1
|
Zhou G, Gu Y, Zhang M, Ding J, Lu G, Hua K, Shen F. Identification of genetically engineered strategies to manipulate nano-platforms presenting immunotherapeutic ligands for alleviating primary ovarian insufficiency progression. Cell Commun Signal 2025; 23:246. [PMID: 40437612 PMCID: PMC12121283 DOI: 10.1186/s12964-025-02226-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 04/30/2025] [Indexed: 06/01/2025] Open
Abstract
Primary ovarian insufficiency (POI) is a pathological condition characterized by the early loss of functional ovarian follicles, leading to infertility and systemic consequences affecting reproductive, skeletal, cardiovascular, and neurocognitive helath. Aberrant immune activation, particularly an augmented T cell response in the ovary, plays a critical role in POI pathogenesis. In this context, therapeutic modulation of immune responses through immune checkpoint ligands has garnered interest. In the present study, we identified Lamp2b as an optimal scaffold for engineering extracellular vesicles (EVs). By genetically modifying HEK-293 T-derived EVs to present PD-L1 and Gal-9, enabling them to suppress ovarian autoreactive T lymphocytes and protect ovarian cells from immune-mediated destruction. Functionally, the bioengineered nanoplatform demonstrated potent immunosuppressive effects by promoting apoptosis of effector T cells, reducing intraovarian CD8⁺ T cell infiltration and reinstating serum anti-Müllerian hormone (AMH) levels in POI models. These combined actions effectively halted disease progression, ultimately preventing POI progression and preserving ovarian function.
Collapse
Affiliation(s)
- Guannan Zhou
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.
| | - Yuanyuan Gu
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Menglei Zhang
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China
| | - Jingxin Ding
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China
| | - Guanming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Key Laloratory of Molecular Pathology in Tumors of Guangxi, Baise, Guangxi, 533000, China
| | - Keqin Hua
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China
| | - Fang Shen
- Department of Gynecology, The Obstetrics and Gynecology Hospital of Fudan University, 419 Fang-Xie Road, Shanghai, 200011, People's Republic of China
| |
Collapse
|
2
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
3
|
Liu Y, Zhang K, Cai X, Zhou J, Cai Y, Gu Y, Xia T, Ye J. The role of IL‑17, IFN‑γ, 4‑1BBL and tumour‑infiltrating lymphocytes in the occurrence, development and prognosis of pancreatic cancer. Oncol Lett 2025; 29:88. [PMID: 39677412 PMCID: PMC11638937 DOI: 10.3892/ol.2024.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Immunotherapy has made progress in the treatment of tumours; however, in patients with pancreatic cancer, immunotherapy has not achieved effective results. The present study investigated changes in the immune microenvironment during tumour development and progression, and the relationship between the immune microenvironment and prognosis, to clarify the mechanism of immune escape in pancreatic cancer. A total of 40 patients with pancreatic cancer (including 22 with stage I-II disease and 18 with stage III-IV disease) and 20 patients with chronic pancreatitis were included in the present study. The expression of CD3, CD4, CD8, CD56, IFN-γ, IL-17 and 4-1BBL was assessed by immunohistochemistry, and the mRNA expression levels were detected by reverse transcription-quantitative PCR (RT-qPCR). The clinicopathological characteristics and prognoses of patients with pancreatic cancer were analysed to further explore the role of IL-17, IFN-γ, 4-1BBL and tumour-infiltrating lymphocytes in pancreatic cancer. Notably, the expression levels of CD3, CD8, CD56, IFN-γ and 4-1BBL in patients with stages I-II and III-IV cancer were lower than those in patients with chronic pancreatitis (P<0.05), especially in patients with stage III-IV cancer (P<0.05). In addition, the expression of IL-17 in patients with stages I-II and III-IV cancer was greater than in patients with chronic pancreatitis (P<0.05), especially in patients with stage III-IV cancer (P<0.05). The RT-qPCR results regarding CD3, CD4, CD8, CD56, IFN-γ and IL-17 were almost the same as those obtained from immunohistochemical analysis; however, the mRNA expression levels of 4-1BBL were not significantly different between stages I-II and III-IV. Furthermore, patients with pancreatic cancer with higher expression levels of CD3, CD8, CD56, IFN-γ and 4-1BBL exhibited longer survival, whereas those with higher expression of IL-17 had a shorter survival time. The expression levels of CD3, CD8, CD56, cytokines IL-17 and IFN-γ, and costimulatory molecule 4-1BBL were revealed to be related to the degree of differentiation, Tumour-Node-Metastasis staging and the prognosis of pancreatic cancer, and may serve as novel immunological indicators for evaluating the condition and treatment effectiveness in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Ke Zhang
- Department of Gastroenterology, Affiliated Changshu Hospital of Nantong University, Changshu, Jiangsu 215500, P.R. China
| | - Xiaodi Cai
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jikai Zhou
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yixuan Cai
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yujie Gu
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Tingting Xia
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianxin Ye
- Department of Gastroenterology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
4
|
Xiang Z, Ma L, Li Z, Fu Y, Pan Y. Cost-effectiveness analysis of first-line combination chemotherapy regimens for metastatic pancreatic cancer and evidence-based pricing strategy of liposomal irinotecan in China. Front Pharmacol 2024; 15:1488645. [PMID: 39759454 PMCID: PMC11695189 DOI: 10.3389/fphar.2024.1488645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Background The phase III NAPOLI-3 trial, which upgraded FOLFIRINOX (leucovorin, fluorouracil, irinotecan and oxaliplatin) to NALIRIFOX (liposomal irinotecan, oxaliplatin, leucovorin, and fluorouracil), demonstrated the superiority of NALIRIFOX over GEMNABP (gemcitabine and nab-paclitaxel) as the first-line treatment for metastatic pancreatic ductal adenocarcinoma. The purpose of this study was to assess the cost-effectiveness of NALIRIFOX, FOLFIRINOX, and GEMNABP, and to simulate the price of liposomal irinotecan at which NALIRIFOX could achieve cost-effectiveness. Methods A partitioned survival model was performed to evaluate the cost-effectiveness of NALIRIFOX, FOLFIRINOX and GEMNABP from the perspective of the Chinese healthcare system. Survival data was obtained from a recently published network meta-analysis (NMA). Drug prices were collected from the database of the Hunan Province Drug and Medical Consumables Procurement Management Subsystem. Other cost and utility values were sourced from established literature. Cumulative costs, LYs (life-years), quality-adjusted life years (QALYs), incremental cost-effectiveness ratios (ICERs), net monetary benefits (NMBs) and incremental net monetary benefits (INMBs) were the main outputs. Furthermore, the variations in ICER were analyzed as the price of liposomal irinotecan gradually decreased when comparing NALIRIFOX with FOLFIRINOX or GEMNABP. The robustness of the model was assessed by sensitivity analysis and scenario analysis. Results At the willingness-to-pay (WTP) threshold of $38,223.34, GEMNABP was the favored treatment. NALIRIFOX was associated with the highest LYs, QALYs, and cost. The cost-effectiveness of NALIRIFOX would be obtained if the price of liposomal irinotecan was less than $3.36/mg and $2.08/mg compared to FOLFIRINOX and GEMNABP, respectively, without considering the patient assistance program (PAP). Sensitivity analysis and scenario analysis revealed that the results of the model were stable. Conclusion From an economic standpoint, GEMNABP represents the favored choice in the prevailing market conditions among these three first-line combination chemotherapy regimens. The price simulation of liposomal irinotecan conducted in this study could provide valuable evidence for healthcare decision-making. Further evidence regarding the budget impact is still needed.
