1
|
Li HX, He YM, Fei J, Guo M, Zeng C, Yan PJ, Xu Y, Qin G, Teng FY. The G-quadruplex ligand CX-5461: an innovative candidate for disease treatment. J Transl Med 2025; 23:457. [PMID: 40251554 PMCID: PMC12007140 DOI: 10.1186/s12967-025-06473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The ribosomal DNA (rDNA) plays a vital role in regulating protein synthesis by ribosome biogenesis, essential for maintaining cellular growth, metabolism, and more. Cancer cells show a high dependence on ribosome biogenesis and exhibit elevated rDNA transcriptional activity. CX-5461, also known as Pidnarulex, is a First-in-Class anticancer drug that has received 'Fast Track Designation' approval from the FDA. Initially reported to inhibit Pol I-driven rDNA transcription, CX-5461 was recently identified as a G-quadruplex structure (G4) stabilizer and is currently completed or undergoing multiple Phase I clinical trials in patients with breast and ovarian cancers harboring BRCA1/2, PALB2, or other DNA repair deficiencies. Additionally, preclinical studies have confirmed that CX-5461 demonstrates promising therapeutic effects against multifarious non-cancer diseases, including viral infections, and autoimmune diseases. This review summarizes the mechanisms of CX-5461, including its transcriptional inhibition of rDNA, binding to G4, and toxicity towards topoisomerase, along with its research status and therapeutic effects across various diseases. Lastly, this review highlights the targeted therapy strategy of CX-5461 based on nanomedicine delivery, particularly the drug delivery utilizing the nucleic acid aptamer AS1411, which contains a G4 motif to specifically target the highly expressed nucleolin on the surface of tumor cell membranes; It also anticipates the strategy of coupling CX-5461 with peptide nucleic acids and locked nucleic acids to achieve dual targeting, thereby realizing individualized G4-targeting by CX-5461. This review aims to provide a general overview of the progress of CX-5461 in recent years and suggest potential strategies for disease treatment involving ribosomal RNA synthesis, G4, and topoisomerase.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
| | - Yi-Meng He
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Fei
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pi-Jun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Fang-Yuan Teng
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Zhang M, Xu X, Su L, Zeng Y, Lin J, Li W, Zou Y, Li S, Lin B, Li Z, Chen H, Huang Y, Xu Q, Chen H, Cheng F, Dai D. Oral administration of Sophora Flavescens-derived exosomes-like nanovesicles carrying CX5461 ameliorates DSS-induced colitis in mice. J Nanobiotechnology 2024; 22:607. [PMID: 39379937 PMCID: PMC11463058 DOI: 10.1186/s12951-024-02856-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Ulcerative colitis (UC) belongs to chronic inflammatory disease with a relapsing characterization. Conventional oral drugs of UC are restricted in clinical by premature degradation in the gastrointestinal tract, modest efficacy, and adverse effects. CX5461 can treat autoimmune disease, immunological rejection, and vascular inflammation. However, low solubility, intravenous administration, and non-inflammatory targeting limited its clinical application. Herein, this work aims to develop Sophora Flavescens-derived exosomes-like nanovesicles carrying CX5461 (SFELNVs@CX5461) for efficient CX5461 oral delivery for UC therapy. We identified SFELNVs as nano-diameter (80 nm) with negative zeta potential (-32mV). Cellular uptake has shown that SFELNVs were targeted uptake by macrophages, thus increasing drug concentration. Additionally, oral SFELNVs@CX5461 exhibited good safety and stability, as well as inflammation-targeting ability in the gastrointestinal tract of dextran sodium sulfate (DSS)-induced colitis mice. In vivo, oral administration of SFELNVs and CX5461 could relieve mice colitis. More importantly, combined SFELNVs and CX5461 alleviated mice colitis by inhibiting pro-inflammatory factors (TNF-α, IL-1β, and IL-6) expression and promoting M2 macrophage polarization. Furthermore, SFELNVs promoted M2 polarization by miR4371c using miRNA sequencing. Our results suggest that SFELNVs@CX5461 represents a novel orally therapeutic drug that can ameliorate colitis, and a promising targeting strategy for safe UC therapy.
