1
|
Demirci Z, Islek Z, Siginc HI, Sahin F, Ucisik MH, Bolat ZB. Curcumin-loaded emulsome nanoparticles induces apoptosis through p53 signaling pathway in pancreatic cancer cell line PANC-1. Toxicol In Vitro 2025; 102:105958. [PMID: 39442639 DOI: 10.1016/j.tiv.2024.105958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/10/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Pancreatic cancer is a global health problem with a poor prognosis, limited treatment options and low survival rates of patients. Thus, the exploration of novel treatment approaches is crucial. Curcumin shows promise in pancreatic cancer. Curcumin has anticancer properties promoting apoptosis through the p53 pathway. However, adverse effects and low bioavailability are curcumin's main drawbacks and its delivery by nanoparticles could improve its effectiveness as a treatment option. Curcumin-loaded emulsome nanoparticles (CurEm) have shown promise in colorectal, hepatocellular, and prostate cancers. This study aims to evaluate the anticancer potential of CurEm in pancreatic cancer cell line PANC-1. The cytotoxic effects of CurEm on PANC-1 cells show cytotoxicity in dose and time-dependent manner. The selected dose 30 μM CurEm resulted spheroidal morphology in PANC-1 cells and colony forming and scratch assay conducted demonstrated significant growth inhibition and decrease in migration ability, respectively. Cell cycle analysis shows that CurEm induces G2/M arrest in PANC-1 cells. CurEm-treated PANC-1 cells showed a significant increase in p53 and Caspase 3 genes, while a significant decrease in Bcl-2 genes compared to untreated group. Western blot results showed parallel results to qPCR analysis for Bcl-2 protein levels. Interestingly, we saw low p53 protein levels in CurEm-treated PANC-1 cells. These findings shed light on the potential of CurEm as an effective and stable therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Zuleyha Demirci
- Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, 34662 Istanbul, Uskudar, Türkiye; Department of Chemistry, Faculty of Art and Science, Yildiz Technical University, 34220 Istanbul, Türkiye
| | - Zeynep Islek
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye
| | - Halime Ilhan Siginc
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye
| | - Mehmet H Ucisik
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Kayisdagi Cad., 34755 Atasehir, Istanbul, Türkiye; Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Ekinciler Cad. 19, 34810 Istanbul, Beykoz, Türkiye; Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Ekinciler Cad. 19, 34810 Istanbul, Beykoz, Türkiye.
| | - Zeynep Busra Bolat
- Experimental Medicine Research and Application Center, Validebag Research Park, University of Health Sciences, 34662 Istanbul, Uskudar, Türkiye; Molecular Biology and Genetics Department, Hamidiye Institute of Health Sciences, University of Health Sciences, 34668 Istanbul, Uskudar, Türkiye.
| |
Collapse
|
2
|
Li XL, Sun YP, Wang M, Wang ZB, Kuang HX. Alkaloids in Chelidonium majus L: a review of its phytochemistry, pharmacology and toxicology. Front Pharmacol 2024; 15:1440979. [PMID: 39239653 PMCID: PMC11374730 DOI: 10.3389/fphar.2024.1440979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Chelidonium majus L. (C. majus), commonly known as "Bai Qu Cai" in China, belongs to the genus Chelidonium of the Papaveraceae family. It has rich medicinal value, such as alleviating coughs, asthma, spasms and pain. Recent studies have demonstrated that C. majus is abundant in various alkaloids, which are the primary components of C. majus and have a range of pharmacological effects, including anti-microbial, anti-inflammatory, anti-viral, and anti-tumor effects. So far, 94 alkaloids have been isolated from C. majus, including benzophenanthridine, protoberberine, aporphine, protopine and other types of alkaloids. This paper aims to review the research progress in phytochemistry, pharmacology and toxicology of C. majus alkaloids, in order to provide a theoretical basis for the application of C. majus in the field of medicinal chemistry and to afford reference for further research and development efforts.
