1
|
Liao T, Kang J, Ma Z, Jie L, Feng M, Liu D, Mao J, Wang P, Xing R. Total glucosides of white paeony capsule alleviate articular cartilage degeneration and aberrant subchondral bone remodeling in knee osteoarthritis. Phytother Res 2025; 39:1758-1775. [PMID: 38649260 DOI: 10.1002/ptr.8210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Knee osteoarthritis (KOA) is a prevalent degenerative joint disease that is primarily managed by improving the destroyed cartilage and reversing subchondral bone remodeling. Total glucosides of white paeony (TGP) capsule primarily contains extracts from the white peony root and has been shown to have various pharmacological effects, but its role in KOA still requires comprehensive evaluation. In this study, we aimed to investigate the protective effect of TGP on knee cartilage and subchondral bone, as well as elucidate the underlying molecular mechanisms. The effect of TGP on KOA progression was evaluated in the destabilization of the medial meniscus (DMM)-induced KOA model of mouse and interleukin (IL)-1β-induced KOA model of primary mouse chondrocytes. In vivo and in vitro experiments demonstrated that TGP had a protective effect on the cartilage. Treatment with TGP could induce the synthesis of critical elements in the cartilage extracellular matrix and downregulate the synthesis of degrading enzymes in the extracellular matrix. Regarding the underlying mechanisms, TGP inhibited the phosphorylation and nuclear translocation of p65 by regulating the nuclear factor-kappa B (NF-κB) signaling pathway. In addition, TGP could reduce the secretion of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α). Moreover, it has a sustained effect on coupled subchondral bone remodeling through regulation of the OPG/RANKL/RANK pathway. In conclusion, TGP may protect articular cartilage by downregulating the NF-κB signaling pathway and may support coupled subchondral bone remodeling by regulating OPG/RANKL/RANK signaling pathway in the DMM-induced KOA model of mouse, suggesting a new therapeutic potential for KOA treatment.
Collapse
Affiliation(s)
- Taiyang Liao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junfeng Kang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Affiliated Hospital of Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhenyuan Ma
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lishi Jie
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingqing Feng
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Deren Liu
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Mao
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Peimin Wang
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing, China
| | - Runlin Xing
- Department of Orthopedics and Traumatology, Affiliated Hospital of Nanjing University of Chinese Medicine/Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Jiang T, Liu X, Wang S, Chen Y, Wang Y, Li X, Yao G. Paeoniflorin alleviated experimental Sjögren's syndrome by inhibiting NLRP3 inflammasome activation of submandibular gland cells via activating Nrf2/HO-1 pathway. Free Radic Biol Med 2025; 233:355-364. [PMID: 40158745 DOI: 10.1016/j.freeradbiomed.2025.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/15/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Total glucosides of white paeony (TGP) has been used for treatment of Sjögren's syndrome (SS) patients. Paeoniflorin (PF) is the main active ingredient of TGP and has antioxidant and anti-inflammatory effects, but its underlying mechanism on SS remains to be explored. Aberrant activation of NLRP3 inflammasome can cause injury of submandibular gland (SG) in SS. However, whether PF regulates NLRP3 inflammasome activation in SS is unknown. OBJECTIVE This study aims to investigate whether PF alleviated SS through suppressing NLRP3 inflammation activation and to explore the mechanism of PF in improving Sjögren-like symptoms in non-obese diabetic (NOD) mice. METHODS The gene expression profiles of the labial gland (LG) between SS patients and non-SS patients were analyzed by bioinformatics. Non-obese diabetic (NOD) mice were selected as SS model. Mice were divided into normal saline group and two different doses of PF-treatment groups (50 and 100 mg/kg). The SS-like symptoms and pathological changes of submandibular gland (SG) were analyzed after 4 weeks of administration. SG cells were treated with or without PF and with or without ML385 (a specific inhibitor of Nrf2) in vitro, and then lipopolysaccharide(LPS) and adenosine triphosphate (ATP) were used to induce NLRP3 inflammasome activation in SG cells. Results NLRP3 was up-regulated in LG of SS patients and SG of SS mice. PF alleviated SS-like symptoms in SS mice. Compared with control group, NLRP3 and caspase-1 in the SG, and serum IL-1β and IL-18 of NOD mice were decreased in PF group. Furthermore, we found that PF inhibited NLRP3 activation via activating the Nrf2/HO-1 pathway in SG cells. In addition, we observed the activation of Nrf2/HO-1 in the SG of mice after PF administration. CONCLUSIONS Our findings suggested that PF inhibited NLRP3 inflammasome activation through regulating the Nrf2/HO-1 axis in SG of SS mice, which might be the underlying mechanism for the therapeutic effects of PF on SS.