1
|
Brito IA, Castro Levatti EV, Regasini LO, Ferreira EA, Lopes FB, Fernandes JPS, Batista JM, Tempone AG, Lago JHG. Homologous acetylenic acetogenins from Porcelia macrocarpa R.E. (Fries) displayed potent activity against amastigotes from Trypanosoma cruzi. PHYTOCHEMISTRY 2025; 231:114360. [PMID: 39672219 DOI: 10.1016/j.phytochem.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/15/2024]
Abstract
As part of our continuous study on the Annonaceae species Porcelia macrocarpa, in the present work, eight chemically related 2-alkyl-3-hydroxy-4-methyl-γ-lactones (1-8) were isolated. Their structures were characterised by NMR, MS, and VCD. Their antitrypanosomal activity was evaluated in vitro against intracellular amastigotes with EC50 values ranged from 13.9 to 1.1 μM for compounds 1-3 and 6-8, while compounds 4 and 5 were inactive (EC50 > 100 μM). Compounds 1-8 did not exert toxicity against NCTC cells at the highest tested concentration (CC50 > 200 μM). Compared with the standard drug benznidazole (EC50 = 3.6 μM and SI > 54.6), compound 8 proved to be the most potent γ-lactone with an EC50 of 1.1 μM and an SI of >181.8. Finally, the structure-activity relationship analysis suggested that flexibility and length of side chain of the related γ-lactones 1-8 play an important role in the activity against amastigotes. The results contribute to the discovery of new molecular prototypes that can be used as scaffolds for developing drugs to treat Chagas disease.
Collapse
Affiliation(s)
- Ivanildo A Brito
- Centre for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09280-560, Brazil
| | | | - Luis O Regasini
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP, 15054-000, Brazil
| | - Edgard A Ferreira
- School of Engineering, Mackenzie Presbyterian University, São Paulo, SP, 01302-907, Brazil
| | - Flavia B Lopes
- Department of Medicine, Federal University of São Paulo, São Paulo, SP, 04023-900, Brazil
| | - João Paulo S Fernandes
- Department of Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, 09913-030, Brazil
| | - João M Batista
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, 12231-280, Brazil
| | - Andre G Tempone
- Centre for Pathophysiology, Butantan Institute, São Paulo, SP, 05585-000, Brazil.
| | - João Henrique G Lago
- Centre for Natural and Human Sciences, Federal University of ABC, Santo Andre, SP, 09280-560, Brazil.
| |
Collapse
|
2
|
Alves Reis IM, da Silva GR, de Mattos Oliveira L, Coelho Dos Santos Junior M, Sarmento da Silva TM, Curcino Vieira IJ, Braz-Filho R, Romanelli MM, Amaral M, Tempone AG, Ghilardi Lago JH, Branco A. In Vitro and In Silico Evaluation of the Leishmanicidal and Trypanocidal Activities of Lignan Methylpiperitol Isolated from Persea Fulva. Chem Biodivers 2024; 21:e202400678. [PMID: 39086087 DOI: 10.1002/cbdv.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/13/2024] [Indexed: 08/02/2024]
Abstract
Neglected Tropical Diseases are a significant concern as they encompass various infections caused by pathogens prevalent in tropical regions. The limited and often highly toxic treatment options for these diseases necessitate the exploration of new therapeutic candidates. In the present study, the lignan methylpiperitol was isolated after several chromatographic steps from Persea fulva L. E. Koop (Lauraceae) and its leishmanicidal and trypanocidal activities were evaluated using in vitro and in silico approaches. The chemical structure of methylpiperitol was defined by NMR and MS spectral data analysis. The antiprotozoal activity of methylpiperitol was determined in vitro and indicated potency against trypomastigote forms of Trypanosoma cruzi (EC50 of 4.5±1.1 mM) and amastigote forms of Leishmania infantum (EC50 of 4.1±0.5 mM), with no mammalian cytotoxicity against NCTC cells (CC50>200 mM). Molecular docking studies were conducted using six T. cruzi and four Leishmania. The results indicate that for the molecular target hypoxanthine phosphoribosyl transferase in T. cruzi and piteridine reductase 1 of L. infatum, the methylpiperitol obtained better results than the crystallographic ligand. Therefore, the lignan methylpiperitol, isolated from P. fulva holds potential for the development of new prototypes for the treatment of Neglected Tropical Diseases, especially leishmaniasis.
