1
|
Khan N, Yusufu M, Ahmadova Z, Maihemuti N, Hailati S, Talihat Z, Nueraihemaiti N, Dilimulati D, Baishan A, Duan L, Zhou W. Optimization of Ultrasound Extraction of Total Anthocyanin From Berberis kaschgarica Rupr. by Response Surface Methodology and Its Antihypertensive Effect. Food Sci Nutr 2024; 12:10699-10715. [PMID: 39723043 PMCID: PMC11666821 DOI: 10.1002/fsn3.4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 12/28/2024] Open
Abstract
Berberis kaschgarica Rupr. is a berry fruit shrub found in the north-western region of China, locally its fruit is consumed as a tea ingredient a part of the daily diet, for treatment of different diseases like eczema, and for cardiovascular care as a traditional remedy. In the current study, an optimized ultrasound-assisted extraction (UAE) method is developed using response surface methodology (RSM) to extract anthocyanins from the fruit. The influence of the extraction conditions on the yield of anthocyanins was evaluated and discussed. Additionally, the antihypertensive activity of the extract was evaluated in rats. The negative control group comprised Wistar-Kyoto rats, while five experimental groups included spontaneously hypertensive rats: model group; captopril group; and three treatment groups receiving purified extract. Blood pressure was regularly monitored every 2 weeks during the 12-week treatment period. Post-treatment left ventricular cardiac function in rats was assessed, and serum level of renin (REN), angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), angiotensin-(1-7) (Ang-(1-7)), endothelin-1 (ET-1) and nitric oxide (NO) were evaluated. The optimal UAE extraction condition determined by RSM was 56.5% ethanol volume, 1:19.74 solid-to-liquid ratio, 55 min extraction time, and 0.71% of HCL volume. The purified B. kaschgarica anthocyanin extract exhibited antihypertensive effects and significantly improved left ventricular cardiac functions in treated rats. Furthermore, serum levels of REN, ACE, Ang-II, ET-1, Ang-(1-7), and NO showed statistically significant changes in the treated groups. This study highlights the efficacy of the developed optimized UAE method for high-yield anthocyanin extraction from B. kaschgarica fruit and its potential as a therapeutic agent for hypertension.
Collapse
Affiliation(s)
- Nawaz Khan
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
- Department of Orthopedics, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
- Medical Innovation Technology Transformation Center of Shenzhen Second People Hospital ShenzhenShenzhenGuangdongChina
- School of MedicineShenzhen UniversityShenzhenGuangdongChina
| | - Maierdan Yusufu
- Center for Disease Control and Prevention of Midong DistrictUrumqiXinjiangChina
| | | | - Nulibiya Maihemuti
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Sendaer Hailati
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Ziruo Talihat
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Nuerbiye Nueraihemaiti
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Dilihuma Dilimulati
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Alhar Baishan
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
| | - Li Duan
- Department of Orthopedics, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhenGuangdongChina
- Medical Innovation Technology Transformation Center of Shenzhen Second People Hospital ShenzhenShenzhenGuangdongChina
| | - Wenting Zhou
- Department of Pharmacology, School of PharmacyXinjiang Medical UniversityUrumqiXinjiangChina
- Xinjiang Key Laboratory of Natural Medicines Active Components and Drug Release TechnologyUrumqiXinjiangChina
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical DevicesUrumqiXinjiangChina
- Engineering Research Center of Xinjiang and Central Asian Medicine ResourcesMinistry of EducationUrumqiXinjiangChina
| |
Collapse
|
2
|
Rosell-Hidalgo A, Bruhn C, Shardlow E, Barton R, Ryder S, Samatov T, Hackmann A, Aquino GR, Fernandes Dos Reis M, Galatenko V, Fritsch R, Dohrmann C, Walker PA. In-depth mechanistic analysis including high-throughput RNA sequencing in the prediction of functional and structural cardiotoxicants using hiPSC cardiomyocytes. Expert Opin Drug Metab Toxicol 2024; 20:685-707. [PMID: 37995132 DOI: 10.1080/17425255.2023.2273378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/05/2023] [Accepted: 09/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cardiotoxicity remains one of the most reported adverse drug reactions that lead to drug attrition during pre-clinical and clinical drug development. Drug-induced cardiotoxicity may develop as a functional change in cardiac electrophysiology (acute alteration of the mechanical function of the myocardium) and/or as a structural change, resulting in loss of viability and morphological damage to cardiac tissue. RESEARCH DESIGN AND METHODS Non-clinical models with better predictive value need to be established to improve cardiac safety pharmacology. To this end, high-throughput RNA sequencing (ScreenSeq) was combined with high-content imaging (HCI) and Ca2+ transience (CaT) to analyze compound-treated human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). RESULTS Analysis of hiPSC-CMs treated with 33 cardiotoxicants and 9 non-cardiotoxicants of mixed therapeutic indications facilitated compound clustering by mechanism of action, scoring of pathway activities related to cardiomyocyte contractility, mitochondrial integrity, metabolic state, diverse stress responses and the prediction of cardiotoxicity risk. The combination of ScreenSeq, HCI and CaT provided a high cardiotoxicity prediction performance with 89% specificity, 91% sensitivity and 90% accuracy. CONCLUSIONS Overall, this study introduces mechanism-driven risk assessment approach combining structural, functional and molecular high-throughput methods for pre-clinical risk assessment of novel compounds.