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xuanqi Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Shumin Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yu Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Xiaojing Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Genhong Yao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China; State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Zhang G, Shang R, Zhong X, Lv S, Yi Y, Lu Y, Xu Z, Wang Y, Teng J. Natural products target pyroptosis for ameliorating neuroinflammation: A novel antidepressant strategy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156394. [PMID: 39826285 DOI: 10.1016/j.phymed.2025.156394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Depression is a common mental disorder characterized by prolonged loss of interest and low mood, accompanied by symptoms such as sleep disturbances and cognitive impairments. In severe cases, there may be a tendency toward suicide. Depression can be caused by a series of highly complex pathological mechanisms; However, its key pathogenic mechanism remains unclear. As a novel programmed cell death (PCD) pathway and inflammatory cell death mode, pyroptosis involves a series of tightly regulated gene expression events. It may play a significant role in the pathogenesis and management of depression by modulating neuroinflammatory processes. In addition, a large number of studies have shown that various pharmacologically active natural products can regulate pyroptosis through multiple targets and pathways, demonstrating significant potential in the treatment of depression. These natural products offer advantages such as low costs and minimal side effects, making them a viable supplement or alternative to traditional antidepressants. In this review, we summarized recent research on natural products that regulate pyroptosis and neuroinflammation to improve depression. The aim of this review was to contribute to a scientific basis for the discovery and development of more natural antidepressants in the future. METHODS To review the antidepressant effects of natural products targeting pyroptosis-mediated neuroinflammation, data were collected from the Web of Science, ScienceDirect databases, and PubMed to classify and summarize the relationship between pyroptosis and neuroinflammation in depression, as well as the pharmacological mechanisms of natural products. RESULTS Multiple researches have revealed that pyroptosis-mediated neuroinflammation serves as a pivotal contributory factor in the pathological process of depression. Natural products, such as terpenoids, terpenes, phenylethanol glycosides, and alkaloids, have antidepressant effects by regulating pyroptosis to alleviate neuroinflammation. CONCLUSION We comprehensively reviewed the regulatory effects of natural products in depression-related pyroptosis pathways, providing a uniquely insightful perspective for the research, development, and application of natural antidepressants. However, future research should further explore the modulatory mechanisms of natural products in regulating pyroptosis, which is of great importance for the genration of effective antidepressants.
Collapse
Affiliation(s)
- Guangheng Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Ruirui Shang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Shimeng Lv
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yunhao Yi
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yitong Lu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Zhiwei Xu
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China
| | - Yilin Wang
- Affiliated Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200135, China
| | - Jing Teng
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, Shandong, China.
| |
Collapse
|
4
|
Zhao Z, He X, Gan L, Xu D, Zhang T, Wang H, Cui Z, Zhang H, Liu B. Investigation of the effects and mechanism of Total Glycosides of paeony against Radiation-Induced brain injury through network Pharmacology, molecular docking and experimental Verification. Int Immunopharmacol 2025; 148:114178. [PMID: 39884083 DOI: 10.1016/j.intimp.2025.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Total glucosides of paeony (TGP), derived from the dried root of Paeonia, is a popular treatment for immune diseases. Radiation induced brain injury (RBI) is a common side effect of brain radiation therapy, but the efficacy of TGP in treating RBI remains uncertain. PURPOSE To evaluate the protective effects of TGP against RBI and elucidate its underlying mechanisms using pharmacological network analysis, molecular docking, and experimental validation. METHODS The potential targets of TGP and RBI were identified using network pharmacology. Overlapping targets were analyzed for KEGG pathway enrichment and gene ontology (GO) investigations. The therapeutic effectiveness of TGP and the precision of key target genes were assessed in the mouse model of RBI, alongside observations of behavioral changes and experimental techniques. RESULTS Network pharmacology identified 43 targets associated with RBI that intersect with TGP. Protein-Protein Interaction (PPI) analysis highlighted key targets, including EGFR, TNF, and IL-6. Experimental outcomes demonstrated that TGP can mitigate oxidative stress damage and inflammation while enhancing memoryand learning abilities in RBI mice. Additionally, TGP dramatically decreased the activation of astrocytes and microglia, as well as the expression of key targets like EGFR, TNF, and IL-6. CONCLUSION TGP effectively mitigates RBI by targeting key therapeutic targets such as EGFR, TNF, and IL-6.