Collapse
Affiliation(s)
- Isabella Mary Alves Reis
- Laboratório de Fitoquímica, Departamento de Saúde, Universidade Estadual de Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | - Girliane Regina da Silva
- Laboratório de Bioprospecção Fitoquímica, Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil
| | - Larissa de Mattos Oliveira
- Laboratório de Fitoquímica, Departamento de Saúde, Universidade Estadual de Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | | | - Tania Maria Sarmento da Silva
- Laboratório de Bioprospecção Fitoquímica, Departamento de Química, Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Raimundo Braz-Filho
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense - Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
- PVE-FAPERJ/DEQUIM-ICE - Universidade Federal Rural do Rio de Janeiro, 23894-374, Seropédica, RJ, Brazil
| | | | - Maiara Amaral
- Laboratório de Fisiopatologia, Instituto Butantan, 05503-900, São Paulo, SP, Brazil
| | | | | | - Alexsandro Branco
- Laboratório de Fitoquímica, Departamento de Saúde, Universidade Estadual de Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| |
Collapse
|
3
|
Galhardo TS, Ueno AK, Costa-Silva TA, Tempone AG, Carvalho WA, Fischmeister C, Bruneau C, Mandelli D, Lago JHG. New derivatives from dehydrodieugenol B and its methyl ether displayed high anti-Trypanosoma cruzi activity and cause depolarization of the plasma membrane and collapse the mitochondrial membrane potential. Chem Biol Interact 2022; 366:110129. [PMID: 36067825 DOI: 10.1016/j.cbi.2022.110129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/04/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022]
Abstract
In the present work, dehydrodieugenol B (1) and its methyl ether (2), isolated from Nectandra leucantha twigs, were used as starting material for the preparation of two new derivatives (1a and 2a) containing an additional methoxycarbonyl unit on allyl side chains. Compounds 1a and 2a demonstrated activity against trypomastigotes (EC50 values of 13.5 and 23.0 μM, respectively) and against intracellular amastigotes (EC50 values of 10.2 and 6.1 μM, respectively). Additionally, compound 2a demonstrated no mammalian cytotoxicity up to 200 μM whereas compound 1a exhibited a CC50 value of 139.8 μM. The mechanism of action studies of compounds 1a and 2a demonstrated a significant depolarization of the plasma membrane potential in trypomastigotes, followed by a mitochondrial membrane potential collapse. Neither calcium level nor reactive oxygen species alterations were observed after a short-time incubation. Considering the potential of compound 2a against T. cruzi and its simple preparation from the natural product 2, isolated from N. leucantha, this compound could be considered a new hit for future drug design studies in Chagas disease.
Collapse
Affiliation(s)
- Thalita S Galhardo
- Center of Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, Brazil
| | - Anderson K Ueno
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, 09972-270, Brazil
| | - Thaís A Costa-Silva
- Center of Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, Brazil; SENAI Institute of Innovation in Biotechnology, 01130-000, São Paulo, Brazil
| | - André G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, 01246-000, Brazil
| | - Wagner A Carvalho
- Center of Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, Brazil
| | - Cedric Fischmeister
- Institut des Sciences Chimiques de Rennes, University of Rennes, Rennes, UMR6226, 35000, France
| | - Christian Bruneau
- Institut des Sciences Chimiques de Rennes, University of Rennes, Rennes, UMR6226, 35000, France
| | - Dalmo Mandelli
- Center of Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, Brazil.
| | - João Henrique G Lago
- Center of Natural and Human Sciences, Federal University of ABC, Santo Andre, 09210-580, Brazil.