Collapse
Affiliation(s)
- Zuojuan Xiang
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Ling Ma
- Department of Clinical pharmacy, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zhengxiong Li
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Yingzhou Fu
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| | - Yong Pan
- Department of Pharmacy, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Cancer Hospital, Changsha, China
| |
Collapse
|
5
|
Vitale F, Zileri Dal Verme L, Paratore M, Negri M, Nista EC, Ainora ME, Esposto G, Mignini I, Borriello R, Galasso L, Alfieri S, Gasbarrini A, Zocco MA, Nicoletti A. The Past, Present, and Future of Biomarkers for the Early Diagnosis of Pancreatic Cancer. Biomedicines 2024; 12:2840. [PMID: 39767746 PMCID: PMC11673965 DOI: 10.3390/biomedicines12122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
Pancreatic cancer is one of the most aggressive cancers with a very poor 5-year survival rate and reduced therapeutic options when diagnosed in an advanced stage. The dismal prognosis of pancreatic cancer has guided significant efforts to discover novel biomarkers in order to anticipate diagnosis, increasing the population of patients who can benefit from curative surgical treatment. CA 19-9 is the reference biomarker that supports the diagnosis and guides the response to treatments. However, it has significant limitations, a low specificity, and is inefficient as a screening tool. Several potential biomarkers have been discovered in the serum, urine, feces, and pancreatic juice of patients. However, most of this evidence needs further validation in larger cohorts. The advent of advanced omics sciences and liquid biopsy techniques has further enhanced this field of research. The aim of this review is to analyze the historical evolution of the research on novel biomarkers for the early diagnosis of pancreatic cancer, focusing on the current evidence for the most promising biomarkers from different body fluids and the novel trends in research, such as omics sciences and liquid biopsy, in order to favor the application of modern personalized medicine.
Collapse
Affiliation(s)
- Federica Vitale
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Lorenzo Zileri Dal Verme
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Mattia Paratore
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Marcantonio Negri
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Enrico Celestino Nista
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Elena Ainora
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Giorgio Esposto
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Irene Mignini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Raffaele Borriello
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Linda Galasso
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Sergio Alfieri
- Centro Pancreas, Chirurgia Digestiva, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Maria Assunta Zocco
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| | - Alberto Nicoletti
- CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.V.); (L.Z.D.V.); (M.P.); (M.N.); (E.C.N.); (M.E.A.); (G.E.); (I.M.); (R.B.); (L.G.); (A.G.); (A.N.)
| |
Collapse
|
6
|
Zhang Y, Wu D, Zhou C, Bai M, Wan Y, Zheng Q, Fan Z, Wang X, Yang C. Engineered extracellular vesicles for tissue repair and regeneration. BURNS & TRAUMA 2024; 12:tkae062. [PMID: 39439545 PMCID: PMC11495891 DOI: 10.1093/burnst/tkae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/12/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are heterogeneous membrane-like vesicles secreted by living cells that are involved in many physiological and pathological processes and act as intermediaries of intercellular communication and molecular transfer. Recent studies have shown that EVs from specific sources regulate tissue repair and regeneration by delivering proteins, lipids, and nucleic acids to target cells as signaling molecules. Nanotechnology breakthroughs have facilitated the development and exploration of engineered EVs for tissue repair. Enhancements through gene editing, surface modification, and content modification have further improved their therapeutic efficacy. This review summarizes the potential of EVs in tissue repair and regeneration, their mechanisms of action, and their research progress in regenerative medicine. This review highlights their design logic through typical examples and explores the development prospects of EVs in tissue repair. The aim of this review is to provide new insights into the design of EVs for tissue repair and regeneration applications, thereby expanding their use in regenerative medicine.
Collapse
Affiliation(s)
- Yan Zhang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
- School of Public Health, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Dan Wu
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Chen Zhou
- Department of Laboratory Medicine, The Eighth Affiliated Hospital, Sun Yat-Sen University, No. 3025 Shennan Middle Road, Futian District, Shenzhen, China
| | - Muran Bai
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Yucheng Wan
- Hospital of Stomatology, Zunyi Medical University, No. 89, Wujiang East Road, Xinpu New District, Zunyi City, Guizhou Province, China
| | - Qing Zheng
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| | - Zhijin Fan
- Institute for Engineering Medicine, Kunming Medical University, No. 1168 Chunrong West Road, Yuhua Street, Chenggong District, Kunming City, Yunnan Province China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, No.81 Meishan Road, Shushan District, Hefei 230032, China
| | - Chun Yang
- College of Basic Medicin, Beihua University, No. 3999 Binjiang East Road, Fengman District, Jilin City, Jilin Province, China
| |
Collapse
|
7
|
Ni R, Hu Z, Tao R. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer. Biomed Pharmacother 2024; 179:117430. [PMID: 39260322 DOI: 10.1016/j.biopha.2024.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Targeting checkpoints for immune cell activation has been acknowledged known as one of the most effective way to activate anti-tumor immune responses. Among them, drugs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are approved for clinical treatment though several more are in advanced stages of development, which demonstrated durable response rates and manageable safety profile. However, its therapy efficacy is unsatisfactory in pancreatic cancer (PC), which can be limited by the overall condition of patients, the pathological type of PC, the expression level of tumor related genes, etc. To improve clinical efficiency, various researches have been conducted, and the efficacy of combination therapy showed significantly improvement compared to monotherapy. This review analyzed current strategies based on anti-CTLA-4 combination immunotherapy, providing totally new idea for future research.