Collapse
|
3
|
Wang Q, Wang Q, Huang Q, Zhang X, Qin Z, Yu Y, Dai Y, Han J, Yao X, He L, Lin P, Yao Z. Five-layer-funnel filtering mode discovers effective components of Chinese medicine formulas: Zhishi-Xiebai-Guizhi decoction as a case study. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155678. [PMID: 38754214 DOI: 10.1016/j.phymed.2024.155678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND How to screen and identify the effective components in the complex substance system is one of the core issues in achieving the modernization of traditional Chinese medicine (TCM) formulas. However, it is still challenging to systematically screen out the effective components from the hundreds or thousands of components in a TCM formula. PURPOSE An innovative five-layer-funnel filtering mode stepwise integrating chemical profile, quantitative analysis, xenobiotic profile, network pharmacology and bioactivity evaluation was successfully presented to discover the effective components and implemented on a case study of Zhishi-Xiebai-Guizhi decoction (ZXG), a well-known TCM formula for coronary heart disease (CHD). METHODS Initially, the chemical profile of ZXG was systemically characterized. Subsequently, the representative constituents were quantitatively analyzed. In the third step, the multi-component xenobiotics profile of ZXG was systemically delineated, and the prototypes absorbed into the blood were identified and designated as the primary bioavailable components. Next, an integrated network of "bioavailable components-CHD targets-pathways-therapeutic effects" was constructed, and the crucial bioavailable components of ZXG against CHD were screened out. Lastly, the bioactivities of crucial bioavailable components were further evaluated to pinpoint effective components. RESULTS First of all, the chemical profile of ZXG was systemically characterized with the detection of 201 components. Secondly, 37 representative components were quantified to comprehensively describe its content distribution characteristics. Thirdly, among the quantified components, 24 bioavailable components of ZXG were identified based on the multi-component xenobiotic profile. Fourthly, an integrated network led to the identification of 11 crucial bioavailable components against CHD. Ultimately, 9 components (honokiol, magnolol, naringenin, magnoflorine, hesperidin, hesperetin, naringin, neohesperidin and narirutin) exhibiting myocardial protection in vitro were identified as effective components of ZXG for the first time. CONCLUSION Overall, this innovative strategy successfully identified the effective components of ZXG for the first time. It could not only significantly contribute to elucidating the therapeutic mechanism of ZXG in the treatment of CHD, but also serve as a helpful reference for the systematic discovery of effective components as well as ideal quality markers in the quality assessment of TCM formulas.
Collapse
Affiliation(s)
- Qi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiqi Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Qiaoting Huang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xinya Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zifei Qin
- Department of Pharmacology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi Dai
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jingyan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xinsheng Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liangliang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Pei Lin
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| | - Zhihong Yao
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Chukwuma CI. Antioxidative, Metabolic and Vascular Medicinal Potentials of Natural Products in the Non-Edible Wastes of Fruits Belonging to the Citrus and Prunus Genera: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:191. [PMID: 38256745 PMCID: PMC10818484 DOI: 10.3390/plants13020191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
Diabetes mellitus and related metabolic and vascular impairments are notable health problems. Fruits and vegetables contain phenolics that are beneficial to metabolic and oxidative health and useful in preventing associated disease. Scientific evidence has shown that some bioactive phenolics are more abundant in the non-edible parts (especially the peels) of many fruits than in their respective edible tissues. Fruits belonging to the Citrus and Prunus genera are commonly consumed worldwide, including in South Africa, and their non-edible wastes (peel and seed) have been shown to have antioxidative, metabolic and vascular pharmacological potentials and medicinal phytochemistry. It is therefore imperative to evaluate the pharmacological actions and phytochemical properties of the non-edible wastes of these fruits and understand how they could potentially be of medicinal relevance in oxidative, metabolic and vascular diseases, including diabetes, oxidative stress, obesity, hypertension and related cardiovascular impairments. In the absence of a previous review that has concomitantly presented the medicinal potentials of fruits wastes from both genera, this review presents a critical analysis of previous and recent perspectives on the medicinal potential of the non-edible wastes from the selected Citrus and Prunus fruits in metabolic, vascular and oxidative health. This review further exposes the medicinal phytochemistry, while elucidating the underlying mechanisms through the fruit wastes potentiates their therapeutic effects. A literature search was carried out on "PubMed" to identify peer-reviewed published (mostly 2015 and beyond) studies reporting the antidiabetic, antioxidative, antihypertensive, anti-hyperlipidemic and anti-inflammatory properties of the non-edible parts of the selected fruits. The data of the selected studies were analyzed to understand the bioactive mechanisms, bioactive principles and toxicological profiles. The wastes (seed and peel) of the selected fruits had antioxidant, anti-obesogenic, antihypertensive, anti-inflammatory, antidiabetic and tissue protective potentials. Some phenolic acids and terpenes, as well as flavonoids and glycosides such as narirutin, nobiletin, hesperidin, naringin, naringenin, quercetin, rutin, diosmin, etc., were the possible bioactive principles. The peel and seed of the selected fruits belonging to the Citrus and Prunus genera are potential sources of bioactive compounds that could be of medicinal relevance for improving oxidative, metabolic and vascular health. However, there is a need for appropriate toxicological studies.