| |
Collapse
|
4
|
Unsaturated lipids modulating the interaction of the antileishmanial isolinderanolide E with models of cellular membranes. Bioorg Chem 2022; 124:105814. [PMID: 35461015 DOI: 10.1016/j.bioorg.2022.105814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 11/23/2022]
Abstract
The present work evaluated the antiprotozoal activity of isolinderanolide E, isolated from the Brazilian plant Nectandra oppositifolia, against promastigote forms of Leishmania (Leishmania) amazonensis. The compound exhibited an EC50 value of 20.3 μM, similar to the positive control miltefosine (IC50 of 19.4 μM), and reduced toxicity to macrophages (CC50 > 200 μM). Based on these results, Langmuir monolayers of two unsaturated lipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), were employed as a model of mammalian and parasite membranes, respectively, to study the interaction of isolinderanolide E at a molecular level. The films were characterized with tensiometry (surface pressure-area isotherms and surface pressure-time curves), infrared spectroscopy, and Brewster angle microscopy (BAM). This compound changed the profile of the isotherms leading to fluid DOPC and DOPE monolayers, which were not able to attain rigid states even with compression. Infrared spectroscopy showed that the bioactive compound decreases the trans/gauche ratio conformers related to the molecular conformational disorder. BAM showed the formation of specific aggregates upon drug incorporation. In conclusion, isolinderanolide E changes the thermodynamic, mechanical, structural, and morphological characteristics of the monolayer of these unsaturated lipids, which may be essential to understand the action at the molecular level bioactives in biointerfaces.
Collapse
|
5
|
Conserva GA, Costa-Silva TA, Quirós-Guerrero LM, Marcourt L, Wolfender JL, Queiroz EF, Tempone AG, Lago JHG. Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca 2+ from intracellular pools of Trypanosoma cruzi affecting the bioenergetics system. Chem Biol Interact 2021; 349:109661. [PMID: 34537181 DOI: 10.1016/j.cbi.2021.109661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/12/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Phytochemical analysis of EtOH extract from leaves of Nectandra oppositifolia afforded three flavonoids: kaempferol (1), kaempferol-3-O-α-rhamnopyranoside (2) and kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside (3), which were characterized by NMR and ESI-HRMS. When tested against the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, flavonoids 1 and 3 were effective to kill the trypomastigotes with IC50 values of 32.0 and 6.7 μM, respectively, while flavonoid 2 was inactive. Isolated flavonoids 1-3 were also tested in mammalian fibroblasts and showed CC50 values of 24.8, 48.7 and 153.1 μM, respectively. Chemically, these results suggested that the free aglycone plays an important role in the bioactivity while the presence of p-coumaroyl unities linked in the rhamnoside unity is important to enhance the antitrypanosomal activity and reduce the mammalian cytotoxicity. The mechanism of cellular death was investigated for the most potent flavonoid 3 in the trypomastigotes using fluorescent and luminescent-based assays. It indicated that this compound induced neither permeabilization of the plasma membrane nor depolarization of the membrane electric potential. However, early time incubation (20 min) with flavonoid 3 resulted in a constant elevation of the Ca2+ levels inside the parasite. This effect was followed by a mitochondrial imbalance, leading to a hyperpolarization and depolarization of the mitochondrial membrane potential, with reduction of the ATP levels. During this time, the levels of reactive oxygen species levels (ROS) were unaltered. The leakage of Ca2+ from the intracellular pools can affect the bioenergetics system of T. cruzi, leading to the parasite death. Therefore, flavonoid 3 can be a useful tool for future studies against T. cruzi parasites.
Collapse
Affiliation(s)
- Geanne A Conserva
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP, 09210-180, Brazil.
| | - Thais A Costa-Silva
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP, 09210-180, Brazil.
| | - Luis M Quirós-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Emerson F Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, Geneva, Switzerland.
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, SP, 01246-000, Brazil.
| | - João Henrique G Lago
- Center of Natural Sciences and Humanities, Federal University of ABC, Santo Andre, SP, 09210-180, Brazil.
| |
Collapse
|
6
|
Kourbeli V, Chontzopoulou E, Moschovou K, Pavlos D, Mavromoustakos T, Papanastasiou IP. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021; 26:molecules26154629. [PMID: 34361781 PMCID: PMC8348971 DOI: 10.3390/molecules26154629] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The protozoan diseases Human African Trypanosomiasis (HAT), Chagas disease (CD), and leishmaniases span worldwide and therefore their impact is a universal concern. The present regimen against kinetoplastid protozoan infections is poor and insufficient. Target-based design expands the horizon of drug design and development and offers novel chemical entities and potential drug candidates to the therapeutic arsenal against the aforementioned neglected diseases. In this review, we report the most promising targets of the main kinetoplastid parasites, as well as their corresponding inhibitors. This overview is part of the Special Issue, entitled "Advances of Medicinal Chemistry against Kinetoplastid Protozoa (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) Infections: Drug Design, Synthesis and Pharmacology".
