1
|
Zhang YQ, Wang ZL, Chen Z, Jin ZT, Hasan A, Wang HD, Sun YW, Qiao X, Wang Y, Ye M. A highly selective 2''- O-glycosyltransferase from Ziziphus jujuba and De novo biosynthesis of isovitexin 2''- O-glucoside. Chem Commun (Camb) 2022; 58:2472-2475. [PMID: 35084410 DOI: 10.1039/d1cc06949g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A novel and efficient 2''-O-glycosyltransferase ZjOGT38 was identified from Ziziphus jujuba. It could regio-selectively glycosylate 2-hydroxyflavanone C-glycosides. ZjOGT38 allowed de novo biosynthesis of isovitexin 2''-O-glucoside in E. coli.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Zhuo Chen
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China. .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zheng-Tong Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Aobulikasimu Hasan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Hai-Dong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Yu-Wei Sun
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| | - Yong Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
2
|
Lima Bezerra JJ, Saturnino de Oliveira JR, Lúcia de Menezes Lima V, Vanusa da Silva M, Cavalcante de Araújo DR, Morais de Oliveira AF. Evaluation of the anti-inflammatory, antipyretic and antinociceptive activities of the hydroalcoholic extract of Rhynchospora nervosa (Vahl) Boeckeler (Cyperaceae). JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114811. [PMID: 34763042 DOI: 10.1016/j.jep.2021.114811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhynchospora nervosa (Vahl) Boeckeler (Cyperaceae), popularly known as "capim-estrela", is a native species widely distributed in Brazil. The whole plant has been used in local traditional medicine in the form of teas or syrups to treat inflammation, flu, nasal congestion, fever, swelling, and venereal disease. This is the first study to investigate the pharmacological properties of this species. AIM OF THE STUDY The present study aimed to evaluate the in vivo anti-inflammatory, antipyretic and antinociceptive potential of the lyophilized hydroalcoholic extract of R. nervosa in heterogenic Swiss mice. In addition to pharmacological studies, the total phenol and flavonoid contents of the extract were determined. MATERIAL AND METHODS The anti-inflammatory effect was evaluated through carrageenan-induced paw edema and peritonitis models. For the antinociceptive assay, the number of acetic acid-induced writhing responses in the animals was counted. Antipyretic activity was tested by yeast-induced pyrexia in mice and evaluated for 4 h. Nitric oxide (NO) concentration and leukocyte migration in the peritoneal fluid were quantified. The acute toxicity of the extract was also calculated. Quantitative analyses of total phenols and flavonoids in the extract were performed by spectrophotometric methods. RESULTS In short, the lyophilized hydroalcoholic extract of R. nervosa showed low acute toxicity in the preclinical tests (LD50 = 3807 mg/kg). A significant anti-inflammatory effect was observed, with an average reduction of carrageenan-induced paw edema of 96.37%. Comparatively, indomethacin inhibited the development of the carrageenin paw edema by 97.52%. In the peritonitis test, a significant reduction in NO levels was recorded. A reduction in the number of white cells, notably monocytes, was also observed, confirming the anti-inflammatory effect. Writhing was reduced by 86.53%, which indicates antinociceptive activity. As for antipyretic activity, no positive effects of the extract were observed. The lyophilized hydroalcoholic extract of R. nervosa presented a high content of phenolic compounds (322.47 μg GAE/mg) and total flavonoids (440.50 μg QE/mg). CONCLUSION The lyophilized hydroalcoholic extract of R. nervosa showed significant in vivo anti-inflammatory and antinociceptive activity in mice. These preliminary findings support the indication of the use of this species in folk medicine in Brazil for the treatment of inflammation.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Universidade Federal de Pernambuco, Departamento de Botânica, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | | | - Vera Lúcia de Menezes Lima