Collapse
Affiliation(s)
- Chika I Chukwuma
- Centre for Quality of Health and Living (CQHL), Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9300, Free State, South Africa
| |
Collapse
|
5
|
Hareeri RH, Alam AM, Bagher AM, Alamoudi AJ, Aldurdunji MM, Shaik RA, Eid BG, Ashour OM. Protective Effects of 2-Methoxyestradiol on Acute Isoproterenol-Induced Cardiac Injury in Rats. Saudi Pharm J 2023; 31:101787. [PMID: 37766820 PMCID: PMC10520946 DOI: 10.1016/j.jsps.2023.101787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Myocardial injury (MI) is an important pathological driver of mortality worldwide., and arises as a result of imbalances between myocardial oxygen demand and supply. In MI, oxidative stress often leads to inflammatory changes and apoptosis. Current therapies for MI are known to cause various adverse effects. Consequently, the development of new therapeutic agents with a reduced adverse event profile is necessary. In this regard, 2-methoxyestradiol (2ME), the metabolic end-product of oestradiol, possesses anti-inflammatory and antioxidant properties. The aim of this research is to assess the impact of 2ME on cardiac injury caused by isoproterenol (ISO) in rats. Animals were separated into six groups; controls, and those receiving 2ME (1 mg/kg), ISO (85 mg/kg), ISO + 2ME (0.25 mg/kg), ISO + 2ME (0.5 mg/kg), and ISO + 2ME (1 mg/kg). 2ME significantly attenuated ISO-induced changes in electrocardiographic changes and the cardiac histological pattern. This compound also decreased lactate dehydrogenase activity, creatine kinase myocardial band and troponin levels. The ability of 2ME to act as an antioxidant was shown by a decrease in malondialdehyde concentration, and the restoration of glutathione levels and superoxide dismutase activity. Additionally, 2ME antagonized inflammation and cardiac cell apoptosis, a process determined to be mediated, at least partially, by suppression of Gal-3/TLR4/MyD88/NF-κB signaling pathway. 2ME offers protection against acute ISO-induced MI in rats and offers a novel therapeutic management option.
Collapse
Affiliation(s)
- Rawan H. Hareeri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman M. Alam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J. Alamoudi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osama M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Ahmed MI, Abdelrazek HMA, Moustafa YM, Alshawwa SZ, Mobasher MA, Abdel-Wahab BA, Abdelgawad FE, Khodeer DM. Cardioprotective Effect of Flibanserin against Isoproterenol-Induced Myocardial Infarction in Female Rats: Role of Cardiac 5-HT2A Receptor Gene/5-HT/Ca2+ Pathway. Pharmaceuticals (Basel) 2023; 16:ph16040502. [PMID: 37111259 PMCID: PMC10143970 DOI: 10.3390/ph16040502] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Myocardial infarction (MI) is a life-threatening ischemic disease and is one of the leading causes of morbidity and mortality worldwide. Serotonin (5-HT) release during myocardial ischemia plays an important role in the progression of myocardial cellular injury. This study was conducted to investigate the possible cardioprotective effect of flibanserin (FLP) against isoproterenol (ISO)-induced MI in rats. Rats were randomly divided into five groups and were treated orally (p.o.) with FLP (15, 30, and 45 mg/kg) for 28 days. ISO was administered subcutaneously (S.C.) (85 mg/kg) on the 27th and 28th days to induce MI. ISO-induced myocardial infarcted rats exhibited a significant increase in cardiac markers, oxidative stress markers, cardiac and serum 5-HT levels, and total cardiac calcium (Ca2+) concentration. ISO-induced myocardial infarcted rats also revealed a remarkable alteration of electrocardiogram (ECG) pattern and significantly upregulated expression of the 5-Hydroxytryptamine 2A (5-HT2A) receptors gene. Moreover, ISO-induced myocardial infarcted rats showed significant histopathological findings of MI and hypertrophic signs. However, pretreatment with FLP significantly attenuated the ISO-induced MI in a dose-dependent manner, as the effect of FLP (45 mg/kg) was more pronounced than that of the other two doses, FLP (15 and 30 mg/kg). The present study provides evidence for the cardioprotective efficacy of FLP against ISO-induced MI in rats.
Collapse
|
7
|
Singh S, Maurya AK, Meena A, Mishra N, Luqman S. Narirutin downregulates lipoxygenase-5 expression and induces G0/G1 arrest in triple-negative breast carcinoma cells. Biochim Biophys Acta Gen Subj 2023; 1867:130340. [PMID: 36868290 DOI: 10.1016/j.bbagen.2023.130340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) accounts for 20% of breast cancer that does not express HER2, progesterone and estrogen receptors. It is associated with a high mortality rate, morbidity, metastasis, recurrence, poor prognosis and resistance to chemotherapy. Lipoxygenase-5 (LOX-5), cyclooxygenase-2 (COX-2), cathepsin-D (CATD), ornithine decarboxylase (ODC) and dihydrofolate reductase (DHFR) are involved in breast cancer carcinogenesis; hence, there is a pressing need to identify novel chemicals that targets these enzymes. Narirutin, a flavanone glycoside abundantly present in citrus fruits, is reported to have immune-modulatory, anti-allergic and antioxidant potential. Still, the cancer chemopreventive mechanism against TNBC has not been explored. METHODS In vitro experiments, enzyme activity, expression analysis, molecular docking and MD simulation were carried out. RESULTS Narirutin suppressed the growth of MDA-MB-231 and MCF-7 in a dose-proportional manner. The pronounced effect with >50% inhibition was observed in SRB and MTT assays for MDAMB-231 cells. Unexpectedly, narirutin suppressed the proliferation of normal cells (24.51%) at 100 μM. Further, narirutin inhibits the activity of LOX-5 in cell-free (18.18 ± 3.93 μM) and cell-based (48.13 ± 7.04 μM) test systems while moderately affecting COX-2, CATD, ODC and DHFR activity. Moreover, narirutin revealed a down-regulation of LOX-5 expression with a fold change of 1.23. Besides, MD simulation experiments confirm that narirutin binding forms a stable complex with LOX-5 and improves the stability and compactness of LOX-5. In addition, the prediction analysis demonstrates that narirutin could not cross the blood-brain barrier and did not act as an inhibitor of different CYPs. CONCLUSIONS AND SIGNIFICANCE Narirutin could be a potent cancer chemopreventive lead for TNBC, further paving the way for synthesizing novel analogues.