Collapse
Affiliation(s)
- Violeta Kourbeli
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
| | - Eleni Chontzopoulou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Kalliopi Moschovou
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Dimitrios Pavlos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Thomas Mavromoustakos
- Department of Organic Chemistry, Faculty of Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 71 Athens, Greece; (E.C.); (K.M.); (D.P.); (T.M.)
| | - Ioannis P. Papanastasiou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece;
- Correspondence:
| |
Collapse
|
7
|
Reis IMA, Umehara E, Conceição RS, de M Oliveira L, Dos S Junior MC, Costa-Silva TA, Amaral M, Tempone AG, Branco A, Lago JHG. γ-Lactones from Persea americana and Persea fulva - in Vitro and in Silico Evaluation of Trypanosoma cruzi Activity. Chem Biodivers 2021; 18:e2100362. [PMID: 34254435 DOI: 10.1002/cbdv.202100362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/12/2021] [Indexed: 11/10/2022]
Abstract
In the present study, five known γ-lactones (majoranolide B - 1, majorenolide - 2, majorynolide - 3, lincomolide D - 4, and isolinderanolide E - 5), as well as a new one (perseanolide - 6), were isolated from Persea fulva and P. americana. All isolated compounds exhibited potential activity against trypomastigote forms of Trypanosoma cruzi, whereas compounds 2 (EC50 of 4.8 μM) and 6 (EC50 of 3.6 μM) displayed superior activity than the positive control benznidazole (EC50 of 16.4 μM), with selectivity index (SI) values of 17.8 and >55.6, respectively (benznidazole, SI>12.2). Molecular docking studies were performed for 1-6 against six T. cruzi molecular targets. Using this approach, we observed that, even though perseanolide (6) showed favorable docking to several studied targets, the results were especially promising for hypoxanthine phosphoribosyl transferase (PDB 1TC1). As PDB 1TC1 is associated to the transference of a monophosphorylated ribose from phosphoribosylpyrophosphate (PRPP) in the ribonucleotide synthesis pathway, this interaction may affect the survival of T. cruzi in mammalian cells. The data herein also indicate that possible intermolecular interactions between 6 and PDB 1TC1 derive from (i) hydrogen bonds in the α,β-unsaturated-γ-lactone unity and (ii) hydrophobic interactions in the long-chain alkyl group. Based on our results, perseanolide (6), reported for the first time in this work, can auspiciously contribute to future works regarding new trypanocidal agents.
Collapse
Affiliation(s)
- Isabella Mary A Reis
- Departamento de Saúde, Universidade Estadual de Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | - Eric Umehara
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo Andre, SP, Brazil
| | - Rodrigo S Conceição
- Departamento de Saúde, Universidade Estadual de Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | - Larissa de M Oliveira
- Departamento de Saúde, Universidade Estadual de Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | | | - Thais A Costa-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo Andre, SP, Brazil
| | - Maiara Amaral
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, 01246-902, São Paulo, SP, Brazil
| | - Andre G Tempone
- Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, 01246-902, São Paulo, SP, Brazil
| | - Alexsandro Branco
- Departamento de Saúde, Universidade Estadual de Feira de Santana, 44036-900, Feira de Santana, BA, Brazil
| | - João Henrique G Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo Andre, SP, Brazil
| |
Collapse
|
8
|
Araujo SC, Sousa FS, Costa-Silva TA, Tempone AG, Lago JHG, Honorio KM. Discovery of New Hits as Antitrypanosomal Agents by In Silico and In Vitro Assays Using Neolignan-Inspired Natural Products from Nectandra leucantha. Molecules 2021; 26:molecules26144116. [PMID: 34299391 PMCID: PMC8306904 DOI: 10.3390/molecules26144116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
In the present study, the phytochemical study of the n-hexane extract from flowers of Nectandra leucantha (Lauraceae) afforded six known neolignans (1–6) as well as one new metabolite (7), which were characterized by analysis of NMR, IR, UV, and ESI-HRMS data. The new compound 7 exhibited potent activity against the clinically relevant intracellular forms of T. cruzi (amastigotes), with an IC50 value of 4.3 μM and no observed mammalian cytotoxicity in fibroblasts (CC50 > 200 μM). Based on the results obtained and our previous antitrypanosomal data of 50 natural and semi-synthetic related neolignans, 2D and 3D molecular modeling techniques were employed to help the design of new neolignan-based compounds with higher activity. The results obtained from the models were important to understand the main structural features related to the biological response of the neolignans and to aid in the design of new neolignan-based compounds with better biological activity. Therefore, the results acquired from phytochemical, biological, and in silico studies showed that the integration of experimental and computational techniques consists of a powerful tool for the discovery of new prototypes for development of new drugs to treat CD.