Collapse
Affiliation(s)
- Zhongfang Zhao
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China; Gansu Key Laboratory of Dental and Maxillofacial Reconstruction and Bio-intelligent Manufacturing, School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China
| | - Xiaohan He
- School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100039,China; Bio-Medical Research Center, Lanzhou 730000, China
| | - Dan Xu
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; Institute of Modern Physics, Lanzhou 730000, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Taofeng Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongyu Wang
- School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China; Gansu Key Laboratory of Dental and Maxillofacial Reconstruction and Bio-intelligent Manufacturing, School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China
| | - Zhencun Cui
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; Second Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100039,China.
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China; Gansu Key Laboratory of Dental and Maxillofacial Reconstruction and Bio-intelligent Manufacturing, School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China.
| |
Collapse
|
5
|
Zhao M, Peng N, Zhou Y, Qu Y, Cao M, Zou Q, Yu Q, Lu L, Xiao F. The immunoregulatory effects of total glucosides of peony in autoimmune diseases. J Leukoc Biol 2025; 117:qiae095. [PMID: 38626175 DOI: 10.1093/jleuko/qiae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/09/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Total glucoside of peony and its main active ingredient paeoniflorin, extracted from the Chinese herb Paeonia lactiflora Pallas, exhibit potent immunomodulatory effects. Total glucoside of peony has been shown to inhibit inflammatory responses and disease progression in experimental models of multiple autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, psoriasis, and so on. Total glucoside of peony shows broad immunomodulatory effects on many immune cells, such as T cells, macrophages, and dendritic cells, by regulating their activation, proliferation, differentiation, and production of effector molecules. Mechanistically, total glucoside of peony modulates intracellular signaling transductions, including JAK/STAT, NF-κB, MAPK, and PI3K/AKT/mTOR pathways. Moreover, total glucoside of peony has been applied in the clinical treatment of various autoimmune diseases with satisfactory therapeutic outcomes and minor side effects. Thus, available studies have demonstrated that total glucoside of peony and its bioactive constituents exhibit anti-inflammatory and immunomodulatory functions and may have extensive applications in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Na Peng
- Department of Rheumatology, the Second People's Hospital, China Three Gorges University, 443002 Yichang, China
| | - Yingbo Zhou
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
| | - Yuan Qu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Meng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China
| | - Qinghua Zou
- Department of Rheumatology and Immunology, First Affiliated Hospital of Army Medical University, 400038 Chongqing, China
| | - Qinghong Yu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, 510280 Guangzhou, China
| | - Liwei Lu
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Chongqing International Institute for Immunology, 401300 Chongqing, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| | - Fan Xiao
- Department of Pathology, Faculty of Medicine and HKU Shenzhen Hospital, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, China
- Centre for Oncology and Immunology, Hong Kong Science Park, New Territories, 999077 Hong Kong, China