Collapse
Affiliation(s)
- Ran Ni
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiming Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Ahmadi Jazi S, Tajik F, Rezagholizadeh F, Taha SR, Shariat Zadeh M, Bouzari B, Madjd Z. Higher Expression of Talin-1 is Associated With Less Aggressive Tumor Behavior in Pancreatic Cancer. Appl Immunohistochem Mol Morphol 2024; 32:425-435. [PMID: 39258796 DOI: 10.1097/pai.0000000000001220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Talin-1 is one of the major scaffold proteins in focal adhesions playing a vital role in cell migration, metastasis, and cancer progression. Although studies regarding the importance of Talin-1 in cancer have rapidly developed, its prognostic and diagnostic value still remain unsatisfying in pancreatic cancer (PC). Therefore, the present study aims to investigate the expression, clinical significance, as well as the prognostic and diagnostic value of Talin-1 in different types of PC. Bioinformatic analysis was applied to determine the clinical importance and biological role of Talin-1 expression in PC tumors and the normal adjacent samples. The expression patterns, clinical significance, prognosis, and diagnosis value of Talin-1 were evaluated in tissue microarrays (TMAs) of 190 PC samples including 170 pancreatic ductal adenocarcinoma (PDAC), and 20 pancreatic neuroendocrine tumors (PNET), along with 24 adjacent normal tissues using immunohistochemistry (IHC). The results indicated that the expression of Talin-1 was upregulated in tumor cells compared with adjacent normal tissues. A statistically significant association was observed between the higher cytoplasmic expression of Talin-1 and lower histologic grade ( P <0.001) in PDAC samples. Further, our findings indicated an inverse significant correlation between cytoplasmic expression of Talin-1 and recurrence ( P =0.014) in PNET samples. No significant association was observed between the cytoplasmic expression of Talin-1 and survival outcomes as well as diagnostic accuracy. In conclusion, our observations demonstrated that a higher cytoplasmic level of Talin-1 protein was significantly associated with less aggressive tumor behaviors in PC samples. Nevertheless, further investigations are required to explore the prognostic plus diagnostic value, and mechanism of action of Talin-1 in pancreatic cancer.
Collapse
Affiliation(s)
- Samira Ahmadi Jazi
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Surgery, University of California, Irvine Medical Center, Orange, CA
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Taha
- Oncopathology Research Center, Iran University of Medical Sciences
| | | | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
| | - Zahra Madjd
- Department of Pathology, School of Medicine, Iran University of Medical Sciences
- Oncopathology Research Center, Iran University of Medical Sciences
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ala M. Noncoding Ribonucleic Acids (RNAs) May Improve Response to Immunotherapy in Pancreatic Cancer. ACS Pharmacol Transl Sci 2024; 7:2557-2572. [PMID: 39296265 PMCID: PMC11406708 DOI: 10.1021/acsptsci.3c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh most common cause of cancer-related mortality. Despite different methods of treatment, nearly more than 90% of patients with PDAC die shortly after diagnosis. Contrary to promising results in other cancers, immune checkpoint inhibitors (ICIs) showed limited success in PDAC. Recent studies have shown that noncoding RNAs (ncRNAs) are extensively involved in PDAC cell-immune cell interaction and mediate immune evasion in this vicious cancer. PDAC cells recruit numerous ncRNAs to widely affect the phenotype and function of immune cells through various mechanisms. For instance, PDAC cells upregulate miR-301a and downregulate miR-340 to induce M2 polarization of macrophages or overexpress miR-203, miR-146a, and miR-212-3p to downregulate toll-like receptor 4 (TLR4), CD80, CD86, CD1a, major histocompatibility complex (MHC) II, and CD83, thereby evading recognition by dendritic cells. By downregulating miR-4299 and miR-153, PDAC cells can decrease the expression of NK group 2D (NKG2D) and MHC class I chain-related molecules A and B (MICA/B) to blunt the natural killer (NK) cell response. PDAC cells also highly express lncRNA AL137789.1, hsa_circ_0046523, lncRNA LINC00460, and miR-155-5p to upregulate immune checkpoint proteins and escape T cell cytotoxicity. On the other hand, ncRNAs derived from suppressive immune cells promote proliferation, invasion, and drug resistance in PDAC cells. ncRNAs can be applied to overcome resistance to ICIs, monitor the immune microenvironment of PDAC, and predict response to ICIs. This Review article comprehensively discusses recent findings regarding the roles of ncRNAs in the immune evasion of PDAC.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences (TUMS), Tehran 1416634793, Iran
| |
Collapse
|
10
|
Reese KL, Pantel K, Smit DJ. Multibiomarker panels in liquid biopsy for early detection of pancreatic cancer - a comprehensive review. J Exp Clin Cancer Res 2024; 43:250. [PMID: 39218911 PMCID: PMC11367781 DOI: 10.1186/s13046-024-03166-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is frequently detected in late stages, which leads to limited therapeutic options and a dismal overall survival rate. To date, no robust method for the detection of early-stage PDAC that can be used for targeted screening approaches is available. Liquid biopsy allows the minimally invasive collection of body fluids (typically peripheral blood) and the subsequent analysis of circulating tumor cells or tumor-associated molecules such as nucleic acids, proteins, or metabolites that may be useful for the early diagnosis of PDAC. Single biomarkers may lack sensitivity and/or specificity to reliably detect PDAC, while combinations of these circulating biomarkers in multimarker panels may improve the sensitivity and specificity of blood test-based diagnosis. In this narrative review, we present an overview of different liquid biopsy biomarkers for the early diagnosis of PDAC and discuss the validity of multimarker panels.