Collapse
Affiliation(s)
- Manqi Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Xichao Xu
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518052, China
| | - Liqian Su
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuqing Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Jingxiong Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Wenwen Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Yigui Zou
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Sicong Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Boxian Lin
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Ziyuan Li
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Hu Chen
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China
| | - Yuheng Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China
| | - Quanle Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongbo Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China.
| | - Fang Cheng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Gongchang Road, Shenzhen, Guangdong, 518107, China.
| | - Dongling Dai
- Endoscopy Center and Gastroenterology Department, Key Laboratory for Precision Diagnosis and Treatment of Pediatric Digestive System Diseases, Shenzhen Children's Hospital, Shenzhen, 518036, China.
| |
Collapse
|
3
|
Wu Y, Tsai HI, Zhu H, Zhang Y, Liu S, Guo P, Zhang Z, Zhang Z, Wen X, Wang D, Sun L. CX-5461 ameliorates disease in lupus-prone mice by triggering B-cell ferroptosis via p53-SLC7A11-ALOX12 pathway. Free Radic Biol Med 2024; 223:325-340. [PMID: 39111584 DOI: 10.1016/j.freeradbiomed.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024]
Abstract
CX-5461, a first-in-class compound, is widely recognized as a selective inhibitor of RNA polymerase I. Recently, it has been reported to possess novel immunosuppressive properties with significant therapeutic effects in transplantation immune rejection. However, the potential use of CX-5461 for Systemic Lupus Erythematosus (SLE) treatment remains unknown. In this study, we elucidated the mechanism underlying the therapeutic efficacy of CX-5461 in lupus. Our findings demonstrated that CX-5461 selectively targets B cells and effectively reduces the proportions of B cells, germinal center B cells, and plasma cells in MRL/MPJ-Faslpr and Resiquimod (R848)-induced lupus mice. Molecular studies revealed that CX-5461 modulates CD36-Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4)-mediated glycerolipid metabolism in B cells, triggering ferroptosis through the p53- Solute Carrier Family 7 Member 11 (SLC7A11)- Arachidonate 12-Lipoxygenase (ALOX12) pathway, thereby decreasing IgG and Anti-Double-Stranded Deoxyribonucleic Acid (dsDNA) antibody levels and attenuating lupus. Collectively, these results suggest that CX-5461 holds promise as an effective candidate for targeted therapy against lupus.
Collapse
Affiliation(s)
- Yingyi Wu
- Department of Rheumatology and Immunology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Hsiang-I Tsai
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Huiming Zhu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | - Shanshan Liu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Panpan Guo
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zining Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Zhengyang Zhang
- Institute of Medical Imaging and Artificial Intelligence, Jiangsu University, Zhenjiang, China
| | - Xin Wen
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Dandan Wang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China; Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Liu T, Pan G, Zhang J, Wang J, Guo X, Chen Y, Wang X, Cui X, Liu H, Jiang F. Molecular basis of CX-5461-induced DNA damage response in primary vascular smooth muscle cells. Heliyon 2024; 10:e37227. [PMID: 39296007 PMCID: PMC11407941 DOI: 10.1016/j.heliyon.2024.e37227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Our previous studies have shown that the novel selective RNA polymerase I inhibitor CX-5461 suppresses proliferation of vascular smooth muscle cells, mainly by inducing DNA damage response (DDR), including activations of ataxia telangiectasia mutated (ATM)/ATM and Rad3-related (ATR) and p53. Currently, there is no information about the molecular mechanism(s) underlying CX-5461-induced DDR in vascular cells, while the results obtained in cancer cells and immortalized cell lines are controversial. In this study, we examined the responses of various DDR pathways to CX-5461 treatment in primary aortic smooth muscle cells isolated from normal adult Sprague Dawley rats. We demonstrated that CX-5461-induced DDR was not associated with activations of the nucleotide excision repair, DNA mismatch repair, or the non-homologous end joining pathways, while the homologous recombination pathway was activated. However, the alkaline comet assay did not show massive DNA double strand breaks in CX-5461-treated cells. Instead, CX-5461-induced DDR appeared to be related to induction of DNA replication stress, which was not attributable to increased formation of G-quadruplex or R-loop structures, but might be explained by the increased replication-transcription conflict. CX-5461-induced DDR was not exclusively confined to rDNA within the nucleolar compartment; the extra-nucleolar DDR might represent a distinct secondary response related to the downregulated Rad51 expression in CX-5461-treated cells. In summary, we suggest that DNA replication stress may be the primary molecular event leading to downstream ATM/ATR and p53 activations in CX-5461-treated vascular smooth muscle cells. Our results provide further insights into the molecular basis of the beneficial effects of CX-5461 in proliferative vascular diseases.