Collapse
Affiliation(s)
- Xin-Lan Li
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Ping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
3
|
Yan Z, Zhang Y, Du L, Liu L, Zhou H, Song W. U(VI) exposure induces apoptosis and pyroptosis in RAW264.7 cells. CHEMOSPHERE 2023; 342:140154. [PMID: 37714482 DOI: 10.1016/j.chemosphere.2023.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
U(VI) pollution has already led to serious harm to the environment and human health with the increase of human activities. The viability of RAW264.7 cells was assessed under various U(VI) concentration stress for 24 and 48 h. The reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and superoxide dismutase (SOD) activities of RAW264.7 cells under U(VI) stress were measured. The results showed that U(VI) decreased cell activity, induced intracellular ROS production, abnormal MMP, and increased SOD activity. The flow cytometry with Annexin-V/PI double labeling demonstrated that the rate of late apoptosis increased with the increase of U(VI) concentration, resulting in decreased Bcl-2 expression and increased Bax expression. The morphology of RAW264.7 cells dramatically changed after 48 h U(VI) exposure, including the evident bubble phenomenon. Besides, U(VI) also increased the proportion of LDH releases and increased GSDMD, and Ras, p38, JNK, and ERK1/2 protein expression, which indicated that the MAPK pathway was also involved. Therefore, U(VI) ultimately led to apoptosis and pyroptosis in RAW264.7 cells. This study offered convincing proof of U(VI) immunotoxicity and established the theoretical framework for further fundamental studies on U(VI) toxicity.
Collapse
Affiliation(s)
- Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Liang Du
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Lei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
| | - Han Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, PR China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, PR China.
| |
Collapse
|
4
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
5
|
Yáñez-Barrientos E, Barragan-Galvez JC, Hidalgo-Figueroa S, Reyes-Luna A, Gonzalez-Rivera ML, Cruz Cruz D, Isiordia-Espinoza MA, Deveze-Álvarez MA, Villegas Gómez C, Alonso-Castro AJ. Neuropharmacological Effects of the Dichloromethane Extract from the Stems of Argemone ochroleuca Sweet (Papaveraceae) and Its Active Compound Dihydrosanguinarine. Pharmaceuticals (Basel) 2023; 16:1175. [PMID: 37631090 PMCID: PMC10459336 DOI: 10.3390/ph16081175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Argemone ochroleuca Sweet (Papaveraceae) is used in folk medicine as a sedative and hypnotic agent. This study aimed to evaluate the anxiolytic-like, sedative, antidepressant-like, and anticonvulsant activities of a dichloromethane extract of A. ochroleuca stems (AOE), chemically standardized using gas chromatography-mass spectrometry (GC-MS), and its active compound dihydrosanguinarine (DHS). The anxiolytic-like, sedative, antidepressant-like, and anticonvulsant activities of the AOE (0.1-50 mg/kg p.o.) and DHS (0.1-10 mg/kg p.o.) were evaluated using murine models. A possible mechanism for the neurological actions induced by the AOE or DHS was assessed using inhibitors of neurotransmission pathways and molecular docking. Effective dose 50 (ED50) values were calculated by a linear regression analysis. The AOE showed anxiolytic-like activity in the cylinder exploratory test (ED50 = 33 mg/kg), and antidepressant-like effects in the forced swimming test (ED50 = 3 mg/kg) and the tail suspension test (ED50 = 23 mg/kg), whereas DHS showed anxiolytic-like activity (ED50 = 2 mg/kg) in the hole board test. The AOE (1-50 mg/kg) showed no locomotive affectations or sedation in mice. A docking study revealed the affinity of DHS for α2-adrenoreceptors and GABAA receptors. The anxiolytic-like and anticonvulsant effects of the AOE are due to GABAergic participation, whereas the antidepressant-like effects of the AOE are due to the noradrenergic system. The noradrenergic and GABAergic systems are involved in the anxiolytic-like actions of DHS.
Collapse
Affiliation(s)
- Eunice Yáñez-Barrientos
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Juan Carlos Barragan-Galvez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| | - Sergio Hidalgo-Figueroa
- CONAHCyT-División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosí 78216, Mexico;
| | - Alfonso Reyes-Luna
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Maria L. Gonzalez-Rivera
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| | - David Cruz Cruz
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Mario Alberto Isiordia-Espinoza
- Instituto de Investigación en Ciencias Médicas, Departamento de Clínicas, División de Ciencias Biomédicas, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos 47620, Jalisco, Mexico;
| | - Martha Alicia Deveze-Álvarez
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| | - Clarisa Villegas Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (E.Y.-B.); (A.R.-L.); (D.C.C.)
| | - Angel Josabad Alonso-Castro
- Departamento de Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta, Colonia Noria Alta Guanajuato, Guanajuato 36050, Mexico; (J.C.B.-G.); (M.L.G.-R.); (M.A.D.-Á.)
| |
Collapse
|
6
|
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment. Anticancer Agents Med Chem 2023; 23:765-778. [PMID: 36045531 DOI: 10.2174/1871520622666220831124321] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.