Collapse
Affiliation(s)
- Kim-Lea Reese
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany
| | - Klaus Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| | - Daniel J Smit
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg, 20246, Germany.
| |
Collapse
|
11
|
Guo W, Liu W, Wang J, Fan X. Extracellular vesicles and macrophages in tumor microenvironment: Impact on cervical cancer. Heliyon 2024; 10:e35063. [PMID: 39165926 PMCID: PMC11334669 DOI: 10.1016/j.heliyon.2024.e35063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Cervical cancer is a serious threat to women's health. Extracellular vesicles exist in most body fluids for communication between organisms, having different effects on the occurrence, development, angiogenesis, and metastasis of cervical cancer, and are expected to become new targets for treatment. Macrophages are natural immune systems closely linked to the development of cervical cancer. In recent years, an increasing number of studies have confirmed the role of extracellular vesicles and macrophages in the gynecologic tumor environment. This article reviews the mechanism of action and application prospects of extracellular vesicles and macrophages in the cervical cancer microenvironment. In addition, the relationship between extracellular vesicles and macrophages from different sources is described, which provides ideas for the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Wen Guo
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Wenqiong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Junqing Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Xinran Fan
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| |
Collapse
|
12
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
13
|
Fan Z, Wu S, Deng H, Li G, Huang L, Liu H. Light-Triggered Nanozymes Remodel the Tumor Hypoxic and Immunosuppressive Microenvironment for Ferroptosis-Enhanced Antitumor Immunity. ACS NANO 2024; 18:12261-12275. [PMID: 38683132 DOI: 10.1021/acsnano.4c00844] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Cancer immunotherapy holds significant promise for addressing diverse malignancies. Nevertheless, its efficacy remains constrained by the intricate tumor immunosuppressive microenvironment. Herein, a light-triggered nanozyme Fe-TCPP-R848-PEG (Fe-MOF-RP) was designed for remodeling the immunosuppressive microenvironment. The Fe-TCPP-MOFs were utilized not only as a core catalysis component against tumor destruction but also as a biocompatible delivery vector of an immunologic agonist, improving its long circulation and tumor enrichment. Concurrently, it catalyzes the decomposition of H2O2 within the tumor, yielding oxygen to augment photodynamic therapy. The induced ferroptosis, in synergy with photodynamic therapy, prompts the liberation of tumor-associated antigens from tumor cells inducing immunogenic cell death. Phototriggered on-demand release of R848 agonists stimulated the maturation of dendritic cells and reverted the tumor-promoting M2 phenotypes into adoptive M1 macrophages, which further reshaped the tumor immunosuppressive microenvironment. Notably, the nanozyme effectively restrains well-established tumors, such as B16F10 melanoma. Moreover, it demonstrates a distal tumor-inhibiting effect upon in situ light treatment. What is more, in a lung metastasis model, it elicits robust immune memory, conferring enduring protection against tumor rechallenge. Our study presents a straightforward and broadly applicable strategy for crafting nanozymes with the potential to effectively thwart cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Zhijin Fan
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sicheng Wu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Huaping Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guanlin Li
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Linghong Huang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
14
|
Piro A, Cufaro MC, Lanuti P, Brocco D, De Lellis L, Florio R, Pilato S, Pagotto S, De Fabritiis S, Vespa S, Catitti G, Verginelli F, Simeone P, Pieragostino D, Del Boccio P, Fontana A, Grassadonia A, Di Ianni M, Cama A, Veschi S. Exploring the Immunomodulatory Potential of Pancreatic Cancer-Derived Extracellular Vesicles through Proteomic and Functional Analyses. Cancers (Basel) 2024; 16:1795. [PMID: 38791876 PMCID: PMC11120044 DOI: 10.3390/cancers16101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic cancer (PC) has a poor prognosis and displays resistance to immunotherapy. A better understanding of tumor-derived extracellular vesicle (EV) effects on immune responses might contribute to improved immunotherapy. EVs derived from Capan-2 and BxPC-3 PC cells isolated by ultracentrifugation were characterized by atomic force microscopy, Western blot (WB), nanoparticle tracking analysis, and label-free proteomics. Fresh PBMCs from healthy donors were treated with PC- or control-derived heterologous EVs, followed by flow cytometry analysis of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated or untreated PBMCs was performed, and the IFN-γ concentration was measured by ELISA. Notably, most of the proteins identified in Capan-2 and BxPC-3 EVs by the proteomic analysis were connected in a single functional network (p = 1 × 10-16) and were involved in the "Immune System" (FDR: 1.10 × 10-24 and 3.69 × 10-19, respectively). Interestingly, the treatment of healthy donor-derived PBMCs with Capan-2 EVs but not with BxPC-3 EVs or heterologous control EVs induced early activation of CD8+ and CD4+ lymphocytes. The proteomics of lymphocytes sorted from EV-treated PBMCs was consistent with their activation by Capan-2 EVs, indicating IFN-γ among the major upstream regulators, as confirmed by ELISA. The proteomic and functional analyses indicate that PC-EVs have pleiotropic effects, and some may activate early immune responses, which might be relevant for the development of highly needed immunotherapeutic strategies in this immune-cold tumor.
Collapse
Affiliation(s)
- Anna Piro
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Maria Concetta Cufaro
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Lanuti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Davide Brocco
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura De Lellis
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Rosalba Florio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Serena Pilato
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- UdA–TechLab, Research Center, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Sara Pagotto
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone De Fabritiis
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Simone Vespa
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Catitti
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Fabio Verginelli
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Pasquale Simeone
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonella Fontana
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
- UdA–TechLab, Research Center, G. d’Annunzio University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Antonino Grassadonia
- Center for Advanced Studies and Technology (CAST), G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Odontoiatry, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mauro Di Ianni
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- Hematology Unit, Department of Oncology and Hematology, Santo Spirito Hospital, 65124 Pescara, Italy
| | - Alessandro Cama
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| | - Serena Veschi
- Department of Pharmacy, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.)