Collapse
Affiliation(s)
- Shilpi Singh
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Akhilesh Kumar Maurya
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| | - Nidhi Mishra
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
8
|
Feriani A, Tir M, Aldahmash W, Mnafgui K, Hichem A, Gómez-Caravaca AM, Del Mar Contreras M, Taamalli A, Alwasel S, Segura-Carretero A, Tlili N, Harrath AH. In vivo evaluation and molecular docking studies of Schinus molle L. fruit extract protective effect against isoproterenol-induced infarction in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80910-80925. [PMID: 35729379 DOI: 10.1007/s11356-022-21422-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The aim of the current study was to assess the potential cardiopreventive effect of the methanolic extract of S. molle L. (MESM) on isoproterenol-induced infarction in rats. The biomolecules content was evaluated using HPLC-DAD-ESI-QTOF-MS/MS analysis. On the 29th and 30th days, two successive injections of isoproterenol (ISO) were given to Wistar rats to provoke myocardial infarction following pretreatment with either MESM (60 mg/kg b.w) or Pidogrel (Pid; 2 mg/kg b.w.). A total of sixteen phenolics were identified with masazino-flavanone as the most prevalent compound (1726.12 µg/g dm). Results showed that MESM offered cardioprevention by normalizing the ST segment and reducing the elevated cardiac risk parameters. The altered lipid biomarkers together with the plasma ionic levels were improved. Additionally, MESM inhibited the cardiac oxidative stress generated by ISO injection though enhancing antioxidant enzymes (GSH, CAT, SOD and GPX) which reduced lipid peroxidation and protein oxidation. MESM reduced myocardial apoptosis by significantly repressing mRNA expressions of Caspase-3 and Bax, with an upregulated Bcl-2 expression. Moreover, MESM reduced DNA fragmentation as well as the infarct size observed by TTC staining. In addition, MESM exhibited an antifibrotic effect by downregulating TGF-1β expression and reducing collagen deposition in myocardial tissue, as confirmed by Trichrom Masson analysis. The histopathological findings revealed less muscle separation and fewer inflammatory cells in the ISO + MESM-treated rats. Results of the docking simulation indicated that catechin in MESM was inhibitory mainly due to hydrogen bonding interactions with PDI, ACE and TGF-β1 proteins which could highlight the antithrombotic and antifibrotic capacity of MESM.
Collapse
Affiliation(s)
- Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, University of Gafsa, Gafsa, Tunisia
| | - Meriam Tir
- Laboratoire d'Ecologie, de Biologie Et de Physiologie Des Organismes Aquatiques, LR18ES41, Faculté Des Sciences de Tunis, Université Tunis EL Manar, 2092, Tunis, Tunisia
| | - Waleed Aldahmash
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Alimi Hichem
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, University of Gafsa, Gafsa, Tunisia
| | - Ana María Gómez-Caravaca
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18016, Granada, Spain
| | - María Del Mar Contreras
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain
| | - Amani Taamalli
- Laboratory of Olive Biotechnology, Center of Biotechnology of Borj-Cédria, BP. 901, 2050, Hammam-Lif, Tunisia
| | - Saleh Alwasel
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Avda. Fuentenueva S/N, 18071, Granada, Spain
- Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. del Conocimiento s/n, EdificioBioregión, 18016, Granada, Spain
| | - Nizar Tlili
- Institut Supérieur Des Sciences Et Technologies de L'Environnement, Université de Carthage, Carthage, Tunisia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
9
|
Bhattacharjee S, Elancheran R, Dutta K, Deb PK, Devi R. Cardioprotective potential of the antioxidant-rich bioactive fraction of Garcinia pedunculata Roxb. ex Buch.-Ham. against isoproterenol-induced myocardial infarction in Wistar rats. Front Pharmacol 2022; 13:1009023. [PMID: 36267270 PMCID: PMC9577557 DOI: 10.3389/fphar.2022.1009023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
This Study aimed to characterise the phenolic compounds in Garcinia pedunculata extract and assess their potential antioxidant activity as well as its cardioprotective potential in isoproterenol-induced cardiac hypertrophy in an experimental animal model. In vitro antioxidant properties were determined using DPPH, ABTS, FRAP, PMD assays. In vitro lipid peroxidation experiment was also performed with heart tissues. Cardioprotective and cardiotoxicity effects were determined using the cell line studies. The cardioprotective effect of GP was assessed in a rat model of isoproterenol-(ISO-) induced cardiac hypertrophy by subcutaneous administration. Heart weight/tail length ratio and cardiac hypertrophy indicators were reduced after oral administration of GP. Additionally, GP reduced oxidative stress and heart inflammation brought on by ISO. In H9c2 cells, the antihypertrophic and anti-inflammatory effects of the extract of GP were seen in the presence of ISO, which were further supported by the in vivo observations. This study makes a compelling case for the possibility that supplementing with dried GP fruit can prevent heart hypertrophy by reducing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Swarnali Bhattacharjee
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - R. Elancheran
- Department of Chemistry, Annamalai University, Chidambaram, TamilNadu, India