Collapse
Affiliation(s)
- Sheila C. Araujo
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Bangu, Santo André 09210-580, SP, Brazil; (S.C.A.); (T.A.C.-S.)
| | - Fernanda S. Sousa
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua Prof. Arthur Riedel, 275, Diadema 09972-271, SP, Brazil;
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Thais A. Costa-Silva
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Bangu, Santo André 09210-580, SP, Brazil; (S.C.A.); (T.A.C.-S.)
| | - Andre G. Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, Avenida Doutor Arnaldo, 351, São Paulo 01246-000, SP, Brazil;
| | - João Henrique G. Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Bangu, Santo André 09210-580, SP, Brazil; (S.C.A.); (T.A.C.-S.)
- Correspondence: (J.H.G.L.); (K.M.H.)
| | - Kathia M. Honorio
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001 Bangu, Santo André 09210-580, SP, Brazil; (S.C.A.); (T.A.C.-S.)
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000 Ermelino Matarazzo, São Paulo 03828-000, SP, Brazil
- Correspondence: (J.H.G.L.); (K.M.H.)
| |
Collapse
|
9
|
Interaction of isolinderanolide E obtained from Nectandra oppositifolia with biomembrane models. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183690. [PMID: 34224703 DOI: 10.1016/j.bbamem.2021.183690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
A long-tail lactone, named isolinderanolide E, was obtained from Nectandra oppositifolia and incorporated in Langmuir monolayers of dipalmitoyl-phosphoethanolamine (DPPE) as a model of microbial membranes. The compound was dissolved in chloroform and mixed with DPPE to provide mixed solutions spread on the air-water interface. After solvent evaporation, mixed monolayers were formed, and surface pressure-area isotherms, dilatational rheology, Brewster angle microscopy (BAM), and infrared spectroscopy were employed to characterize the prodrug-membrane interactions. Isolinderanolide E expanded DPPE monolayers, denoting repulsive interactions. At 30 mN/m, the monolayer presented higher viscoelastic and in-plane elasticity parameters and an increased ratio of all-trans/gauche conformers of the alkyl chains, confirming molecular order. Morphology of the monolayer was analyzed by BAM, which revealed a more homogeneous distribution of Isolinderanolide E along the DPPE monolayer than the prodrug directly spread at the interface, which tends to aggregate. A molecular model proposing the molecular orientation of the amphiphilic drug is presented and explained by the distortion of the alkyl chains as well as by viscoelastic changes. In conclusion, the prodrug changes the thermodynamic, rheological, morphological, and structural properties of the DPPE monolayer, which may be essential to understand, at the molecular level, the action of bioactives in selected membrane models.
Collapse
|
10
|
Londero VS, Costa-Silva TA, Antar GM, Baitello JB, de Oliveira LVF, Camilo FF, Batista ANL, Batista JM, Tempone AG, Lago JHG. Antitrypanosomal Lactones from Nectandra barbellata. JOURNAL OF NATURAL PRODUCTS 2021; 84:1489-1497. [PMID: 33857368 DOI: 10.1021/acs.jnatprod.0c01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Twigs of Nectandra barbellata were extracted using a solution of the ionic liquid 1-butyl-3-methylimidazolium bromide (BMImBr) in H2O, assisted by microwave (MAE). After successive chromatographic steps, one sesquiterpene, costic acid, and three new related lactones, (R)-3(7)-Z-3-hexadec-21-enylidene-5-(hydroxymethyl)tetrahydrofuran-2-one (1), (R)-3(7)-Z-3-hexadecylidene-5-(hydroxymethyl)tetrahydrofuran-2-one (2), and (R)-3(7)-Z-3-docosylidene-5-(hydroxymethyl)tetrahydrofuran-2-one (3), were isolated. After structural elucidation using IR, UV, HRESIMS, NMR, ECD, and VCD, compounds 1-3 were tested against trypomastigote forms of Trypanosoma cruzi. The mechanism of action of bioactive isolated compounds was studied using different fluorescent-based approaches to investigate alterations of the plasma membrane, permeability/electric potential (ΔΨp), reactive oxygen species levels, mitochondria (electric membrane potential, ΔΨm/ATP levels), Ca2+ levels, and pH of the acidocalcisomes. In addition, in silico studies predicted no resemblance to pan assay interference compounds (PAINS).