| |
Collapse
|
15
|
Li C, Wang L, Zhang K, Wang Z, Li Z, Li Z, Chen L. Overcoming neutrophil-induced immunosuppression in postoperative cancer therapy: Combined sialic acid-modified liposomes with scaffold-based vaccines. Asian J Pharm Sci 2024; 19:100906. [PMID: 38595333 PMCID: PMC11002593 DOI: 10.1016/j.ajps.2024.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 04/11/2024] Open
Abstract
Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor regeneration and limit the efficacy of cancer vaccines. Consequently, addressing postoperative immunosuppression caused by neutrophils is crucial for improving treatment outcomes. This study presents a combined chemoimmunotherapeutic strategy that employs a biocompatible macroporous scaffold-based cancer vaccine (S-CV) and a sialic acid (SA)-modified, doxorubicin (DOX)-loaded liposomal platform (DOX@SAL). The S-CV contains whole tumor lysates as antigens and imiquimod (R837, Toll-like receptor 7 activator)-loaded PLGA nanoparticles as immune adjuvants for cancer, which enhance dendritic cell activation and cytotoxic T cell proliferation upon localized implantation. When administered intravenously, DOX@SAL specifically targets and delivers drugs to activated neutrophils in vivo, mitigating neutrophil infiltration and suppressing postoperative inflammatory responses. In vivo and vitro experiments have demonstrated that S-CV plus DOX@SAL, a combined chemo-immunotherapeutic strategy, has a remarkable potential to inhibit postoperative local tumor recurrence and distant tumor progression, with minimal systemic toxicity, providing a new concept for postoperative treatment of tumors.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
16
|
Fan Z, Jiang X, Sun T, Zeng F, Huang G, Liang C, Nie L. In vivo visualization of tumor-associated macrophages re-education by photoacoustic/fluorescence dual-modal imaging with a metal-organic frames-based caspase-1 nanoreporter. J Colloid Interface Sci 2024; 659:48-59. [PMID: 38157726 DOI: 10.1016/j.jcis.2023.12.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Tumor-associated macrophages (TAMs) are vital in the tumor microenvironment, contributing to immunosuppression and therapy tolerance. Despite their importance, the precise re-education of TAMs in vivo continues to present a formidable challenge. Moreover, the lack of real-time and efficient methods to comprehend the spatiotemporal kinetics of TAMs repolarization remains a significant hurdle, severely hampering the accurate assessment of treatment efficacy and prognosis. Herein, we designed a metal-organic frameworks (MOFs) based Caspase-1 nanoreporter (MCNR) that can deliver a TLR7/8 agonist to the TAMs and track time-sensitive Caspase-1 activity as a direct method to monitor the initiation of immune reprogramming. This nanosystem exhibits excellent TAMs targeting ability, enhanced tumor accumulation, and stimuli-responsive behavior. By inducing the reprogramming of TAMs, they were able to enhance T-cell infiltration in tumor tissue, resulting in inhibited tumor growth and improved survival in mice model. Moreover, MCNR also serves as an activatable photoacoustic and fluorescent dual-mode imaging agent through Caspase-1-mediated specific enzyme digestion. This feature enables non-invasive and real-time antitumor immune activation monitoring. Overall, our findings indicate that MCNR has the potential to be a valuable tool for tumor immune microenvironment remodeling and noninvasive quantitative detection and real-time monitoring of TAMs repolarization to immunotherapy in the early stage.
Collapse
Affiliation(s)
- Zhijin Fan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xiaoxiao Jiang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fanchu Zeng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Guojia Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Changhong Liang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
17
|
Trifylli EM, Kriebardis AG, Koustas E, Papadopoulos N, Fortis SP, Tzounakas VL, Anastasiadi AT, Sarantis P, Vasileiadi S, Tsagarakis A, Aloizos G, Manolakopoulos S, Deutsch M. A Current Synopsis of the Emerging Role of Extracellular Vesicles and Micro-RNAs in Pancreatic Cancer: A Forward-Looking Plan for Diagnosis and Treatment. Int J Mol Sci 2024; 25:3406. [PMID: 38542378 PMCID: PMC10969997 DOI: 10.3390/ijms25063406] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 12/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies worldwide, while it persists as the fourth most prevalent cause of cancer-related death in the United States of America. Although there are several novel therapeutic strategies for the approach of this intensely aggressive tumor, it remains a clinical challenge, as it is hard to identify in early stages, due to its asymptomatic course. A diagnosis is usually established when the disease is already in its late stages, while its chemoresistance constitutes an obstacle to the optimal management of this malignancy. The discovery of novel diagnostic and therapeutic tools is considered a necessity for this tumor, due to its low survival rates and treatment failures. One of the most extensively investigated potential diagnostic and therapeutic modalities is extracellular vesicles (EVs). These vesicles constitute nanosized double-lipid membraned particles that are characterized by a high heterogeneity that emerges from their distinct biogenesis route, their multi-variable sizes, and the particular cargoes that are embedded into these particles. Their pivotal role in cell-to-cell communication via their cargo and their implication in the pathophysiology of several diseases, including pancreatic cancer, opens new horizons in the management of this malignancy. Meanwhile, the interplay between pancreatic carcinogenesis and short non-coding RNA molecules (micro-RNAs or miRs) is in the spotlight of current studies, as they can have either a role as tumor suppressors or promoters. The deregulation of both of the aforementioned molecules leads to several aberrations in the function of pancreatic cells, leading to carcinogenesis. In this review, we will explore the role of extracellular vesicles and miRNAs in pancreatic cancer, as well as their potent utilization as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Eleni Myrto Trifylli
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Evangelos Koustas
- Oncology Department, General Hospital Evangelismos, 10676 Athens, Greece;
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Military Hospital, 11527 Athens, Greece;
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, Section of Medical Laboratories, School of Health & Caring Sciences, University of West Attica (UniWA), Ag. Spyridonos Str., 12243 Egaleo, Greece; (E.M.T.); (S.P.F.)