Collapse
Affiliation(s)
- Tengfei Liu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
- Gerontology and Anti-Aging Research Laboratory, Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jianli Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaoyun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaopei Cui
- Gerontology and Anti-Aging Research Laboratory, Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Gerontology and Anti-Aging Research Laboratory, Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
5
|
Pan G, Cui B, Han M, Lin L, Li Y, Wang L, Guo S, Yin Y, Zhan H, Li P. Puerarin inhibits NHE1 activity by interfering with the p38 pathway and attenuates mitochondrial damage induced by myocardial calcium overload in heart failure rats. Acta Biochim Biophys Sin (Shanghai) 2024; 56:270-279. [PMID: 38282474 PMCID: PMC10984851 DOI: 10.3724/abbs.2023269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 01/30/2024] Open
Abstract
Previous studies have shown that puerarin plays a key role in protecting humans and animals from cardiovascular diseases. The exact mechanism of the therapeutic effect of puerarin on various cardiovascular diseases (protective effect on cardiomyocytes) is still unclear. In the present study, we identify the role of puerarin in an animal model of experimental heart failure (HF) and explore its underlying mechanisms. The HF rat model is induced by intraperitoneal injection of adriamycin (ADR), and puerarin is administered intragastrically at low, medium, and high concentrations. We demonstrate that puerarin significantly improves myocardial fibrosis and inflammatory infiltration and, as a result, improves cardiac function in ADR-induced HF rats. Mechanistically, we find for the first time that puerarin inhibits overactivated Na +/H + exchange isoform 1 (NHE1) in HF, which may improve HF by decreasing Na + and Ca 2+ ion concentrations and attenuating mitochondrial damage caused by calcium overload; on the other hand, puerarin inhibits the activation of the p38 pathway in HF, reduces the expressions of TGF-β and proinflammatory cytokines, and suppresses myocardial fibrosis. In conclusion, our results suggest that Puerarin is an effective drug against HF and may play a protective role in the myocardium by inhibiting the activation of p38 and its downstream NHE1.
Collapse
Affiliation(s)
- Guopin Pan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Baoyue Cui
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Nanyang Second General HospitalNanyang473001China
| | - Mingming Han
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Laibiao Lin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Yinlan Li
- College of PharmacyHeilongjiang University of Chinese MedicineHarbin150040China
| | - Ling Wang
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Shuang Guo
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| | - Yaling Yin
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Heqin Zhan
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
| | - Peng Li
- Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and NeurobiologyHenan International Joint Laboratory of Cardiovascular Remodeling and Drug InterventionSchool of Basic Medical SciencesCollege of PharmacyXinxiang Medical UniversityXinxiang453003China
- Hubei Key Laboratory of Diabetes and AngiopathyHubei University of Science and TechnologyXianning437100China
| |
Collapse
|
6
|
Cui X, Li CG, Gao H, Cheng M, Jiang F. Boosting regulatory T cell-dependent immune tolerance by activation of p53. Int Immunopharmacol 2023; 125:111167. [PMID: 37931392 DOI: 10.1016/j.intimp.2023.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Regulatory T cells (Tregs) have critical roles in maintaining immune hemostasis and have important anti-inflammatory functions in diseases. Recently, we identified that CX-5461 (a selective RNA polymerase I inhibitor and p53 activator) acted as a potent immunosuppressive agent, which prevented allogeneic acute rejection in animal models via a molecular mechanism distinct from all those of conventional immunosuppressive drugs. Unexpectedly, we discovered that CX-5461 could promote Treg differentiation. In this review, we have summarized the evidence for a potential role of p53 in mediating Treg differentiation and its possible mechanisms, including regulation of FoxP3 transcription, regulation of the expression of PTEN (phosphatase and tensin homolog), as well as protein-protein interaction with the transcription factor STAT5 (signal transducer and activator of transcription 5). Evidence also suggests that pharmacological p53 activators may potentially be used to boost Treg-mediated immune tolerance. Based on these data, we argue that novel p53 activators such as CX-5461 may represent a distinct class of immunosuppressants that repress conventional T cell-mediated alloimmunity with concomitant boosting of Treg-dependent immune tolerance.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
7
|
Wu X, Yin Q, Wang J, Dai C, Wang J, Guo X, Jiang F. Novel RNA polymerase I inhibitor CX-5461 suppresses imiquimod-induced experimental psoriasis. Exp Dermatol 2023; 32:91-99. [PMID: 36168732 DOI: 10.1111/exd.14682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/31/2022] [Accepted: 09/25/2022] [Indexed: 01/06/2023]
Abstract
Clinical treatment of psoriasis remains challenging because of possible long-term drug toxicities and loss of therapeutic effects over time. CX-5461 is a novel selective inhibitor of RNA polymerase I. Our previous studies have shown that CX-5461 has potent anti-inflammatory effects. Here we investigated whether CX-5461 could inhibit the development of imiquimod-induced experimental psoriasis in mice. Adult male C57BL/6 mice were used, and psoriasis-like lesions were induced by topical imiquimod treatment. In vivo, we demonstrated that topical application of CX-5461 prevented the development of imiquimod-induced psoriasis, with decreases in keratinocyte proliferation, T-cell infiltration and pathological angiogenesis. CX-5461 also reversed existing skin inflammation induced imiquimod and retarded the development of 12-O-tetradecanoylphorbol-13-acetate-induced epidermal hyperplasia and inflammation. In vitro, CX-5461 induced cell cycle arrest in keratinocytes, inhibited expressions of interleukin-17, interleukin-23 receptor and retinoic acid receptor-related orphan receptor-γt in activated T cells, and reduced angiogenic functions of endothelial cells. In conclusion, CX-5461 exhibits therapeutic effects on experimental psoriasis in mice, likely via multiple mechanisms including anti-proliferative, anti-inflammatory and anti-angiogenic activities.