Collapse
Affiliation(s)
- Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Najeeb Ullah
- School of Biochemistry and Molecular Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Tariq Aziz
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
7
|
CDC42 Regulates Cell Proliferation and Apoptosis in Bladder Cancer via the IQGAP3-Mediated Ras/ERK Pathway. Biochem Genet 2022; 60:2383-2398. [PMID: 35412170 DOI: 10.1007/s10528-022-10223-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Bladder cancer (BC) is the most common malignant tumour of the urinary system. The current conventional treatments for BC have certain limitations. It is very urgent and necessary to find new treatment strategies for BC. Our study elucidated the underlying regulatory mechanisms of cell division control protein 42 homologue (CDC42) to regulate the development of BC. Quantitative real-time polymerase chain reaction, Western blot, immunofluorescence and immunohistochemistry were used to assess the expression of CDC42 and IQ motif-containing GTPase-activating protein 3 (IQGAP3) in BC tissues and BC cells. We induced the knockdown or overexpression by transfecting sh-CDC42 or oe-IQGAP3 into BC cells. In addition, cell proliferation and apoptosis were evaluated by cell counting kit-8 and flow cytometry assays, respectively. Moreover, proteins involved in the rat sarcoma (Ras)/extracellular regulated protein kinase (ERK) pathway were determined by Western blot. The expression of CDC42 and IQGAP3 was markedly upregulated in both BC tissues and BC cells. CDC42 silencing downregulated the expression of IQGAP3 and suppressed the Ras/ERK pathway. In addition, CDC42 silencing markedly promoted apoptosis and inhibited proliferation in BC cells. Further experiments showed that overexpression of IQGAP3 dramatically abolished the bioeffects mediated by CDC42 silencing on the proliferation and apoptosis of BC cells. All our results suggested that CDC42 promoted the Ras/ERK pathway by regulating IQGAP3, thus enhancing cell proliferation and suppressing cell apoptosis in BC cells and ultimately participating in the pathogenesis of BC.
Collapse
|
8
|
Shan J, Wang Z, Mo Q, Long J, Fan Y, Cheng L, Zhang T, Liu X, Wang X. Ribonucleotide reductase M2 subunit silencing suppresses tumorigenesis in pancreatic cancer via inactivation of PI3K/AKT/mTOR pathway. Pancreatology 2022; 22:401-413. [PMID: 35300916 DOI: 10.1016/j.pan.2022.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Ribonucleotide Reductase M2 subunit (RRM2) is elevated in pancreatic cancer and involved in DNA synthesis and cell proliferation. But its specific mechanism including genetic differences and upstream regulatory pathways remains unclear. METHODS We analyzed RRM2 expression of 178 pancreatic cancer patients in Gene Expression Profiling Interactive Analysis (GEPIA) database. Besides, more pancreatic cancer specimens were collected and detected RRM2 expression by immunohistochemistry. RRM2 knockdown by shRNA was applied for functional and mechanism analysis in vitro. Xenograft tumor growth was significantly slower by RRM2 silencing in vivo. RESULTS It showed that high RRM2 expression had a poorer overall survival and disease free survival. RRM2 expression was higher in tumor grade 2 and 3 than grade 1. Immunohistochemistry data validated that high RRM2 expression predicted worse survival. RRM2 knockdown significantly reduced cell proliferation, inhibited colony formation and suppressed cell cycle progress. Further mechanism assay showed silencing RRM2 lead to inactivation of PI3K/AKT/mTOR pathway and inhibition of mutant p53, which induce S phase arrest and/or apoptosis. In panc-1 cells, S-phase arrest mediated by mutant p53 inhibition, p21 increase and cell cycle related proteins change. While in miapaca-2 cells, induction of apoptosis and S-phase arrest mediated by CDK1 played a coordinated role. CONCLUSION Taken together, high RRM2 expression was associated with worse prognosis. Importantly, RRM2 knockdown deactivated PI3K/AKT/mTOR pathway, resulting in cell cycle arrest and/or apoptosis. This study shed light on the molecular mechanism of RRM2 in pancreatic tumor progression and is expected to provide a new theoretical basis for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jinlan Shan
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Cancer Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiuping Mo
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, China
| | - Jingpei Long
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yangfan Fan
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lu Cheng
- Department of Pathology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tao Zhang
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Xiyong Liu
- Sino-America Cancer Foundation, California Cancer Institute, Temple City, CA91780, USA; Tumor Biomarker Development, California Cancer Institute, Temple City, CA,91780, USA
| | - Xiaochen Wang