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Alkmini T. Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece; (A.T.A.); (V.L.T.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sofia Vasileiadi
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Ariadne Tsagarakis
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece;
| | - Spilios Manolakopoulos
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| | - Melanie Deutsch
- GI-Liver Unit, 2nd Department of Internal Medicine National and Kapodistrian University of Athens, General Hospital of Athens “Hippocratio”, 114 Vas Sofias, 11527 Athens, Greece; (S.V.); (S.M.); (M.D.)
| |
Collapse
|
18
|
Song N, Cui K, Zeng L, Li M, Fan Y, Shi P, Wang Z, Su W, Wang H. Advance in the role of chemokines/chemokine receptors in carcinogenesis: Focus on pancreatic cancer. Eur J Pharmacol 2024; 967:176357. [PMID: 38309677 DOI: 10.1016/j.ejphar.2024.176357] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
The chemokines/chemokine receptors pathway significantly influences cell migration, particularly in recruiting immune cells to the tumor microenvironment (TME), impacting tumor progression and treatment outcomes. Emerging research emphasizes the involvement of chemokines in drug resistance across various tumor therapies, including immunotherapy, chemotherapy, and targeted therapy. This review focuses on the role of chemokines/chemokine receptors in pancreatic cancer (PC) development, highlighting their impact on TME remodeling, immunotherapy, and relevant signaling pathways. The unique immunosuppressive microenvironment formed by the interaction of tumor cells, stromal cells and immune cells plays an important role in the tumor proliferation, invasion, migration and therapeutic resistance. Chemokines/chemokine receptors, such as chemokine ligand (CCL) 2, CCL3, CCL5, CCL20, CCL21, C-X-C motif chemokine ligand (CXCL) 1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL8, CXCL9, CXCL10, CXCL11, CXCL12, CXCL13, CXCL14, CXCL16, CXCL17, and C-X3-C motif chemokine ligand (CX3CL)1, derived mainly from leukocyte cells, cancer-related fibroblasts (CAFs), pancreatic stellate cells (PSCs), and tumor-associated macrophages (TAMs), contribute to PC progression and treatment resistance. Chemokines recruit myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and M2 macrophages, inhibiting the anti-tumor activity of immune cells. Simultaneously, they enhance pathways like epithelial-mesenchymal transition (EMT), Akt serine/threonine kinase (AKT), extracellular regulated protein kinases (ERK) 1/2, and nuclear factor kappa-B (NF-κB), etc., elevating the risk of PC metastasis and compromising the efficacy of radiotherapy, chemotherapy, and anti-PD-1/PD-L1 immunotherapy. Notably, the CCLx-CCR2 and CXCLx-CXCR2/4 axis emerge as potential therapeutic targets in PC. This review integrates recent findings on chemokines and receptors in PC treatment, offering valuable insights for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Mengxiao Li
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, China; Department of Pathology, Xinxiang Medical University, Xinxiang, 453000, China.
| |
Collapse
|
19
|
Lin Q, Wang Y, Wang L, Fan Z. Engineered macrophage-derived cellular vesicles for NIR-II fluorescence imaging-guided precise cancer photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 235:113770. [PMID: 38330689 DOI: 10.1016/j.colsurfb.2024.113770] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Significant progress has been made in cancer immunotherapy; however, challenges such as interpatient variability, limited treatment response, and severe side effects persist. Although nanoimmunotherapy has emerged as a promising approach, the construction of precise and efficient nanosystems remain formidable challenges. Herein, a multifunctional nanoplatform was developed using macrophage-derived cellular vesicles (MCVs) for NIR-II imaging-guided precise cancer photo-immunotherapy. MCVs exhibited excellent tumor targeting and TAMs re-education effects, serving as both delivery carriers and therapeutic agents. Through amide bond, indocyanine green (ICG) was conjugated to the surface of MCVs, enabling in vivo tracking of MCVs distribution. Notably, ICG exhibited dual functionality as a NIR-II fluorescent agent and possessed photodynamic and photothermal effects, enabling the conversion of light energy into chemical or heat energy to eliminate tumor cells. This precision phototherapy triggered immunogenic cell death (ICD) of tumor, thereby activating the anti-tumor immune response. Additionally, MCVs loaded with R848, a toll-like receptor agonist, augmented the ICD-induced anti-tumor immunity. Animal experiments confirmed that MCVs-mediated photoimmunotherapy promoted T cell infiltration, inhibited tumor growth, and improved survival rates. In conclusion, we have developed a promising precision immunotherapy strategy capable of enhancing the immune response while mitigating off-target effects. These findings offer encouraging prospects for clinical translation.
Collapse
Affiliation(s)
- Quanshi Lin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China.
| | - Linlin Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
20
|
Su X, Qu Y, Mu D. Methyltransferase-like 3 modifications of RNAs: Implications for the pathology in the endocrine system. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167010. [PMID: 38176459 DOI: 10.1016/j.bbadis.2023.167010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Methyltransferase-like 3 (METTL3) is the most well-known element of N6-methyladenosine modification on RNAs. METTL3 deposits a methyl group onto target RNAs to modify their expression, ultimately regulating various physiological and pathological events. Numerous studies have suggested the significant role of METTL3 in endocrine dysfunction and related disorders. However, reviews that summarize and interpret these studies are lacking. In this review, we systematically analyze such studies, including obesity, type 2 diabetes mellitus (T2DM), T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. This review indicates that METTL3 contributes remarkably to the endocrine dysfunction and progression of obesity, T2DM, T2DM-induced diseases, pancreatic cancer, and thyroid carcinoma. In conclusion, this review provides a comprehensive interpretation of the mechanism via which METTL3 functions on RNAs and regulates various endocrine dysfunction events and suggest potential associated correlations. Our review, thus, provides a valuable reference for further fundamental studies and clinical applications.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Li J, Xiong J, Wei L, Zhang M, Yi J, Liu L. Identification of neutrophil-related genes and development of a prognostic model for cholangiocarcinoma. J Gene Med 2024; 26:e3569. [PMID: 37533324 DOI: 10.1002/jgm.3569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is a prevalent gastrointestinal tumor with limited effective early diagnostic methods. The role of neutrophils in the context of cholangiocarcinoma remains largely unexplored. METHODS A comprehensive analysis was performed on a cohort of cholangiocarcinoma samples (TCGA-CHOL) from the TCGA database to investigate the relationship between cholangiocarcinoma and neutrophils. Methodologies included single-sample gene set enrichment analysis (ssGSEA), differential expression analysis, weighted gene co-expression network analysis (WGCNA) and gene set enrichment analysis (GSEA). RESULTS The study identified a significant decrease of neutrophils in cholangiocarcinoma via ssGSEA. WGCNA and differential expression analysis led to the identification of a neutrophil-related gene module comprised of 1059 genes. Cluster 1, showing a higher proportion of neutrophils, was linked to better survival outcomes. GSEA disclosed downregulation of complement, inflammatory response and interferon response pathways in Cluster 2, hinting at possible cholangiocarcinoma development triggers. A notable upregulation of PD1, PD-L1 and CTLA4 was observed in Cluster 1, suggesting potential benefits from immunotherapy. A prognostic model was developed based on clinical data and expression levels of three prognostic genes (SOWAHD, TNFAIP8 and EBF3) showing satisfactory discrimination, calibration and clinical benefits. An overexpression of TNFAIP8 in cholangiocarcinoma cells was found, with its knockdown significantly inhibiting cell proliferation and migration. CONCLUSIONS This study elucidates a neutrophil-related gene module and prognostic genes, offering insights into the role of neutrophils in cholangiocarcinoma development and progression. It also introduces a clinical prediction model for enhanced prognosis assessment. These findings may lay the groundwork for the development of innovative therapeutic strategies in cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Jianfeng Li