- *Correspondence: R. Elancheran, ; Rajlakshmi Devi,
| | - Kasturi Dutta
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
| | - Prashanta Kumar Deb
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, Assam, India
- *Correspondence: R. Elancheran, ; Rajlakshmi Devi,
| |
Collapse
|
10
|
Shaikh F, Bhatt LK. Cardioprotective effect of Polymyxin-B and Dantrolene combination on isoproterenol-induced hypertrophic cardiomyopathy in rats, via attenuation of Calmodulin-dependent protein kinase II. Chem Biodivers 2022; 19:e202200309. [PMID: 36037238 DOI: 10.1002/cbdv.202200309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy is a major cause of mortality worldwide. In this study, we hypothesized that the combination of Dantrolene and Polymyxin-B will provide cardioprotective action against isoproterenol-induced hypertrophic cardiomyopathy via attenuation of Calmodulin-dependent protein kinase II (CaMKII). Hypertrophic cardiomyopathy was induced in rats by subcutaneous administration of isoproterenol (5 mg/kg) for 14 days. Simultaneously, animals were treated with Polymyxin-B per se , Dantrolene per se , and Dantrolene and Polymyxin-B combination for 14 days. Hemodynamic parameters, biochemical parameters, and histological analysis were performed. Administration of isoproterenol for 14 days resulted in severe myocardial damage, characterized by cardiac hypertrophy and increase serum CK-MB, CK-Nac, LDH, AST, and ALT levels. It also caused alteration in electrocardiogram and blood pressure. A significant increase in CaMKII was observed in heart homogenate. Treatment with the Polymyxin-B and Dantrolene combination significantly ameliorated cardiac hypertrophy, biochemical parameters, ECG parameters, and heart histopathology. Further, significant attenuation in CaMKII levels was observed. The effect of the combination was more than per se treatment. Results of the current study showed that the combination of Polymyxin-B and Dantrolene prevented the development of isoproterenol-induced hypertrophic cardiomyopathy in rats via attenuation of the CaMKII.
Collapse
Affiliation(s)
- Faiza Shaikh
- Dr Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, Vile Parle (W), Mumbai, INDIA
| | - Lokesh Kumar Bhatt
- Dr Bhanuben Nanavati College of Pharmacy, Department of Pharmacology, Vile Parle (W), 400056, Mumbai, INDIA
| |
Collapse
|
11
|
Mitra S, Lami MS, Uddin TM, Das R, Islam F, Anjum J, Hossain MJ, Emran TB. Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomed Pharmacother 2022; 150:112932. [PMID: 35413599 DOI: 10.1016/j.biopha.2022.112932] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-based phytochemicals are now being used to treat plenty of physiological diseases. Herbal drugs have gained popularity in recent years because of their strength, purity, and cheap cost-effectiveness. Citrus fruits contain significant amounts of flavanones, which falls to the category of polyphenols. Flavanones occupy a major fraction of the total polyphenols present in the plasma when orange juice is taken highly or in moderate states. Narirutin is a disaccharide derivative available in citrus fruits, primarily dihydroxy flavanone. From a pharmacological viewpoint, narirutin is a bioactive phytochemical with therapeutic efficacy. Many experimental researches were published on the use of narirutin. Anticancer activity, neuroprotection, stress relief, hepatoprotection, anti-allergic activity, antidiabetic activity, anti-adipogenic activity, anti-obesity action, and immunomodulation are a couple of the primary pharmacological properties. Narirutin also has antioxidant, and anti-inflammatory activities. The ultimate goal of this review is to provide the current scenario of pharmacological research with narirutin; to make a better understanding for therapeutic potential of narirutin, as well as its biosynthesis strategies and side effects. Extensive literature searches and studies were undertaken to determine the pharmacological properties of narirutin.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mashia Subha Lami
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tanvir Mahtab Uddin
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh.
| |
Collapse
|
12
|
Dorado C, Cameron RG, Manthey JA, Bai J, Ferguson KL. Analysis and Potential Value of Compounds Extracted From Star Ruby, Rio Red, and Ruby Red Grapefruit, and Grapefruit Juice Processing Residues via Steam Explosion. Front Nutr 2021; 8:691663. [PMID: 34589509 PMCID: PMC8473638 DOI: 10.3389/fnut.2021.691663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Culled whole grapefruit (WG) and grapefruit juice processing residues (GP) are currently incorporated into low-cost animal feed. If individual chemical components found within these side streams could be recovered as high-value coproducts, this would improve the overall value of the grapefruit crop. In this study, pectic hydrocolloids, sugars, volatiles, phenolics, and flavonoids were extracted from Star Ruby, Rio Red, and Ruby Red GP and WG using a continuous pilot scale steam explosion system. Up to 97% of grapefruit juice oils and peel oils could be volatilized and contained 87-94% d-limonene. The recovery of pectin, as determined by galacturonic acid content, was between 2.06 and 2.72 g 100 g-1. Of the phenolics and flavonoids analyzed in this study, narirutin and naringin were extracted in the amounts of up to 10,000 and 67,000 μg g-1, respectively.