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | - Márcia Vanusa da Silva
- Universidade Federal de Pernambuco, Departamento de Bioquímica, Av. da Engenharia, S/n, Cidade Universitária, 50670-420, Recife, PE, Brazil
| | | | | |
Collapse
|
3
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
4
|
Amaral RG, Gomes SVF, Andrade LN, dos Santos SA, Severino P, de Albuquerque Júnior RLC, Souto EB, Brandão GC, Santos SL, David JM, Carvalho AA. Cytotoxic, Antitumor and Toxicological Profile of Passiflora alata Leaf Extract. Molecules 2020; 25:molecules25204814. [PMID: 33092066 PMCID: PMC7587945 DOI: 10.3390/molecules25204814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022] Open
Abstract
Passiflora alata or passion fruit is a native flowering plant from Amazon, geographically spread from Peru to Brazil. The plant has long been used in folks medicine for its pharmacological properties and is included in the Brazilian Pharmacopoeia since 1929. The aim of this study was to evaluate the potential cytotoxic and antitumor activities of Passiflora alata leaf extract (PaLE) in S180-tumor bearing mice. The percentage of cell proliferation inhibition (% CPI) and IC50 in relation to 4 tumor cell lines were determined in PC3, K-562, HepG2 and S180 cell lines using the MTT assay. PaLE showed a CPI > 75% and greater potency (IC50 < 30 µg/mL) against PC3 and S180 cell lines. PaLE showed antitumor activity in treatments intraperitoneally (36.75% and 44.99% at doses of 100 and 150 mg/kg/day, respectively). Toxicological changes were shown in the reduced body mass associated with reduced food consumption, increased spleen mass associated with histopathological increase in the white pulp of the spleen and increased number of total leukocytes with changes in the percentage relationship between lymphocytes and neutrophils. Our outcomes corroborate the conclusion that PaLE has antitumor activity in vitro and in vivo with low toxicity.
Collapse
Affiliation(s)
- Ricardo G. Amaral
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe 49100-000, Brazil; (R.G.A.); (S.A.d.S.); (S.L.S.)
| | - Silvana V. F. Gomes
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil; (S.V.F.G.); (P.S.); (R.L.C.d.A.J.)
| | - Luciana N. Andrade
- Department of Medicine, Federal University of Sergipe (UFS), Avenida Governador Marcelo Déda, Lagarto-SE 49400-000, Brazil
- Correspondence: (L.N.A.); (E.B.S.); (A.A.C.)
| | - Sara A. dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe 49100-000, Brazil; (R.G.A.); (S.A.d.S.); (S.L.S.)
| | - Patrícia Severino
- Institute of Technology and Research, University of Tiradentes, Aracaju, Sergipe 49032-490, Brazil; (S.V.F.G.); (P.S.); (R.L.C.d.A.J.)
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women′s Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | | | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (L.N.A.); (E.B.S.); (A.A.C.)
| | - Geraldo C. Brandão
- Department of Pharmacy, Federal University of Ouro Preto, Ouro Preto 78950-000, Brazil;
| | - Sandra L. Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe 49100-000, Brazil; (R.G.A.); (S.A.d.S.); (S.L.S.)
| | - Jorge M. David
- Institute of Chemistry, Federal University of Bahia, Salvador 40000-000, Brazil;
| | - Adriana A. Carvalho
- Department of Medicine, Federal University of Sergipe (UFS), Avenida Governador Marcelo Déda, Lagarto-SE 49400-000, Brazil
- Correspondence: (L.N.A.); (E.B.S.); (A.A.C.)