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianhui Xiong
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Wei
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengyang Zhang
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Yi
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Longzi Liu
- Department of Digestive Surgery, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Chen X, Ren C, Zhou Z, Chen J, Fan X, Li X, Chen J, Zhu J. Development of an ubiquitin-proteasome system signature for predicting prognosis and providing therapeutic guidance for patients with triple-negative breast cancer. J Gene Med 2024; 26:e3584. [PMID: 37605934 DOI: 10.1002/jgm.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a pathological subtype with a high mortality, and the development of inhibitors in the ubiquitin-proteasome system (UPS) component could be a novel therapeutic tool. METHODS Triple-negative breast cancer data were obtained from The Cancer Genome Atlas (TCGA), and subtype analysis was performed by consistent clustering analysis to identify molecular subtypes of TNBC according to UPS characteristics. Differential analysis, COX and least absolute shrinkage and selection operator (LASSO) COX regression analyses were performed to select genes associated with overall survival in TNBC. The final prognostic model (UPS score) was determined using the LASSO COX model. The model performance was assessed using receiver operating characteristic (ROC) curves and survival curves. In addition, the results of the UPS score on analyzing the abundance of immune cell infiltration and immunotherapy were explored. Finally, we developed a nomogram for TNBC survival prediction. RESULTS Two UPS subtypes (UPSMS1 and UPSMS2) showing significant survival differences were classified. COX regression analysis on differentially expressed genes in UPSMS1 and UPSMS2 filtered five genes that affected overall survival. Based on the regression coefficients and expression data of the five genes, we built a prognostic assessment system (UPS score). The UPS score showed consistent prognostic and therapeutic guidance values. Finally, the ROC curve of the nomogram and UPS score showed the highest predictive efficacy compared with traditional clinical prognostic indicators. CONCLUSION The UPS score represented a promising prognostic tool to predict overall survival and immune status and guide personalized treatment selection in TNBC patients, and this study may provide a more practical alternative for clinical monitoring and management of TNBC.
Collapse
Affiliation(s)
- Xiaoqing Chen
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Chongyang Ren
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhisheng Zhou
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jiewen Chen
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xulong Fan
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiangzhi Li
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jintao Chen
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Jing Zhu
- Department of Breast Medicine, Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
23
|
Gong L, Tian L, Cui K, Chen Y, Liu B, Li D, Feng Y, Yao S, Yin Y, Wu Z, Huang Z. An off-the-shelf small extracellular vesicle nanomedicine for tumor targeting therapy. J Control Release 2023; 364:672-686. [PMID: 37967724 DOI: 10.1016/j.jconrel.2023.11.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Small extracellular vesicles (sEVs) have shown excellent prospects as drug delivery systems for cancer therapy. However, the inherent non-targeting and short blood circulation characteristics severely restrict their practical applications as a delivery system. In addition, post-encapsulating drugs into sEVs also remains challenging. Here, we constructed an engineered cell line that secreted multifunctional sEVs (termed NBsEV204) with 7D12 (an anti-EGFR nanobody) and hCD47 decorations on their surface, as well as high levels of miR-204-5p encapsulation. NBsEV204 exhibited extended blood circulation and improved macrophage-mediated phagocytosis of tumor cells by blocking CD47 signaling. Importantly, NBsEV204 specifically targeted EGFR+ tumor cells and showed robust tumor-suppressive effects both in vitro and in vivo. Overall, this study provides a convenient and feasible method to produce off-the-shelf anticancer sEV nanomedicine, which exhibits tremendous potential for clinical translation.
Collapse
Affiliation(s)
- Liang Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Lu Tian
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Ying Chen
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Yuyang Feng
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122 Wuxi, People's Republic of China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, People's Republic of China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, 214122 Wuxi, People's Republic of China.
| |
Collapse
|
24
|
Xu M, Li S. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett 2023; 574:216397. [PMID: 37730105 DOI: 10.1016/j.canlet.2023.216397] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Melanoma, the most aggressive form of cutaneous malignancy arising from melanocytes, is frequently characterized by metastasis. Despite considerable progress in melanoma therapies, patients with advanced-stage disease often have a poor prognosis due to the limited efficacy, off-target effects, and toxicity associated with conventional drugs. Nanotechnology has emerged as a promising approach to address these challenges with nanoparticles capable of delivering therapeutic agents specifically to the tumor microenvironment (TME). However, the clinical approval of nanomedicines for melanoma treatment remains limited, necessitating further research to develop nanoparticles with improved biocompatibility and precise targeting capabilities. This comprehensive review provides an overview of the current research on nano-drug delivery systems for melanoma treatment, focusing on liposomes, polymeric nanoparticles, and inorganic nanoparticles. It discusses the potential of these nanoparticles for targeted drug delivery, as well as their ability to enhance the efficacy of conventional drugs while minimizing toxicity. Furthermore, this review emphasizes the significance of interdisciplinary collaboration between researchers from various fields to advance the development of nanomedicines. Overall, this review serves as a valuable resource for researchers and clinicians interested in the potential of nano-drug delivery systems for melanoma treatment and offers insights into future directions for research in this field.