Collapse
Affiliation(s)
- Christina Dorado
- U.S. Horticultural Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Fort Pierce, FL, United States
| | | | | | | | | |
Collapse
|
13
|
Barve K. Garcinol enriched fraction from the fruit rind of Garcinia indica ameliorates atherosclerotic risk factor in diet induced hyperlipidemic C57BL/6 mice. J Tradit Complement Med 2021; 11:95-102. [PMID: 33728268 PMCID: PMC7936105 DOI: 10.1016/j.jtcme.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/19/2019] [Accepted: 11/08/2019] [Indexed: 02/08/2023] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Kalyani Barve
- Shobhaben Pratapbhai Patel- School of Pharmacy and Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, 400056, Maharashtra, India
| |
Collapse
|
14
|
Khdhiri E, Mnafgui K, Ncir M, Feriani A, Ghazouani L, Hajji R, Jallouli D, Abid M, Jamoussi K, Allouche N, Ammar H, Abid S. Cardiopreventive capacity of a novel (E)-N'-(1-(7-methoxy-2-oxo-2H-chromen-3-yl) ethylidene)-4-methylbenzenesulfonohydrazide against isoproterenol-induced myocardial infarction by moderating biochemical, oxidative stress, and histological parameters. J Biochem Mol Toxicol 2021; 35:e22747. [PMID: 33624406 DOI: 10.1002/jbt.22747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 12/12/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
This study is carried out to assess the cardiopreventive effect of (E)-N'-(1-(7-methoxy-2-oxo-2H-chromen-3-yl) ethylidene)-4-methylbenzenesulfonohydrazide or SHC, a novel synthesized coumarin, against myocardial infarction induced by isoproterenol (ISO). The SHC compound was identified and characterized by spectral methods (infrared, 1 H NMR [nuclear magnetic resonance], 13 C NMR, Nuclear Overhauser Effect Spectroscopy, and high-resolution mass spectroscopy). Male Wistar rats were divided into four groups: Control, ISO (rats were injected subcutaneously by 85 mg/kg body weight [BW] of isoproterenol at Days 6 and 7 of the experience), ISO + SHC (150 µg/kg BW, orally for 7 days) and ISO + acenocoumarol (150 µg/kg BW, orally for 7 days). Results showed that ISO induced a remarkable alteration of electrocardiogram (ECG) pattern and increases of plasma cardiac troponin T, creatine kinase-MB, total cholesterol, triglycerides, low-density lipoprotein-cholesterol, lactate dehydrogenase, aspartate transaminase, and malondialdehyde. In addition, ISO reduced the high-density lipoprotein-cholesterol content and the activities of superoxide dismutase and glutathione peroxidase, with the induction of myocardial necrosis. However, SHC administration revealed a significant decrease in cardiac dysfunction markers, restored normal ECG pattern, as well as improving lipids parameters. Moreover, SHC treatment remarkably alleviated the cardiac oxidative stress and the myocardial remodeling process. Overall, the SHC offers good protection from acute myocardial infarction through the antioxidant capacity.
Collapse
Affiliation(s)
- Emna Khdhiri
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Kais Mnafgui
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Marwa Ncir
- Laboratory of Animal Physiology, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Anouar Feriani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Lakhdar Ghazouani
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Raouf Hajji
- Service de Médecine Interne, Hôpital de Sidi Bouzid, Sidi Bouzid 9100, Tunisie, Université de Sousse, Faculté de Médecine de Sousse, Sousse 4200, Tunisie
| | - Dana Jallouli
- Biochemistry Laboratory, CHU Habib Bourguiba of Sfax, Sfax, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts, Jouf University, Al Jawf, Saudi Arabia
| | - Kamel Jamoussi
- Biochemistry Laboratory, CHU Habib Bourguiba of Sfax, Sfax, Tunisia
| | - Noureddine Allouche
- Laboratory of Organic Chemistry LR17ES08 (Natural Substances Team), Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Houcine Ammar
- Laboratoire de Chimie Appliquée "Hétérocycles Corps Gras & Polymères", Faculté des Sciences, Université de Sfax, Sfax, Tunisie
| | - Souhir Abid
- Chemistry Department, College of Science and Arts, Jouf University, Al Jawf, Saudi Arabia
| |
Collapse
|
15
|
Wang Y, Liu XJ, Chen JB, Cao JP, Li X, Sun CD. Citrus flavonoids and their antioxidant evaluation. Crit Rev Food Sci Nutr 2021; 62:3833-3854. [PMID: 33435726 DOI: 10.1080/10408398.2020.1870035] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant ability is the link and bridge connecting a variety of biological activities. Citrus flavonoids play an essential role in regulating oxidative stress and are an important source of daily intake of antioxidant supplements. Many studies have shown that citrus flavonoids promote health through antioxidation. In this review, the biosynthesis, composition and distribution of citrus flavonoids were concluded. The detection methods of antioxidant capacity of citrus flavonoids were divided into four categories: chemical, cellular, animal and clinical antioxidant capacity evaluation systems. The modeling methods, applicable scenarios, and their relative merits were compared based on these four systems. The antioxidant functions of citrus flavonoids under different evaluation systems were also discussed, especially the regulation of the Nrf2-antioxidases pathway. Some shortcomings in the current research were pointed out, and some suggestions for progress were put forward.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiao-Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Gatarić N, Ilić A, Todorović D, Mutavdžin S, Jakovljević-Uzelac J, Stanković S, Đurić D. Functional dynamics of myocardial injury biomarkers production during acute isoprenaline treatment in rats. MEDICINSKI PODMLADAK 2021. [DOI: 10.5937/mp72-31512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Isoprenaline or isoproterenol (1-(3,4-dihydroxyphenyl)-2-isopropylaminoethanolhydrochloride; ISO), a synthetic b-adrenergic agonist, can be used to establish myocardial ischemia, cardiotoxicity, necrosis and/or an experimental model of infarction in rats. Aim: Determination of the dynamics of myocardial injury biomarkers production of aspartate transaminase (AST), lactate dehydrogenase (LDH), creatine kinase (CK), and high-sensitive troponin T (hsTnT), with changes on electrocardiogram (ECG) parameters during the subcutaneous aplication of ISO in male Wistar rats. Material and methods: All animals (n = 23) were divided into two groups: control group (n = 11) treated