| |
Collapse
|
6
|
Zhao T, Wang X, Li Z, Qin D. Yiqi Yangxue formula inhibits cartilage degeneration in knee osteoarthritis by regulating LncRNA-UFC1/miR-34a/MMP-13 axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118930. [PMID: 39393561 DOI: 10.1016/j.jep.2024.118930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Knee osteoarthritis (KOA) is a prevalent and disabling clinical condition affecting joint structures worldwide. The Yiqi Yangxue formula (YQYXF) is frequently prescribed in clinical settings for the treatment of KOA. Existing research has primarily focused on alterations in drug metabolism, with limited investigation into the epigenetic effects of YQYXF, particularly in relation to non-coding RNA. AIM OF THE STUDY Exploring the effects of YQYXF on critical factors of long chain non-coding RNA UFC1/miR-34a/matrix metalloproteinase-13 (MMP-13) axis and their interrelationships. METHODS UHPLC-QE-MS technology was used to identify the YQYXF ingredients in rat serum. KEGG and GO analysis were performed on the targets of blood components acting on KOA using a database. Simultaneously, a protein interaction network was constructed using target proteins and metabolites to identify the core components and key pathways of YQYXF. The KOA rat model was established using an improved Hulth method. SPF SD rats were randomly divided into normal group, sham surgery group, model group, celecoxib capsules group (18 mg/kg), YQYXF low, medium and high dose groups (4.6 g/kg, 9.2 g/kg, 18.4 g/kg). Observe the synovial and cartilage tissues of rats using pathological methods. RT-PCR was used to detect the levels of UFC1, miR-34a, and MMP-13 in cartilage. Immunohistochemistry was used to detect the levels of MMP-13 and ADAMTS-5 in cartilage. ELISA method was used to detect the levels of MMP-13 and ADAMTS-5 in serum. In addition, we further validated the regulation of crucial factor expression levels of UFC1/miR-34a/MMP-13 axis in rat chondrocytes and degenerative chondrocytes of KOA patients by YQYXF, providing a basis for its treatment of KOA. RESULTS The compounds that YQYXF enters the bloodstream mainly contain flavonoids and phenylpropanoid compounds. The core components that act on OA include quercetin, fisetin, and demethylweldelolactone. The main target pathways are the IL-17 signaling pathway, lipid and atherosclerosis, cellular sensitivity, inflammatory mediator regulation of TRP channels, TNF signaling pathway, relaxin signaling pathway and C-type lectin receptor signaling pathway. YQYXF inhibited the expression of miR-34a and MMP-13 mRNA, and reduced the protein levels of MMP-13 and ADAMTS-5. In vitro studies have confirmed that 20% YQYXF serum promoted UFC1 and reduce miR-34a levels. In addition, miR-34a in sh-UFC1+10% YQYXF serum and sh-UFC1+20% YQYXF serum groups significantly decreased compared to the sh-UFC1 group. CONCLUSION The anti-KOA cartilage degeneration effect of YQYXF might be related to inhibiting cell apoptosis and promoting cell proliferation, which regulated the lncRNA-UFC1/miR-34a/MMP-13 axis.
Collapse
MESH Headings
- Animals
- Matrix Metalloproteinase 13/metabolism
- Matrix Metalloproteinase 13/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Drugs, Chinese Herbal/pharmacology
- Rats, Sprague-Dawley
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Osteoarthritis, Knee/drug therapy
- Osteoarthritis, Knee/pathology
- Osteoarthritis, Knee/metabolism
- Rats
- Male
- Chondrocytes/drug effects
- Chondrocytes/metabolism
- Cartilage, Articular/drug effects
- Cartilage, Articular/pathology
- Cartilage, Articular/metabolism
- Disease Models, Animal
Collapse
Affiliation(s)
- Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China.