- Department of Breast Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Jian T, Zhang Y, Zhang G, Ling J. Metabolomic comparison between natural Huaier and artificial cultured Huaier. Biomed Chromatogr 2022; 36:e5355. [PMID: 35156219 DOI: 10.1002/bmc.5355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Vanderbylia robiniophila (Murrill) B.K. (Huaier) is a kind of higher fungal fruiting body parasitic on the trunk of Sophora japonica and Robinia pseudoacacia L.. As a traditional Chinese medicine with a history of more than 1600 years, Huaier has attracted wide attention for its excellent anticancer activity. A systematic study on the metabolome differences between natural Huaier and artificial cultured Huaier was conducted using liquid chromatography-mass spectrometry in this study. Principal component analysis and orthogonal projection on latent structure-discriminant analysis results showed that cultured Huaier evidently separated and individually separated from natural Huaier, indicating metabolome difference between natural Huaier and cultured Huaier. Hierarchical clustering analysis was further performed to cluster the differential metabolites and samples based on their metabolic similarity. The higher content of amino acids, alkaloids and terpenoids in natural Huaier makes it an excellent choice as a traditional Chinese medicine for anti-cancer or nutritional supplementation. The results of the Bel-7402 and A549 cells cytotoxicity test showed that the anticancer activity of natural Huaier was better than that of cultured Huaier. This may be due to the difference in chemical composition, which makes the anticancer activity of natural and cultured Huaier different.
Collapse
Affiliation(s)
- Tongtong Jian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
10
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [PMID: 34861354 DOI: 10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Globally, pancreatic cancer (PC) is a common and highly malignant gastrointestinal tumor that is characterized by an insidious onset and ready metastasis and recurrence. Over recent decades, the incidence of PC has been increasing on an annual basis; however, the pathogenesis of this condition remains enigmatic. PC is not sensitive to radio- or chemotherapy, and except for early surgical resection, there is no curative treatment regime; consequently, the prognosis for patients with PC is extremely poor. Transcription factor p53 is known to play key roles in many important biological processes in vertebrates, including normal cell growth, differentiation, cell cycle progression, senescence, apoptosis, metabolism, and DNA damage repair. However, there is a significant paucity of basic and clinical studies to describe how p53 gene mutations or protein dysfunction facilitate the occurrence, progression, invasion, and resistance to therapy, of malignancies, including PC. Herein, we describe the involvement of p53 signaling reactivation in PC treatment as well as its underlying molecular mechanisms, thereby providing useful insights for targeting p53-related signal pathways in PC therapy.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
11
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [DOI: doi10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Kim H, Han S, Song K, Lee MY, Park B, Ha IJ, Lee SG. Ethyl Acetate Fractions of Papaver rhoeas L. and Papaver nudicaule L. Exert Antioxidant and Anti-Inflammatory Activities. Antioxidants (Basel) 2021; 10:antiox10121895. [PMID: 34942995 PMCID: PMC8750608 DOI: 10.3390/antiox10121895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/01/2023] Open
Abstract
Abnormal inflammation and oxidative stress are involved in various diseases. Papaver rhoeas L. possesses various pharmacological activities, and a previously reported analysis of the anti-inflammatory effect of P. nudicaule ethanol extracts and alkaloid profiles of the plants suggest isoquinoline alkaloids as potential pharmacologically active compounds. Here, we investigated anti-inflammatory and antioxidant activities of ethyl acetate (EtOAc) fractions of P. nudicaule and P. rhoeas extracts in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. EtOAc fractions of P. nudicaule and P. rhoeas compared to their ethanol extracts showed less toxicity but more inhibitory activity against LPS-induced nitric oxide production. Moreover, EtOAc fractions lowered the LPS-induced production of proinflammatory molecules and cytokines and inhibited LPS-activated STAT3 and NF-κB, and additionally showed significant free radical scavenging activity and decreased LPS-induced reactive oxygen species and oxidized glutathione. EtOAc fractions of P. nudicaule increased the expression of HO-1, GCLC, NQO-1, and Nrf2 in LPS-stimulated cells and that of P. rhoeas enhanced NQO-1. Furthermore, metabolomic and biochemometric analyses of ethanol extracts and EtOAc fractions indicated that EtOAc fractions of P. nudicaule and P. rhoeas have potent anti-inflammatory and antioxidant activities, further suggesting that alkaloids in EtOAc fractions are potent active molecules of tested plants.