Collapse
Affiliation(s)
- Vinicius S Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 05508-000, Brazil
| | - Thais A Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-170, Brazil
| | - Guilherme M Antar
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - João B Baitello
- Dasonomy Division, Instituto Florestal, São Paulo 02377-000, Brazil
| | - Larissa V F de Oliveira
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda F Camilo
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 05508-000, Brazil
| | - Andrea N L Batista
- Institute of Chemistry, Fluminense Federal University, Rio de Janeiro 24220-900, Brazil
| | - Joao M Batista
- Institute of Science and Technology, Federal University of São Paulo, São Paulo 12231-280, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo 01246-902, Brazil
| | - Joao Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-170, Brazil
| |
Collapse
|
11
|
Metabolite profile of Nectandra oppositifolia Nees & Mart. and assessment of antitrypanosomal activity of bioactive compounds through efficiency analyses. PLoS One 2021; 16:e0247334. [PMID: 33630860 PMCID: PMC7906415 DOI: 10.1371/journal.pone.0247334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
EtOH extracts from the leaves and twigs of Nectandra oppositifolia Nees & Mart. shown activity against amastigote forms of Trypanosoma cruzi. These extracts were subjected to successive liquid-liquid partitioning to afford bioactive CH2Cl2 fractions. UHPLC-TOF-HRMS/MS and molecular networking were used to obtain an overview of the phytochemical composition of these active fractions. Aiming to isolate the active compounds, both CH2Cl2 fractions were subjected to fractionation using medium pressure chromatography combined with semi-preparative HPLC-UV. Using this approach, twelve compounds (1-12) were isolated and identified by NMR and HRMS analysis. Several isolated compounds displayed activity against the amastigote forms of T. cruzi, especially ethyl protocatechuate (7) with EC50 value of 18.1 μM, similar to positive control benznidazole (18.7 μM). Considering the potential of compound 7, protocatechuic acid and its respective methyl (7a), n-propyl (7b), n-butyl (7c), n-pentyl (7d), and n-hexyl (7e) esters were tested. Regarding antitrypanosomal activity, protocatechuic acid and compound 7a were inactive, while 7b-7e exhibited EC50 values from 20.4 to 11.7 μM, without cytotoxicity to mammalian cells. These results suggest that lipophilicity and molecular complexity play an important role in the activity while efficiency analysis indicates that the natural compound 7 is a promising prototype for further modifications to obtain compounds effective against the intracellular forms of T. cruzi.
Collapse
|
12
|
de Almeida JM, Nunes FO, Ceole LF, Klimeck TDF, da Cruz LA, Tófoli D, Borges BS, Garcez WS, Tozetti IA, Medeiros LCS, Garcez FR, Ferreira AMT. Synergistic effect and ultrastructural changes in Trypanosoma cruzi caused by isoobtusilactone A in short exposure of time. PLoS One 2021; 16:e0245882. [PMID: 33507972 PMCID: PMC7842926 DOI: 10.1371/journal.pone.0245882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Butanolides have shown a variety of biological effects including anti-inflammatory, antibacterial, and antiprotozoal effects against certain strains of Trypanosoma cruzi. Considering the lack of an effective drug to treat T. cruzi infections and the prominent results obtained in literature with this class of lactones, we investigated the anti-T. cruzi activity of five butanolides isolated from two species of Lauraceae, Aiouea trinervis and Mezilaurus crassiramea. Initially, the activity of these compounds was evaluated on epimastigote forms of the parasite, after a treatment period of 4 h, followed by testing on amastigotes, trypomastigotes, and mammalian cells. Next, the synergistic effect of active butanolides against amastigotes was evaluated. Further, metacyclogenesis inhibition and infectivity assays were performed for the most active compound, followed by ultrastructural analysis of the treated amastigotes and trypomastigotes. Among the five butanolides studied, majoranolide and isoobtusilactone A were active against all forms of the parasite, with good selectivity indexes in Vero cells. Both butanolides were more active than the control drug against trypomastigote and epimastigote forms and also had a synergic effect on amastigotes. The most active compound, isoobtusilactone A, which showed activity against all tested strains inhibited metacyclogenesis and infection of new host cells. In addition, ultrastructural analysis revealed that this butanolide caused extensive damage to the mitochondria of both amastigotes and trypomastigotes, resulting in severe morphological changes in the infective forms of the parasite. Altogether, our results highlight the potential of butanolides against the etiologic agent of Chagas disease and the relevance of isoobtusilactone A as a strong anti-T. cruzi drug, affecting different events of the life cycle and all evolutionary forms of parasite after a short period of exposure.