| | - Zhaofu Li
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Dongdong Qin
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China; School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
7
|
Zhang Z, Wang H, Ren X, Li X, Peng X, Qiu X. Herb-Drug Interaction of Total Glucosides of Paeony and Tripterygium Glycoside with Celecoxib in Beagle Dogs by UPLC-MS/MS. Eur J Drug Metab Pharmacokinet 2025:10.1007/s13318-025-00933-8. [PMID: 39843845 DOI: 10.1007/s13318-025-00933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND AND OBJECTIVE Total glucosides of paeony (TGP) capsules, tripterygium glycoside tablets (TGT), and celecoxib are commonly used drugs in clinical practice for the treatment of Rheumatoid arthritis (RA). An UPLC-MS/MS method for the analysis of celecoxib in beagle dogs was developed, the herb-drug interactions (HDIs) between TGP and TGT with celecoxib were studied based on pharmacokinetics. METHODS The method of acetonitrile precipitation was applied to process plasma samples. Celecoxib and furosemide (internal standard, IS) was separated by gradient elution, and detected using multiple reaction monitoring mode under the positive ion. The ion reactions used for quantitative analysis were m/z 379.82 → 315.82 for celecoxib, and m/z 328.74 → 204.88 for IS. HDIs experiments adopt a three-stage experimental design. In the first period, six beagle dogs was orally administered 6.67 mg/kg celecoxib. In the second period, TGP 20 mg/kg was given orally twice a day for 7 consecutive days, then celecoxib was orally administered. And, in the third period, TGT 1.5 mg/kg was orally given, twice a day for 7 consecutive days, then celecoxib was orally administered. The concentration of celecoxib in the three periods was detected, and HDIs were evaluated based on pharmacokinetics. RESULTS Celecoxib exhibited good linearity in the range of 10-2000 ng/mL. The accuracy, precision, recoveries, matrix effects, and stability all met the standards. When celecoxib was used in combination with TGPC or TGT, the main pharmacokinetic parameters of celecoxib changed, Cmax, AUC(0-t) and AUC(0-∞) increased, t½ was prolonged, and CL and Vd decreased. CONCLUSION A novel UPLC-MS/MS approach was successfully performed and applied to measure celecoxib in beagle dog plasma. TGP and TGT could inhibit the metabolism of celecoxib in beagle dogs, thereby affecting the pharmacokinetic parameters of celecoxib and increasing plasma exposure to celecoxib.
Collapse
Affiliation(s)
- Zhifei Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Huijun Wang
- School of Medicine, Pingdingshan University, Pingdingshan, 467000, China
| | - Xinli Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaotong Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xinyu Peng
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangjun Qiu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
8
|
Wang H, Yu W, Wang T, Fang D, Wang Z, Wang Y. Therapeutic potential and pharmacological insights of total glucosides of paeony in dermatologic diseases: a comprehensive review. Front Pharmacol 2025; 15:1423717. [PMID: 39822741 PMCID: PMC11735457 DOI: 10.3389/fphar.2024.1423717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
Total glucosides of paeony (TGP) are a group of monoterpenes extracted from Paeonia lactiflora Pall., primarily including metabolites such as paeoniflorin and oxypaeoniflorin. Modern pharmacological studies have shown that TGP possesses a variety of biological effects, including immunomodulatory, anti-inflammatory, hepatoprotective, nephroprotective, antidepressant, and cell proliferation regulatory activities. In recent years, clinical research has demonstrated favorable therapeutic effects of TGP on disorders of the liver, cardiovascular, nervous, endocrine, and skeletal systems. Particularly in dermatological treatments, TGP has been found to significantly improve clinical symptoms and shorten the course of the disease. However, there are still certain limitations in the scientific rigor of existing studies and in its clinical application. To assess the potential of TGP in treating dermatologic diseases, this article provides a review of its botanical sources, preparation and extraction processes, quality control, and major chemical metabolites, as well as its pharmacological research and clinical applications in dermatology. Additionally, the mechanisms of action, research gaps, and future directions for TGP in the treatment of dermatologic diseases are discussed, offering valuable guidance for future clinical research on TGP in dermatology.
Collapse
Affiliation(s)
- Huige Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenchao Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dianwei Fang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeyun Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanhong Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Zeng L, Li Y, Xiang W, Xiao W, Long Z, Sun L. Advances in chimeric antigen receptor T cell therapy for autoimmune and autoinflammatory diseases and their complications. J Autoimmun 2025; 150:103350. [PMID: 39700677 DOI: 10.1016/j.jaut.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Chimeric antigen receptor T (CAR-T) cells are genetically engineered T cells expressing transmembrane chimeric antigen receptors with specific targeting abilities. As an emerging immunotherapy, the use of CAR-T cells has made significant breakthroughs in cancer treatment, particularly for hematological malignancies. The success of CAR-T cell therapy in blood cancers highlights its potential for other conditions in which the clearance of pathological cells is therapeutic, such as liver diseases, infectious diseases, heart failure, and diabetes. Given the limitations of current therapies for autoimmune diseases, researchers have actively explored the potential therapeutic value of CAR-T cells and their derivatives in the field of autoimmune diseases. This review focuses on the research progress and current challenges of CAR-T cells in autoimmune diseases with the aim of providing a theoretical basis for the precise treatment of autoimmune diseases. In the future, CAR-T cells may present new therapeutic modalities and ultimately provide hope for patients with autoimmune diseases.