Collapse
Affiliation(s)
- Mengdan Xu
- Department of Hematology and Breast Cancer, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, China.
| |
Collapse
|
25
|
Song L, Jiang F, Tian Y, Cao X, Zhu M, Zhang J, Wang X, Deng L. Integrated transcriptome, proteome and single-cell sequencing uncover the prognostic and immunological features of colony-stimulating factor 3 receptor in pan-cancer. J Gene Med 2023; 25:e3508. [PMID: 36998239 DOI: 10.1002/jgm.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Colony-stimulating factor 3 receptor (CSF3R) has been demonstrated to be associated with various hematological tumors, especially chronic neutrophilic leukemia; however, the detailed roles of CSF3R in other cancers remain to be explored. METHODS In the present study, we systematically analyzed the expression profiles of CSF3R in pan-cancer by comprehensive bioinformatics databases, such as Tumor Immune Estimation Resource, version 2 (TIMER2.0), Gene Expression Profiling Interactive Analysis, version 2 (GEPIA2.0), etc. GEPIA2.0 was also used to analyze the relationship between CSF3R expression and patients' survival prognosis. RESULTS We found that the high expression of CSF3R was associated with a poor prognosis in the brain tumor patients, such as brain lower grade glioma and glioblastoma multiforme. In addition, we further investigated the genetic mutation and DNA methylation level of CSF3R in multiple cancers. Immune infiltration analysis showed that CSF3R expression was positively correlated with a variety of tumor-infiltrating immune cells in most cancers. Single cell sequencing indicated that CSF3R levels were correlated with several cancer-associated pathways, such as DNA damage, cell invasion, and stemness. CONCLUSIONS Taken together, the role of CSF3R in multiple cancers might reveal its potential as a novel prognostic biomarker and therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Liying Song
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feng Jiang
- Department of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Department of Pathology, Xiangya Changde Hospital, Changde, Hunan, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Yu Tian
- Department of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xiaolan Cao
- Department of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Minxia Zhu
- Department of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Jie Zhang
- Department of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Xiaoping Wang
- Department of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
- Key Laboratory of High Altitude Hypoxia Environment and Life Health, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi, China
| | - Langmei Deng
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Jiang C, Liu H, Liao Y, Jiang Y. New insights of engineered extracellular vesicles as promising therapeutic systems. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:191-194. [PMID: 39697986 PMCID: PMC11648464 DOI: 10.20517/evcna.2023.22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural biological particles that carry and deliver molecular fingerprints from parental cells to receptor cells, where they take effect. EVs are widely recognized for their role as intercellular communication mediators and high correlation with disease evolution, making them a valuable target in many aspects, especially biomarker profiling and therapeutics. In the past decade, scientists from various disciplines, including biology, physics, chemistry, materials science, electrical engineering, and mechanical engineering, have jointly devoted efforts to advance the study of EVs from fundamental molecular mechanisms to EV-based translational medicine, covering EV marker-based diagnostics and EV-based drug delivery. Diverse interfacial engineering strategies have been developed to facilitate in vitro and in vivo studies of EVs. This special issue, titled "Interfacial Engineering Strategies for EV in vitro and in vivo Studies", focuses on understanding the engineering logic and design rules of EVs in biomedical fields, highlighting their therapeutic potential in combating many diseases. This will provide new insights into the construction of promising diagnostic and therapeutic systems.
Collapse
Affiliation(s)
- Cheng Jiang
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, Guangdong, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518036, Guangdong, China
| | - Hongxing Liu
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, Guangdong, China
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanyan Jiang
- School of Materials Science and Engineering, Shandong University, Jinan 250061, Shandong, China
| |
Collapse
|
27
|
Zhang Y, Liu C, Wu C, Song L. Natural peptides for immunological regulation in cancer therapy: Mechanism, facts and perspectives. Biomed Pharmacother 2023; 159:114257. [PMID: 36689836 DOI: 10.1016/j.biopha.2023.114257] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Cancer incidence and mortality rates are increasing annually. Treatment with surgery, chemotherapy and radiation therapy (RT) is unsatisfactory because many patients have advanced disease at the initial diagnosis. However, the emergence of immunotherapy promises to be an effective strategy to improve the outcome of advanced tumors. Immune checkpoint antibodies, which are at the forefront of immunotherapy, have had significant success but still leave some cancer patients without benefit. For more cancer patients to benefit from immunotherapy, it is necessary to find new drugs and combination therapeutic strategies to improve the outcome of advanced cancer patients and achieve long-term tumor control or even eradication. Peptides are promising choices for tumor immunotherapy drugs because they have the advantages of low production cost, high sequence selectivity, high tissue permeability, low toxicity and low immunogenicity etc., and the adjuvant matching and technologies like nanotechnology can further optimize the effects of peptides. In this review, we present the current status and mechanisms of research on peptides targeting multiple immune cells (T cells, natural killer (NK) cells, dendritic cells (DCs), tumor-associated macrophages (TAMs), regulatory T cells (Tregs)) and immune checkpoints in tumor immunotherapy; and we summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including RT, chemotherapy, surgery, targeted therapy, cytokine therapy, adoptive cell therapy (ACT) and cancer vaccines. Finally, we discuss the current status of peptide applications in mRNA vaccine delivery.
Collapse
Affiliation(s)
- Yunchao Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chenxin Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Chunjie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
28
|
Nicoletti A, Negri M, Paratore M, Vitale F, Ainora ME, Nista EC, Gasbarrini A, Zocco MA, Zileri Dal Verme L. Diagnostic and Prognostic Role of Extracellular Vesicles in Pancreatic Cancer: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:885. [PMID: 36614326 PMCID: PMC9821035 DOI: 10.3390/ijms24010885] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most aggressive tumors, with a dismal prognosis due to poor detection rates at early stages, rapid progression, post-surgical complications, and limited effectiveness of conventional oncologic therapies. There are no consistently reliable biomarkers or imaging modalities to accurately diagnose, classify, and predict the biological behavior of this tumor. Therefore, it is imperative to develop new and improved strategies to detect pancreatic lesions in the early stages of cancerization with greater sensitivity and specificity. Extracellular vesicles, including exosome and microvesicles, are membrane-coated cellular products that are released in the outer environment. All cells produce extracellular vesicles; however, this process is enhanced by inflammation and tumorigenesis. Based on accumulating evidence, extracellular vesicles play a crucial role in pancreatic cancer progression and chemoresistance. Moreover, they may represent potential biomarkers and promising therapy targets. The aim of the present review is to review the current evidence on the role of extracellular vesicles in pancreatic cancer.
Collapse
|
29
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|