Collapse
Affiliation(s)
- Júlio Menta de Almeida
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Felipe Oliveira Nunes
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Lígia Fernanda Ceole
- Laboratório de Biologia Celular, Instituto Carlos Chagas (Fiocruz-Paraná), Curitiba, PR, Brazil
| | | | - Letícia Alves da Cruz
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Danilo Tófoli
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Beatriz Santana Borges
- Laboratório de Biologia Celular, Instituto Carlos Chagas (Fiocruz-Paraná), Curitiba, PR, Brazil
| | - Walmir Silva Garcez
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Inês Aparecida Tozetti
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | - Fernanda Rodrigues Garcez
- Laboratório de Pesquisa de Produtos Naturais Bioativos do Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alda Maria Teixeira Ferreira
- Laboratório de Imunologia, Biologia Molecular e Bioensaios do Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| |
Collapse
|
13
|
Umehara E, Costa Silva TA, Mendes VM, Guadagnin RC, Sartorelli P, Tempone AG, Lago JHG. Differential lethal action of C17:2 and C17:0 anacardic acid derivatives in Trypanosoma cruzi – A mechanistic study. Bioorg Chem 2020; 102:104068. [DOI: 10.1016/j.bioorg.2020.104068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
14
|
Nunes FO, de Almeida JM, Ferreira AMT, da Cruz LA, Jacob CMB, Garcez WS, Garcez FR. Antitrypanosomal butanolides from Aiouea trinervis. EXCLI JOURNAL 2020; 19:323-333. [PMID: 32327956 PMCID: PMC7174576 DOI: 10.17179/excli2020-1088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 11/21/2022]
Abstract
In a search for new antitrypanosomal agents in the Brazilian flora, the ethanol extract of the xylopodium from Aiouea trinervis (Lauraceae) exhibited in vitro activity against the epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. Bioassay-guided chromatographic fractionation of the ethanol extract afforded three butanolides, isoobtusilactone A (1), epilitsenolide C2 (2), and epilitsenolide C1 (3). Butanolides 1 and 3 were more active against T. cruzi epimastigotes than the reference drug benznidazole (by 8.9-fold and 3.2-fold, respectively), while 2 proved inactive. Compounds 1 and 3 showed low cytotoxicity in mammalian Vero cells (CC50> 156 μmol L-1) and high selectivity index (SI) values for epimastigotes (SI = 56.8 and 28.6, respectively), and 1 was more selective than benznidazole (SI = 46.5). Butanolide 1 at 24 μmol L-1 also led to cell cycle alterations in epimastigote forms, and inhibited the growth of amastigote cells in more than 70 %. In silico ADMET properties of 1 were also analyzed and predicted favorable drug-like characteristics. This butanolide also complied with Lipinski's rule of five and was not predicted as interference compound (PAINS). This is the first report on the isolation of these bioactive butanolides under the guidance of in vitro trypanocidal activity against T. cruzi.