| |
Collapse
|
5
|
Harikrishnan A, Veena V, Lakshmi B, Shanmugavalli R, Theres S, Prashantha CN, Shah T, Oshin K, Togam R, Nandi S. Atranorin, an antimicrobial metabolite from lichen Parmotrema rampoddense exhibited in vitro anti-breast cancer activity through interaction with Akt activity. J Biomol Struct Dyn 2020; 39:1248-1258. [PMID: 32096436 DOI: 10.1080/07391102.2020.1734482] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Atranorin (ATR), lichenized secondary metabolite and depside molecule with several biological potentials such as antimicrobial, anticancer, anti-inflammatory, antinociceptive, wound healing and photoprotective activities. Cytotoxic reports of ATR are documented in several cancer cells and in vivo models but its molecular interaction studies are poorly understood. Therefore, in this present investigation, we have used the in silico studies with biological validation of the molecular targets for the anti-breast cancer mechanism of ATR. The molecular docking studies with the breast cancer oncoproteins such as Bcl-2, Bax, Akt, Bcl-w and Bcl-xL revealed the highest interaction was observed with the Akt followed by Bax, Bcl-xL and Bcl-2 & least with the Bcl-w proteins. The cytotoxicity studies showed ATR selectively inhibited MDA MB-231 and MCF-7 breast cancer cells in differential and dose-dependent manner with the IC50 concentration of 5.36 ± 0.85 μM and 7.55 ± 1.2 μM respectively. Further mechanistic investigations revealed that ATR significantly inhibited ROS production and significantly down-regulated the anti apoptotic Akt than Bcl-2, Bcl-xL and Bcl-w proteins with a significant increase in the Bax level and caspases-3 activity in the breast cancer cells when comparison with Akt inhibitor, ipatasertib. In vitro biological activities well correlated with the molecular interaction data suggesting that atranorin had higher interaction with Akt than Bax and Bcl-2 but weak interaction with Bcl-w and Bcl-xL. In this present study, the first time we report the interactions of atranorin with molecular targets for anti-breast cancer potential. Hence, ATR represents the nature-inspired molecule for pharmacophore moiety for design in targeted therapy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adhikesavan Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) Campus, Chennai, Tamil Nadu, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - B Lakshmi
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - R Shanmugavalli
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) Campus, Chennai, Tamil Nadu, India
| | - Sonia Theres
- Department of Chemistry, Kanchi Mamunivar Centre for Postgraduate Studies (KMCPGS), Puducherry, India
| | - C N Prashantha
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Tanya Shah
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - K Oshin
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Ringu Togam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, Karnataka, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research (GIPER), Affiliated to Uttarakhand Technical University, Kashipur, Uttarakhand, India
| |
Collapse
|
6
|
Nakamura Y, Hirose S, Taniguchi Y, Moriya Y, Yamada T. Targeted enzyme gene re-positioning: A computational approach for discovering alternative bacterial enzymes for the synthesis of plant-specific secondary metabolites. Metab Eng Commun 2019; 9:e00102. [PMID: 31720217 PMCID: PMC6838473 DOI: 10.1016/j.mec.2019.e00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 09/08/2019] [Indexed: 12/27/2022] Open
Abstract
Plant-biosynthesised secondary metabolites are unique sources of pharmaceuticals, food additives, and flavourings, among other industrial uses. However, industrial production of these metabolites is difficult because of their structural complexity, dangerousness and unfriendliness to natural environment, so the development of new methods to synthesise them is required. In this study, we developed a novel approach to identifying alternative bacterial enzyme to produce plant-biosynthesised secondary metabolites. Based on the similarity of enzymatic reactions, we searched for candidate bacterial genes encoding enzymes that could potentially replace the enzymes in plant-specific secondary metabolism reactions that are contained in the KEGG database (enzyme re-positioning). As a result, we discovered candidate bacterial alternative enzyme genes for 447 plant-specific secondary metabolic reaction. To validate our approach, we focused on the ability of an enzyme from Streptomyces coelicolor strain A3(2) strain to convert valencene to the grapefruit metabolite nootkatone, and confirmed its enzymatic activity by gas chromatography-mass spectrometry. This enzyme re-positioning approach may offer an entirely new way of screening enzymes that cannot be achieved by most of other conventional methods, and it is applicable to various other metabolites and may enable microbial production of compounds that are currently difficult to produce industrially.