with a saline solution, during two consecutive days (0,2 ml/kg b.m. daily, sc); and the ISO group (n = 12) treated with isoprenaline, during two consecutive days (85 mg/kg b.m. daily, sc). Blood was drawn from the rat tail vein in both groups, in order to determine serum activity levels of myocardial injury biomarkers, and an ECG (n = 6) was registered prior to the application, as well as 48h following the first dose of of saline solution or isoprenaline. Results: In comparison to the control group, in which no significant enzyme activities elevation (p > 0.05) nor ECG changes were registered, ISO group presented a significant rise of two clinically significant biomarkers of acute myocardial injury/myocardial infarction (AMI), CK (p = 0.05) and hsTnT (p < 0.01), as well as an ST segment elevation, with a patognomonic ECG change. Conclusion: Obtained results support previous studies, proving that isoprenaline represents an adequate experimental model for myocardial injury/AMI induction, and a "golden standard" for evaluating potential cardioprotective effects of pharmacological and non-pharmacological therapeutic modalities, with the ultimate goal of lowering the degree of lesions and improving post-infarction myocardium function.
Collapse
|
17
|
Liu C, Yan Q, Gao C, Lin L, Wei J. Study on antioxidant effect of recombinant glutathione peroxidase 1. Int J Biol Macromol 2020; 170:503-513. [PMID: 33383079 DOI: 10.1016/j.ijbiomac.2020.12.183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Abstract
Glutathione peroxidase 1 (GPx1) is an important antioxidant selenium enzyme and has a good prospect for drug development. However, the expression of GPx1 requires a complex expression mechanism, which makes the drug development of recombinant GPx1 (rGPx1) difficult. In the previous study, we expressed highly active rhGPx1 in amber-less Escherichia coli by using a novel chimeric tRNAUTuT6. However, the antioxidant effect of rhGPx1 at the cellular and animal levels has not been verified. In this study, we established isoproterenol (ISO)-induced oxidative stress injury models to study the antioxidant effect of rhGPx1 at the cellular and animal levels. Meanwhile, in order to more accurately reflect the antioxidant effect of rGPx1 in mice, we used the same method to express recombinant mouse GPx1 (rmGPx1) as a control for rhGPx1. The results of a study showed that rhGPx1 has a good antioxidant effect at the cellular and animal levels. However, due to species differences, rhGPx1 had immunogenicity in mice and antibodies of rhGPx1 could inhibit its antioxidant activity, so the antioxidant effect of rhGPx1 was not as good as rmGPx1 in mice. Nevertheless, this study provides a reliable theoretical basis for the development of rhGPx1 as an antioxidant drug.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Qi Yan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Chao Gao
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Liangru Lin
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130000, PR China.
| |
Collapse
|
18
|
Patel P, Barve K, Bhatt LK. Narirutin-rich fraction from grape fruit peel protects against transient cerebral ischemia reperfusion injury in rats. Nutr Neurosci 2020; 25:920-930. [PMID: 32965176 DOI: 10.1080/1028415x.2020.1821518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objective: Ischemic stroke is one of the leading causes of disability in adults worldwide. The present study was aimed to evaluate the efficacy of Narirutin-rich fraction (NRF), obtained from grape fruit peel, on cerebral ischemia/reperfusion injury in rats.Methods: Male Wistar rats (180-200 g) were subjected to bilateral carotid artery occlusion for 30 min followed by reperfusion for 24 h to induce cerebral ischemia/reperfusion injury. NRF (150, 300 mg/kg, oral) was administered for 7 days continuously before animals were subjected to ischemia/reperfusion injury. Various behavioral tests (for measurement of motor coordination, locomotor activity, and spatial memory), biochemical parameters (lipid peroxidation, superoxide dismutase, and catalase activity), and histopathological alterations were assessed.Results: Seven-day NRF (150 and 300 mg/kg) pretreatment significantly improved neurobehavioral alterations and histological findings as compared to the disease control group. Further NRF treatment significantly reduced oxidative damage as indicated by improved lipid peroxidation, superoxide dismutase, and catalase activity as compared to disease control animals.Conclusion: The present study demonstrated the protective effect of NRF against cerebral ischemia/reperfusion injury in rats. The results suggest that NRF can be a potential pretreatment option against cerebral ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Paresh Patel
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kalyani Barve
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, NMIMS University, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
19
|
Hamed AB, Mantawy EM, El-Bakly WM, Abdel-Mottaleb Y, Azab SS. Putative anti-inflammatory, antioxidant, and anti-apoptotic roles of the natural tissue guardian methyl palmitate against isoproterenol-induced myocardial injury in rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00044-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Myocardial injury is considered as a worldwide main cause of morbidity and mortality. The present study aimed to investigate the probable cardioprotective activity of the naturally occurring endogenous fatty acid ester methyl palmitate (MP) against isoproterenol (ISO)-induced myocardial injury in rats and the possible underlying molecular mechanisms. The study was carried out in two consecutive sets of experiments; the first set screened the cardioprotective dose of MP in ISO-intoxicated rats. In the second set, forty male Sprague Dawley rats received either MP (150 mg/kg, p.o) three times/week for 2 weeks and/or 2 consecutive doses of ISO separated by 24 h (85 mg/kg, s.c) on the 13th and 14th days. Different cardiotoxicity and oxidative stress markers were assessed. Furthermore, endothelial nitric oxide synthase (eNOS) levels were determined. For detection of apoptosis, Bax, Bcl-2, and caspase 3 were estimated. To assess inflammation, toll-like receptor 4 (TLR-4) and tumor necrosis factor-alpha (TNF-α) were measured using ELISA. Meanwhile, nuclear factor kappa B (NF-kB) and cyclooxygenase-2 (COX-2) were detected immunohistochemically.