Collapse
Affiliation(s)
- Xiao Wu
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Qihui Yin
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jie Wang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaochao Dai
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jianli Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Jiang F, Li CG, Seto SW. Editorial: Drugging p53 for non-cancer diseases. Front Pharmacol 2022; 13:1101742. [DOI: 10.3389/fphar.2022.1101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
|
9
|
Wang J, Zheng Z, Cui X, Dai C, Li J, Zhang Q, Cheng M, Jiang F. A transcriptional program associated with cell cycle regulation predominates in the anti-inflammatory effects of CX-5461 in macrophage. Front Pharmacol 2022; 13:926317. [PMID: 36386132 PMCID: PMC9644203 DOI: 10.3389/fphar.2022.926317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/12/2022] [Indexed: 09/23/2023] Open
Abstract
CX-5461, a novel selective RNA polymerase I inhibitor, shows potential anti-inflammatory and immunosuppressive activities. However, the molecular mechanisms underlying the inhibitory effects of CX-5461 on macrophage-mediated inflammation remain to be clarified. In the present study, we attempted to identify the systemic biological processes which were modulated by CX-5461 in inflammatory macrophages. Primary peritoneal macrophages were isolated from normal Sprague Dawley rats, and primed with lipopolysaccharide or interferon-γ. Genome-wide RNA sequencing was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were used for gene functional annotations. Enrichment analysis was conducted using the ClusterProfiler package of R software. We found that CX-5461 principally induced a molecular signature related to cell cycle inhibition in primed macrophages, featuring downregulation of genes encoding cell cycle mediators and concomitant upregulation of cell cycle inhibitors. At the same concentration, however, CX-5461 did not induce a systemic anti-inflammatory transcriptional program, although some inflammatory genes such as IL-1β and gp91phox NADPH oxidase were downregulated by CX-5461. Our data further highlighted a central role of p53 in orchestrating the molecular networks that were responsive to CX-5461 treatment. In conclusion, our study suggested that limiting cell proliferation predominated in the inhibitory effects of CX-5461 on macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhijian Zheng
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Xiaopei Cui
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chaochao Dai
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiaxin Li
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research (Chinese Ministry of Education and Chinese National Health Commission), Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Mei Cheng
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Proteomics of Shandong Province and Department of Geriatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
10
|
Nucleolus and Nucleolar Stress: From Cell Fate Decision to Disease Development. Cells 2022; 11:cells11193017. [PMID: 36230979 PMCID: PMC9563748 DOI: 10.3390/cells11193017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022] Open
Abstract
Besides the canonical function in ribosome biogenesis, there have been significant recent advances towards the fascinating roles of the nucleolus in stress response, cell destiny decision and disease progression. Nucleolar stress, an emerging concept describing aberrant nucleolar structure and function as a result of impaired rRNA synthesis and ribosome biogenesis under stress conditions, has been linked to a variety of signaling transductions, including but not limited to Mdm2-p53, NF-κB and HIF-1α pathways. Studies have uncovered that nucleolus is a stress sensor and signaling hub when cells encounter various stress conditions, such as nutrient deprivation, DNA damage and oxidative and thermal stress. Consequently, nucleolar stress plays a pivotal role in the determination of cell fate, such as apoptosis, senescence, autophagy and differentiation, in response to stress-induced damage. Nucleolar homeostasis has been involved in the pathogenesis of various chronic diseases, particularly tumorigenesis, neurodegenerative diseases and metabolic disorders. Mechanistic insights have revealed the indispensable role of nucleolus-initiated signaling in the progression of these diseases. Accordingly, the intervention of nucleolar stress may pave the path for developing novel therapies against these diseases. In this review, we systemically summarize recent findings linking the nucleolus to stress responses, signaling transduction and cell-fate decision, set the spotlight on the mechanisms by which nucleolar stress drives disease progression, and highlight the merit of the intervening nucleolus in disease treatment.
Collapse
|