Collapse
MESH Headings
- Humans
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Autoimmune Diseases/therapy
- Autoimmune Diseases/immunology
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Animals
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Yan Li
- People's Hospital of Ningxiang City, Ningxiang City, China
| | - Wang Xiang
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China
| | - Wei Xiao
- Department of Rheumatology, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde City, China.
| | - Zhiyong Long
- Department of Physical Medicine and Rehabilitation, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Wang Z, Yang J, He P, Lan J, Shi T, Xu S, Hao Z, Xi Y, Wang J, He P. Therapeutic effect of total glucosides of paeony on IgA vasculitis nephritis: progress and prospects. Mol Biol Rep 2024; 52:13. [PMID: 39585482 PMCID: PMC11588768 DOI: 10.1007/s11033-024-10041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/21/2024] [Indexed: 11/26/2024]
Abstract
IgA vasculitis nephritis (IgAVN), a type of immune system disease characterized by the deposition of IgA in the mesangial area of the glomerulus, is most common in children. Corticosteroids and immunosuppressants agents are commonly prescribed for the clinical management of IgAVN; however, these therapies are associated with numerous adverse reactions. This necessitates the discovery of alternative, potential therapeutic agents that can offer a safer treatment option. Natural plants contain abundant total glucosides of paeony (TGP), which represent one of the most prevalent secondary metabolites found within these organisms. TGP has been proven to be a safe and desirable natural medicine, with the most central ingredient being polyphenolic. TGP, a naturally occurring and cost-effective compound, exerts its therapeutic influence on IgAVN via diverse pathways and targets, with minimal side effects. Its substantial clinical potential underscores the importance of delving deeper into its pharmacological mechanisms, which hold great promise for novel drug development. This review examines the multifaceted therapeutic mechanisms of TGP in IgAVN encompassing modulation of Wnt/β-catenin pathways and programmed cell death pathways, antioxidant and anti-inflammatory effects, and enhancement of vascular repair. Additionally, we provide an overview of recent advancements in enhancing the bioavailability of TGP and highlight crucial considerations that may inform future research endeavors.
Collapse
Affiliation(s)
- Zhifeng Wang
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jiao Yang
- The Second Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Pengfen He
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junfeng Lan
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Ting Shi
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shuangfeng Xu
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhihui Hao
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yujiang Xi
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Jian Wang
- The First Clinical College of Yunnan University of Chinese Medicine, Kunming, Yunnan, China.
| | - Ping He
- Yunnan Provincial Hospital of Chinese Medicine, Kunming, Yunnan, China.
