstrated the strong cytotoxic activity against HepG2 and BEL-7402 cell lines with IC50 values of 0.29 and 0.84 μM, respectively. More importantly, 33 performed low toxicity on normal liver cell line L-02 with the selectivity index (SI) of 9.69, which was more than 17-fold higher than that of 1. Results from mechanistic studies represented that 33 blocked the cell cycle in the G1 phase, and induced apoptosis via elevating reactive oxygen species (ROS) production and increasing expression of apoptosis-related proteins of HepG2 cells. Docking experiment also suggested 33 a promising Arf1 inhibitor, which was confirmed by the cellular thermal shift assay that 33 displayed a significant effect on the stability of Arf1 protein. Furthermore, 33 possessed high safety profile (MTD >100 mg/kg, ip) and favorable pharmacokinetic properties. Notably, the superior antiproliferative activity was verified in HepG2 tumor-bearing xenograft model in which 33 markedly suppressed the tumor growth (TGI = 46.17%) in nude mice at a dose of 10 mg/kg once a day for 16 d. The present study provided evidence of exploiting this series of highly efficacious derivatives, especially 33, for the treatment of HCC.
Collapse
|
14
|
Luo Y, Tan H, Yu T, Tian J, Shi H. A Novel Artificial Neural Network Prognostic Model Based on a Cancer-Associated Fibroblast Activation Score System in Hepatocellular Carcinoma. Front Immunol 2022; 13:927041. [PMID: 35874676 PMCID: PMC9304772 DOI: 10.3389/fimmu.2022.927041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionHepatocellular carcinoma (HCC) ranks fourth as the most common cause of cancer-related death. It is vital to identify the mechanism of progression and predict the prognosis for patients with HCC. Previous studies have found that cancer-associated fibroblasts (CAFs) promote tumor proliferation and immune exclusion. However, the information about CAF-related genes is still elusive.MethodsThe data were obtained from The Cancer Genome Atlas, International Cancer Genome Consortium, and Gene Expression Omnibus databases. On the basis of single-cell transcriptome and ligand–receptor interaction analysis, CAF-related genes were selected. By performing Cox regression and random forest, we filtered 12 CAF-related prognostic genes for the construction of the ANN model based on the CAF activation score (CAS). Then, functional, immune, mutational, and clinical analyses were performed.ResultsWe constructed a novel ANN prognostic model based on 12 CAF-related prognostic genes. Cancer-related pathways were enriched, and higher activated cell crosstalk was identified in high-CAS samples. High immune activity was observed in high-CAS samples. We detected three differentially mutated genes (NBEA, RYR2, and FRAS1) between high- and low-CAS samples. In clinical analyses, we constructed a nomogram to predict the prognosis of patients with HCC. 5-Fluorouracil had higher sensitivity in high-CAS samples than in low-CAS samples. Moreover, some small-molecule drugs and the immune response were predicted.ConclusionWe constructed a novel ANN model based on CAF-related genes. We revealed information about the ANN model through functional, mutational, immune, and clinical analyses.
Collapse
Affiliation(s)
- Yiqiao Luo
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huaicheng Tan
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, West China Hospital, Chengdu, China
| | - Ting Yu
- Department of Pathology, State Key Laboratory of Biotherapy, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiangfang Tian
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huashan Shi
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Huashan Shi,
| |
Collapse
|
15
|
Yan D, Zhang H, Xu X, Ren C, Han C, Li Z. Theranostic nanosystem with supramolecular self-assembly for enhanced reactive oxygen species-mediated apoptosis guided by dual-modality tumor imaging. Pharmacol Res 2022; 180:106241. [DOI: 10.1016/j.phrs.2022.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
16
|
Liao JX, Huang QF, Li YH, Zhang DW, Wang GH. Chitosan derivatives functionalized dual ROS-responsive nanocarriers to enhance synergistic oxidation-chemotherapy. Carbohydr Polym 2022; 282:119087. [PMID: 35123755 DOI: 10.1016/j.carbpol.2021.119087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023]
Abstract
The efficient triggering of prodrug release has become a challengeable task for stimuli-responsive nanomedicine utilized in cancer therapy due to the subtle differences between normal and tumor tissues and heterogeneity. In this work, a dual ROS-responsive nanocarriers with the ability to self-regulate the ROS level was constructed, which could gradually respond to the endogenous ROS to achieve effective, hierarchical and specific drug release in cancer cells. In brief, DOX was conjugated with MSNs via thioketal bonds and loaded with β-Lapachone. TPP modified chitosan was then coated to fabricate nanocarriers for mitochondria-specific delivery. The resultant nanocarriers respond to the endogenous ROS and release Lap specifically in cancer cells. Subsequently, the released Lap self-regulated the ROS level, resulting in the specific DOX release and mitochondrial damage in situ, enhancing synergistic oxidation-chemotherapy. The tumor inhibition Ratio was achieved to 78.49%. The multi-functional platform provides a novel remote drug delivery system in vivo.
Collapse
Affiliation(s)
- Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qun-Fa Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Hong Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Da-Wei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Guan-Hai Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
17
|
Semisynthesis and biological evaluation of (+)-sclerotiorin derivatives as antitumor agents for the treatment of hepatocellular carcinoma. Eur J Med Chem 2022; 232:114166. [DOI: 10.1016/j.ejmech.2022.114166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 11/22/2022]
|
18
|
Lu XX, Jiang YY, Wu YW, Chen GY, Shao CL, Gu YC, Liu M, Wei MY. Semi-Synthesis, Cytotoxic Evaluation, and Structure-Activity Relationships of Brefeldin A Derivatives with Antileukemia Activity. Mar Drugs 2021; 20:26. [PMID: 35049881 PMCID: PMC8777696 DOI: 10.3390/md20010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Brefeldin A (1), a potent cytotoxic natural macrolactone, was produced by the marine fungus Penicillium sp. (HS-N-29) from the medicinal mangrove Acanthus ilicifolius. Series of its ester derivatives 2-16 were designed and semi-synthesized, and their structures were characterized by spectroscopic methods. Their cytotoxic activities were evaluated against human chronic myelogenous leukemia K562 cell line in vitro, and the preliminary structure-activity relationships revealed that the hydroxy group played an important role. Moreover, the monoester derivatives exhibited stronger cytotoxic activity than the diester derivatives. Among them, brefeldin A 7-O-2-chloro-4,5-difluorobenzoate (7) exhibited the strongest inhibitory effect on the proliferation of K562 cells with an IC50 value of 0.84 µM. Further evaluations indicated that 7 induced cell cycle arrest, stimulated cell apoptosis, inhibited phosphorylation of BCR-ABL, and thereby inactivated its downstream AKT signaling pathway. The expression of downstream signaling molecules in the AKT pathway, including mTOR and p70S6K, was also attenuated after 7-treatment in a dose-dependent manner. Furthermore, molecular modeling of 7 docked into 1 binding site of an ARF1-GDP-GEF complex represented well-tolerance. Taken together, 7 had the potential to be served as an effective antileukemia agent or lead compound for further exploration.
Collapse
Affiliation(s)
- Xu-Xiu Lu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yao-Yao Jiang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yan-Wei Wu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China;
| | - Chang-Lun Shao
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, UK;
| | - Ming Liu
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541001, China
| | - Mei-Yan Wei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (X.-X.L.); (Y.-Y.J.); (Y.-W.W.); (C.-L.S.)
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|