Collapse
Affiliation(s)
- Hail Kim
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.K.); (S.H.)
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.K.); (S.H.)
| | - Kwangho Song
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Korea; (K.S.); (M.Y.L.); (B.P.)
| | - Min Young Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Korea; (K.S.); (M.Y.L.); (B.P.)
| | - BeumJin Park
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Korea; (K.S.); (M.Y.L.); (B.P.)
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.K.); (S.H.)
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Korea; (K.S.); (M.Y.L.); (B.P.)
- Correspondence: (I.J.H.); (S.-G.L.); Tel.: +82-2-961-2355 (S.-G.L.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea; (H.K.); (S.H.)
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02454, Korea; (K.S.); (M.Y.L.); (B.P.)
- Correspondence: (I.J.H.); (S.-G.L.); Tel.: +82-2-961-2355 (S.-G.L.)
| |
Collapse
|
13
|
Akaberi T, Shourgashti K, Emami SA, Akaberi M. Phytochemistry and pharmacology of alkaloids from Glaucium spp. PHYTOCHEMISTRY 2021; 191:112923. [PMID: 34454171 DOI: 10.1016/j.phytochem.2021.112923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Glaucium Mill. comprising 28 species with 78 synonyms, 3 subspecies, and 3 varieties worldwide belongs to the Papaveraceae family. The plants are well known for their different types of alkaloids. In the present study, we attempted to review the chemistry and pharmacology of the alkaloids from the genus Glaucium. For this purpose, the relevant data were collected from different scientific databases including, "Google Scholar", "ISI Web of Knowledge", "PubMed", "Scopus", and available books and e-books. Our results showed that aporphine alkaloids are dominated in the species; however, other types of alkaloids including protopines, benzophenanthridines, benzylisoquinolines, protoberberines, and morphinanes have also been reported from the genus. The pharmacological studies have shown that the alkaloids from Glaucium species have several biological activities of which anti-cancer and anti-cholinesterase effects have been highly reported. Besides, the data indicated that most of the species have been investigated neither phytochemically nor pharmacologically. Glaucium flavum, known as yellow horn poppy, is the most studied species. According to the reports, the plants from this genus have anti-cancer and anti-cholinesterase potentials and can be used as a source for aporphine alkaloids.
Collapse
Affiliation(s)
- Toktam Akaberi
- Department of Organic Chemistry, Ferdowsi University, Mashhad, Iran.
| | - Kamran Shourgashti
- Department of Pharmacognosy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Ahmad Emami
- Department of Pharmacognosy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Traditional Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maryam Akaberi
- Department of Pharmacognosy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Lei S, Zeng Z, He Z, Cao W. miRNA‑7515 suppresses pancreatic cancer cell proliferation, migration and invasion via downregulating IGF‑1 expression. Oncol Rep 2021; 46:200. [PMID: 34296285 PMCID: PMC8317166 DOI: 10.3892/or.2021.8151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 06/17/2021] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer (PC) is a lethal malignancy of the gastrointestinal tract. Previous studies have reported that microRNAs (miRNAs/miRs) are involved in the tumorigenesis of PC. Therefore, the present study aimed to determine the effects of miR‑7515 on PC cell proliferation, invasion and migration in vitro and in vivo, and investigate its underlying molecular mechanism using bioinformatics, double luciferase assay and western blotting. The results revealed that the expression levels of miR‑7515 were downregulated in PC, which predicted a poor clinical outcome. The overexpression of miR‑7515 significantly decreased the proliferation, invasive and migratory abilities of PC cells in vitro and in vivo, while the knockdown of miR‑7515 exerted the opposite effects. miR‑7515 was identified to directly bind to insulin‑like growth factor 1 (IGF‑1) and downregulate its expression, which subsequently downregulated the Ras/Raf/MEK/ERK signalling pathway. The overexpression of IGF‑1 reversed the inhibitory effects of miR‑7515 overexpression on PC cells. In conclusion, the findings of the present study indicated that miR‑7515 may act as a tumor suppressor in PC, as it repressed PC cell proliferation invasion and migration via downregulating the expression of IGF‑1 and the activity of the Ras/Raf/MEK/ERK signalling pathways.