| |
Collapse
|
11
|
Zhu Q, Zhou H. The role of cGAS-STING signaling in rheumatoid arthritis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1466023. [PMID: 39386207 PMCID: PMC11461283 DOI: 10.3389/fimmu.2024.1466023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease primarily characterized by erosive and symmetric polyarthritis. As a pivotal axis in the regulation of type I interferon (IFN-I) and innate immunity, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has been implicated in the pathogenesis of RA. This pathway mainly functions by regulating cell survival, pyroptosis, migration, and invasion. Therefore, understanding the sources of cell-free DNA and the mechanisms underlying the activation and regulation of cGAS-STING signaling in RA offers a promising avenue for targeted therapies. Early detection and interventions targeting the cGAS-STING signaling are important for reducing the medical burden on individuals and healthcare systems. Herein, we review the existing literature pertaining to the role of cGAS-STING signaling in RA, and discuss current applications and future directions for targeting the cGAS-STING signaling in RA treatments.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|
12
|
He M, Hu Z, Yang M. Effects of total glucosides of paeony on serum inflammatory cytokines in animal models of rheumatoid arthritis: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1349259. [PMID: 38590641 PMCID: PMC10999591 DOI: 10.3389/fphar.2024.1349259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic synovitis of the affected joints. Total glucosides of paeony (TGP) capsules have been widely used clinically for the treatment of RA with good efficacy and safety. However, its effect on inflammatory cytokines remains unclear. Objectives: This study aimed to summarize the effect of TGP on the expression level of serum inflammatory cytokines in RA animal models and its potential mechanisms. Methods: Six databases were searched up to 14 August 2023, relevant animal experiment studies were screened, data were extracted, and the SYRCLE animal experiment bias risk assessment tool was used for risk assessment. Results: A total of 24 studies were included, including 581 animals. Results showed that compared with the model control group, TGP decreased the levels of TNF-α, IL-1β, IL-6, and PGE2 and increased the levels of TGF-β1 after 1-2 weeks of intervention, decreased the levels of TNF-α, IL-1β, IL-6, IL-2, IL-17, IL-17α, IL-21, VEGF, IFN-γ and PGE2 and increased the levels of IL-10 and IL-4 after 3-4 weeks of intervention, decreased the levels of TNF-α, IL-6, IL-17α and increased the level of IL-10 after 8 weeks of intervention. There was no significant difference in the effects of TGP on the levels of IL-10, IL-17, and IFN-γ after 1-2 weeks of intervention and IL-1 and TGF-β1 after 3-4 weeks of intervention. Conclusion: In summary, based on the existing studies, this study found that compared with the control group of the RA animal model, TGP can reduce the levels of serum pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 and increase the levels of serum anti-inflammatory cytokines such as IL-10, exerting an anti-inflammatory effect by regulating and improving the levels of inflammatory cytokines, and thus alleviating the disease. Given the low quality of the included studies and the lack of sufficient evidence, more high-quality studies are still needed to validate the results of this study.
Collapse
Affiliation(s)
| | - Zhipeng Hu
- *Correspondence: Zhipeng Hu, ; Maoyi Yang,
| | - Maoyi Yang
- *Correspondence: Zhipeng Hu, ; Maoyi Yang,
| |
Collapse
|
13
|
Wang Y, Li D, Lv Z, Feng B, Li T, Weng X. Efficacy and safety of Gutong Patch compared with NSAIDs for knee osteoarthritis: A real-world multicenter, prospective cohort study in China. Pharmacol Res 2023; 197:106954. [PMID: 37832860 DOI: 10.1016/j.phrs.2023.106954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The Gutong Patch (GTP) is common in clinical practice for bone diseases. This study compared the efficacy and safety of GTP and nonsteroidal anti-inflammatory drugs (NSAIDs) for KOA patients from 35 medical centers assigned to GTP, selective COX-2 inhibitor (SCI), GTP + SCI, non-selective COX-2 inhibitor (NSCI), and GTP + NSCI groups. The visual analog scale (VAS) pain score, EuroQol-VAS, EuroQol 5D-3 L, time to articular pain relief / disappearance, and joint motion recovery were the efficacy assessments. Safety assessments included contact dermatitis, gastrointestinal disorders, etc. The p-value < 0.05 was considered statistically significant. After statistical analysis, the SCI and GTP + SCI groups showed better improvement of VAS than the GTP group; the time to articular pain relief in the NSCI group was shorter than that in GTP and SCI group; the time to joint motion recovery in the GTP + NSCI group was longer than that in the SCI group. Additionally, the improvement of the quality of life in all groups was significant after treatments. While the incidence of gastrointestinal adverse events in the NSAIDs group was higher than that in the GTP and GTP + NSAIDs groups. GTP and NSAIDs are effective for KOA patients, and GTP is more suitable for KOA patients with cardiovascular and gastrointestinal comorbidities. This study was approved by the Ethics Committee at Peking Union Medical College Hospital (HS-1766) and registered in the Chinese Clinical Trial Registry (ChiCTR2100046391).
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Dandan Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Zehui Lv
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Bin Feng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Xisheng Weng
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|