Collapse
Affiliation(s)
- Yuya Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
| | - Shuichi Hirose
- NAGASE R&D Center, Nagase & Co., Ltd, Kobe High Tech Park 2-2-3 Murotani, Nishi- ku, Kobe, Hyogo, 651-2241, Japan
| | - Yuko Taniguchi
- NAGASE R&D Center, Nagase & Co., Ltd, Kobe High Tech Park 2-2-3 Murotani, Nishi- ku, Kobe, Hyogo, 651-2241, Japan
| | - Yuki Moriya
- Database Center for Life Science, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Kashiwa, 277-0871, Japan
| | - Takuji Yamada
- School of Life Science and Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, 152-8550, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Metabologenomics Inc, 246-2 Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
| |
Collapse
|
7
|
Rodrigues ACBDC, Oliveira FPD, Dias RB, Sales CBS, Rocha CAG, Soares MBP, Costa EV, Silva FMAD, Rocha WC, Koolen HHF, Bezerra DP. In vitro and in vivo anti-leukemia activity of the stem bark of Salacia impressifolia (Miers) A. C. Smith (Celastraceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:516-524. [PMID: 30445109 DOI: 10.1016/j.jep.2018.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/18/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Salacia impressifolia (Miers) A. C. Smith (family Celastraceae) is a traditional medicinal plant found in the Amazon Rainforest known as "miraruíra", "cipó-miraruíra" or "panu" and is traditionally used to treat dengue, flu, inflammation, pain, diabetes, male impotency, renal affections, rheumatism and cancer. AIM OF THE STUDY The aim of this study was to investigate in vitro and in vivo anti-leukemia activity of the stem bark of S. impressifolia in experimental models. MATERIALS AND METHODS The in vitro cytotoxic activity of extracts, fractions and quinonemethide triterpenes (22-hydroxytingenone, tingenone and pristimerin) from the stem bark of S. impressifolia in cultured cancer cells was determined. The in vivo antitumor activity of the ethyl acetate extract (EAE) and of its fraction (FEAE.3) from the stem bark of S. impressifolia was assessed in C.B-17 severe combined immunodeficient (SCID) mice engrafted with human promyelocytic leukemia HL-60 cells. RESULTS The extract EAE, its fraction FEAE.3, and quinonemethide triterpenes exhibited potent cytotoxicity against cancer cell lines, including in vitro anti-leukemia activity against HL-60 and K-562 cells. Moreover, extract EAE and its fraction FEAE.3 inhibited the in vivo development of HL-60 cells engrafted in C.B-17 SCID mice. Tumor mass inhibition rates were measured as 40.4% and 81.5% for the extract EAE (20 mg/kg) and for its fraction FEAE.3 (20 mg/kg), respectively. CONCLUSIONS Ethyl acetate extract and its fraction from the stem bark of S. impressifolia exhibit in vitro and in vivo anti-leukemia activity that can be attributed to their quinonemethide triterpenes. These data confirm the ethnopharmacological use of this species and may contribute to the development of a novel anticancer herbal medicine.
Collapse
Affiliation(s)
| | - Felipe P de Oliveira
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Caroline B S Sales
- Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia, Salvador (UFBA), Bahia 40110-902, Brazil
| | - Clarissa A G Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil
| | - Milena B P Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil; Center of Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Bahia 41253-190, Brazil
| | - Emmanoel V Costa
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil
| | - Felipe M A da Silva
- Department of Chemistry, Federal University of Amazonas (UFAM), Manaus, Amazonas 69077-000, Brazil
| | - Waldireny C Rocha
- Health and Biotechnology Institute, Federal University of Amazonas (UFAM), Coari, Amazonas 69460-000, Brazil
| | - Hector H F Koolen
- Metabolomics and Mass Spectrometry Research Group, Amazonas State University (UEA), Manaus, Amazonas 690065-130, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia 40296-710, Brazil.