Collapse
Affiliation(s)
- Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhiwei He
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Wenpeng Cao
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
15
|
Al-Share B, Hammad N, Diab M. Pancreatic adenocarcinoma: molecular drivers and the role of targeted therapy. Cancer Metastasis Rev 2021; 40:355-371. [PMID: 33398620 DOI: 10.1007/s10555-020-09948-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Prognosis from pancreatic ductal adenocarcinoma (PDAC) continues to be poor despite the many efforts channeled to improve its management. Although the mainstay treatment is still traditional chemotherapy, recent advances highlighted a promising potential for targeted therapy in the management of this disease. Those advances emphasize the significance of timely genomic profiling of tumor tissue as well as germline testing of patients to identify potential markers of targeted therapy. While targeted therapy is reserved for a relatively small subset of patients with PDAC, ongoing research is uncovering additional markers, and targeted agents, that will hopefully translate to better outcomes for patients.
Collapse
Affiliation(s)
- Bayan Al-Share
- Department of Oncology, Wayne State University, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nour Hammad
- Department of Oncology, Ascension Providence Hospital and Medical Center/Michigan State University/Collage of Human Medicine, Southfield, MI, USA
| | - Maria Diab
- Department of Oncology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
16
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 193] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
17
|
Lai M, Ge Y, Chen M, Sun S, Chen J, Cheng R. Saikosaponin D Inhibits Proliferation and Promotes Apoptosis Through Activation of MKK4-JNK Signaling Pathway in Pancreatic Cancer Cells. Onco Targets Ther 2020; 13:9465-9479. [PMID: 33061432 PMCID: PMC7522527 DOI: 10.2147/ott.s263322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction Pancreatic cancer remains one of the most lethal malignancies and has few treatment options. Saikosaponin D (SSD), a major bioactive triterpene saponin isolated from Bupleurum chinense, has been reported to exert cytotoxicity properties toward many cancer cells. However, the effects of SSD on pancreatic cancer have been little scrutinized. Methods Here, we investigated the effect of SSD on the proliferation and apoptosis of human pancreatic cancer BxPC3 and PANC1 cells and the mouse pancreatic cancer cell line Pan02. Cell viability was determined by MTT assays and cell apoptosis analyzed by DAPI staining and flow cytometry. Expression levels of apoptosis-regulating markers and activity of the MKK4–JNK signaling pathway were determined by Western blotting. The inhibitor SP600125 was applied to confirm the role of the JNK pathway in SSD efficiency. Results SSD significantly inhibited the proliferation of BxPC3, PANC1, and Pan02 cells in a concentration- and time-dependent manner. Flow-cytometry analysis indicated obvious apoptosis induction after SSD exposure. Furthermore, SSD significantly triggered cleavage of caspase 3 and caspase 9 proteins and increased the expression of FoxO3a. In addition, activity of the MKK4–JNK pathway was dramatically increased after treatment with SSD in BxPC3 cells. SSD obviously stimulated phosphorylation of JNK, cJun, and SEK1/MKK4 proteins within 30 minutes. The addition of SP600125 blocked the activation of SSD on the MKK4–JNK regulatory pathway and reversed the effects of SSD on proliferation inhibition and apoptosis induction in BxPC3 cells. Conclusion These results revealed that SSD was capable of suppressing tumor growth and promoting apoptosis of pancreatic cancer cells via targeting the MKK4–JNK signaling pathway, indicating the possibility of further developing SSD as a potential therapeutic candidate for pancreatic cancer.
Collapse
Affiliation(s)
- Mengru Lai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Yuqing Ge
- First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310006, People's Republic of China
| | - Meng Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Siya Sun
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Jianzhen Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Rubin Cheng
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| |
Collapse
|
18
|
Gao Y, Chen S, Sun J, Su S, Yang D, Xiang L, Meng X. Traditional Chinese medicine may be further explored as candidate drugs for pancreatic cancer: A review. Phytother Res 2020; 35:603-628. [PMID: 32965773 DOI: 10.1002/ptr.6847] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is a disease with a high mortality rate. Although survival rates for different types of cancers have improved in recent years, the five-year survival rate of pancreatic cancer stands at 8%. Moreover, the current first-line therapy, gemcitabine, results in low remission rates and is associated with drug resistance problems. Alternative treatments for pancreatic cancer such as surgery, chemotherapy and radiation therapy provide marginal remission and survival rates. This calls for the search of more effective drugs or treatments. Traditional Chinese medicine contains numerous bioactive ingredients some of which show activity against pancreatic cancer. In this review, we summarize the mechanisms of five types of traditional Chinese medicine monomers. In so-doing, we provide new potential drug candidates for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yue Gao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siyu Su
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Xiang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
19
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|