Collapse
Affiliation(s)
- Felipe Oliveira Nunes
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller 1555, 79074-460 Campo Grande-MS, Brazil
| | - Júlio Menta de Almeida
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva s/n, 79070-900 Campo Grande-MS, Brazil
| | - Alda Maria Teixeira Ferreira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva s/n, 79070-900 Campo Grande-MS, Brazil
| | - Letícia Alves da Cruz
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva s/n, 79070-900 Campo Grande-MS, Brazil
| | - Camila Mareti Bonin Jacob
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Av. Costa e Silva s/n, 79070-900 Campo Grande-MS, Brazil
| | - Walmir Silva Garcez
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller 1555, 79074-460 Campo Grande-MS, Brazil
| | - Fernanda Rodrigues Garcez
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller 1555, 79074-460 Campo Grande-MS, Brazil
| |
Collapse
|
15
|
Anti-Trypanosoma cruzi activity of costic acid isolated from Nectandra barbellata (Lauraceae) is associated with alterations in plasma membrane electric and mitochondrial membrane potentials. Bioorg Chem 2020; 95:103510. [DOI: 10.1016/j.bioorg.2019.103510] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/27/2022]
|
16
|
Oliveira EA, Brito IA, Lima ML, Romanelli M, Moreira-Filho JT, Neves BJ, Andrade CH, Sartorelli P, Tempone AG, Costa-Silva TA, Lago JHG. Antitrypanosomal Activity of Acetogenins Isolated from the Seeds of Porcelia macrocarpa Is Associated with Alterations in Both Plasma Membrane Electric Potential and Mitochondrial Membrane Potential. JOURNAL OF NATURAL PRODUCTS 2019; 82:1177-1182. [PMID: 31046273 DOI: 10.1021/acs.jnatprod.8b00890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As part of a drug discovery program aimed at the identification of anti- Trypanosoma cruzi metabolites from Brazilian flora, four acetogenins (1-4) were isolated from the seeds of Porcelia macrocarpa and were identified by NMR spectroscopy and HRESIMS. The new compounds 1 and 2 displayed activity against the trypomastigote (IC50 = 0.4 and 3.6 μM) and amastigote (IC50 = 23.0 and 27.7 μM) forms. The structurally related known compound 3 showed less potency to the amastigotes, with an IC50 value of 58 μM, while the known compound 4 was inactive. To evaluate the potential mechanisms for parasite death, parameters were evaluated by fluorometric assays: (i) plasma membrane permeability, (ii) plasma membrane electric potential (ΔΨp), (iii) reactive oxygen species production, and (iv) mitochondrial membrane potential (ΔΨm). The results obtained indicated that compounds 1 and 2 depolarize plasma membranes, affecting ΔΨp and ΔΨm and contributing to the observed cellular damage and disturbing the bioenergetic system. In silico studies of pharmacokinetics and toxicity (ADMET) properties predicted that all compounds were nonmutagenic, noncarcinogenic, nongenotoxic, and weak hERG blockers. Additionally, none of the isolated acetogenins 1-4 were predicted as pan-assay interference compounds.
Collapse
Affiliation(s)
- Emerson A Oliveira
- Institute of Environmental, Chemical and Pharmaceutical Sciences , Federal University of São Paulo , São Paulo 09972-270 , Brazil
| | - Ivanildo A Brito
- Center for Natural and Human Sciences , Federal University of ABC , São Paulo 09606-045 , Brazil
| | - Marta L Lima
- Centre for Parasitology and Mycology , Instituto Adolfo Lutz , São Paulo 01246-000 , Brazil
| | - Maiara Romanelli
- Centre for Parasitology and Mycology , Instituto Adolfo Lutz , São Paulo 01246-000 , Brazil
| | | | - Bruno J Neves
- Faculty of Pharmacy , Federal University of Goias , Goias 74605-170 , Brazil
- Laboratory of Cheminformatics , University Center of Anápolis , Goias 75083-515 , Brazil
| | - Carolina H Andrade
- Faculty of Pharmacy , Federal University of Goias , Goias 74605-170 , Brazil
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences , Federal University of São Paulo , São Paulo 09972-270 , Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology , Instituto Adolfo Lutz , São Paulo 01246-000 , Brazil
| | - Thais A Costa-Silva
- Center for Natural and Human Sciences , Federal University of ABC , São Paulo 09606-045 , Brazil
| | - João Henrique G Lago
- Center for Natural and Human Sciences , Federal University of ABC , São Paulo 09606-045 , Brazil
| |
Collapse
|