| |
Collapse
|
8
|
Luciana NA, Patrícia S, Ricardo GA, Grace AAD, Andressa DS, Melina A, Ricardo LCAJ, Maria CSL, Claudia OP, Adriana AC, Damiao PDS. Evaluation of cytotoxic and antitumor activity of perillaldehyde 1,2-epoxide. ACTA ACUST UNITED AC 2018. [DOI: 10.5897/jmpr2018.6699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Dória GAA, Santos AR, Bittencourt LS, Bortolin RC, Menezes PP, Vasconcelos BS, Souza RO, Fonseca MJV, Santos ADC, Saravanan S, Silva FA, Gelain DP, Moreira JCF, Prata APN, Quintans-Júnior LJ, Araújo AAS. Redox-Active Profile Characterization of Remirea maritima Extracts and Its Cytotoxic Effect in Mouse Fibroblasts (L929) and Melanoma (B16F10) Cells. Molecules 2015; 20:11699-718. [PMID: 26121396 PMCID: PMC6331889 DOI: 10.3390/molecules200711699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022] Open
Abstract
Remirea maritima is a tropical plant with a reticulated root system belonging to the family Cyperaceae, also known to have biologically active secondary metabolites. However, very few data on R. maritima’s biological actions are available and there are no reports regarding the redox-active profile of this plant. In this study, we examined the total phenolic content of Remirea maritima hydroalcoholic (RMHA) extracts, redox properties against different reactive species generated in vitro and their cytotoxic effect against fibroblasts (L929) and melanoma (B16F10) cells. Total reactive antioxidant potential index (TRAP) and total antioxidant reactivity (TAR) results revealed that RMHA at all concentrations tested showed significant antioxidant capacity. RMHA was also effective against hydroxyl radical formation, reduction of Fe3+ to Fe2+ and in scavenging nitric oxide (NO) radicals. In vitro, the level of lipid peroxidation was reduced by RMHA extract and the data showed significant oxidative damage protection. The RMHA cytotoxicity was evaluated by a neutral red assay in fibroblast (L929) and melanome (B16F10) cells. The obtained results showed that the RMHA (40 and 80 µg/mL, respectively) reduced 70% of the viable cells. In conclusion, this study represents the first report regarding the antioxidant and anti-proliferative potential of R. maritima against B16F10 melanoma cells.
Collapse
Affiliation(s)
- Grace Anne A. Dória
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Anderson R. Santos
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Leonardo S. Bittencourt
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - Rafael C. Bortolin
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - Paula P. Menezes
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Bruno S. Vasconcelos
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Rebeca O. Souza
- Departament of Pharmacy, University of São Paulo, 14040-900 Ribeirão Preto, São Paulo, Brazil; E-Mails: (R.O.S.); (M.J.V.F.)
| | - Maria José V. Fonseca
- Departament of Pharmacy, University of São Paulo, 14040-900 Ribeirão Preto, São Paulo, Brazil; E-Mails: (R.O.S.); (M.J.V.F.)
| | - Alan Diego C. Santos
- Departament of Physiology and Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (A.D.C.S.); (L.J.Q.-J.)
| | - Shanmugam Saravanan
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Francilene A. Silva
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
| | - Daniel P. Gelain
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - José Cláudio F. Moreira
- Departament of Biochemistry, Federal University of Rio Grande do Sul, 90040-060 Porto Alegre, Rio Grande do Sul, Brazil; E-Mails: (L.S.B.); (R.C.B.); (D.P.G.); (J.C.F.M.)
| | - Ana Paula N. Prata
- Departament of Biology, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mail:
| | - Lucindo J. Quintans-Júnior
- Departament of Physiology and Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (A.D.C.S.); (L.J.Q.-J.)
| | - Adriano A. S. Araújo
- Departament of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, 49100-000 São Cristóvão, Sergipe, Brazil; E-Mails: (G.A.A.D.); (A.R.S.); (P.P.M.); (B.S.V.); (S.S.); (F.A.S.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-79-21056841; Fax: +55-79-21056827
| |
Collapse
|