Results
Pretreatment with MP significantly ameliorated the cardiotoxicity and oxidative stress markers. It also markedly elevated eNOS content, decreased apoptotic marker expression, and mitigated TLR-4 activation and other inflammatory markers. Electrocardiography and histopathological examination also confirmed the cardioprotective effect of MP.
Conclusion
The findings of this study indicated that MP possesses a potent cardioprotective activity against ISO-induced myocardial injury through its significant antioxidant, anti-apoptotic, anti-inflammatory, and vasodilatation activities.
Graphical abstract
Collapse
|
20
|
(E)-N'-(1-(7-Hydroxy-2-Oxo-2H-Chromen-3-Yl) Ethylidene) Benzohydrazide, a Novel Synthesized Coumarin, Ameliorates Isoproterenol-Induced Myocardial Infarction in Rats through Attenuating Oxidative Stress, Inflammation, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2432918. [PMID: 32215169 PMCID: PMC7079259 DOI: 10.1155/2020/2432918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The present study was directed to investigate the effect of precotreatment with (E)-N'-(1-(7-hydroxy-2-oxo-2H-chromen-3-yl) ethylidene) benzohydrazide (7-hyd.HC), a novel potent synthesized coumarin, on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. The hydrazone compound was characterized by IR, 1D, and 2D NMR analyses. Experimental induction of MI in rats was established by ISO (85 mg/kg/day, s.c) for two consecutive days (6th and 7th days). 7-hyd.HC or sintrom was given for 7 days prior and simultaneous to ISO injection. 7-hyd.HC offered a cardiopreventive effect by preventing heart injury marker leakage (LDH, ALT, AST, CK-MB, and cTn-I) from cardiomyocytes and normalizing cardiac function and ECG pattern, as well as improving lipid profile (TC, TG, LDL-C, and HDL-C), which were altered by ISO administration. Moreover, 7-hyd.HC precotreatment significantly mitigated the oxidative stress biomarkers, as evidenced by the decrease of lipid peroxidation and the increased level of the myocardial GSH level together with the SOD, GSH-Px, and catalase activities. 7-hyd.HC inhibited the cardiac apoptosis by upregulating the expression of Bcl-2 and downregulating the expression of Bax and caspase-3 genes. In addition, 7-hyd.HC reduced the elevated fibrinogen rate and better prevented the myocardial necrosis and improved the interstitial edema and neutrophil infiltration than sintrom. Overall, 7-hyd.HC ameliorated the severity of ISO-induced myocardial infarction through improving the oxidative status, attenuating apoptosis, and reducing fibrinogen production. The 7-hyd.HC actions could be mediated by its antioxidant, antiapoptotic, and anti-inflammatory capacities.
Collapse
|
21
|
Phikud Navakot Modulates the Level of Pro-Inflammatory Mediators and the Protein Expression of SOD1 and 2 and the Nrf2/HO-1 Signaling Pathway in Rats with Acute Myocardial Infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4823645. [PMID: 31641366 PMCID: PMC6766678 DOI: 10.1155/2019/4823645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Phikud Navakot (PN) is nine major herbs in a famous traditional Thai recipe namely “Yahom Navakot” used to treat cardiovascular disorders. This study investigated the cardioprotective effects of PN formula on isoproterenol-induced myocardial infarction (IMI) in Sprague-Dawley rats. Forty-five rats were randomly divided into nine groups (n = 5 per group): the control, the IMI, the IMI + propranolol, the control or the IMI + PN formula (PN ethanolic extract at doses of 64, 127, or 255 mg/kg) by oroesophageal gavage for 28 days. The ST segment and serum troponin T levels were significantly increased in IMI rats. PN did not eliminate tissue necrosis, infiltration of inflammatory cells, or interstitial edema in IMI rats. All doses of PN decreased (p < 0.001) serum TNF-α and IL-6 levels. PN (127 and 255 mg/kg) up-regulated (p < 0.05) heme oxygenase (HO)-1 expression, whereas PN (255 mg/kg) significantly increased superoxide dismutase (SOD) 1 and 2 expression, compared with IMI rats. Nuclear factor erythroid 2-related factor 2 (Nrf2) and HO-1 expression significantly increased in IMI rats and IMI rats that received PN. PN formula possesses potential anti-inflammatory and antioxidant properties by modulating the levels of TNF-α, IL-6 and antioxidant enzymes. Our study reveals a novel cardioprotective effect of PN in IMI rats through the Nrf2/HO-1 signaling.
Collapse
|