1
|
Wang ZM, Wei XH, Xia GY, Zhou LN, Li JY, Lin S. An active ingredient from the combination of Corydalis Rhizoma and Paeoniae Radix Alba relieves chronic compression injury-induced pain in rats by ameliorating AR/Mboat2-mediated ferroptosis in spinal cord neurons. Front Pharmacol 2025; 16:1558916. [PMID: 40201699 PMCID: PMC11975664 DOI: 10.3389/fphar.2025.1558916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction A combination of Corydalis Rhizoma (the dried tuber of Corydalis yanhusuo W.T. Wang) and Paeoniae Radix Alba (the root of Paeonia lactiflora Pall.) has been traditionally employed for analgesia. However, the underlying pharmacological mechanisms have not been clarified. The aim of the present study was to investigate the anti-inflammatory and analgesic effects of YB60, the 60% ethanol elution fraction derived from the combination of Corydalis Rhizoma and Paeoniae Radix Alba, and the explore the underlying mechanism. Methods Lipopolysaccharide-induced cellular inflammation model and chronic compression injury (CCI) rat model were used to study the anti-inflammatory and analgesic effects of YB60. Proteomics and molecular biology experiments were applied to explore the potential analgesic mechanism of YB60. Results The results demonstrated that YB60 significantly decreased inflammatory cytokine levels both in cellular models and rat serum, while concurrently elevating pain thresholds in CCI rats. Proteomic analysis indicated that YB60 could upregulate the expression of Membrane Bound O-Acyltransferase Domain Containing 2 (Mboat2), a newly confirmed marker of ferroptosis. Furthermore, YB60 prevented ferroptosis in the spinal cords of CCI rats. Western blotting and immunofluorescent dual staining further revealed that YB60 increased the expression of Mboat2 and its upstream signaling molecule Androgen receptor (AR). Results in PC12 cells in vitro showed that YB60 reversed the downregulation of AR and Mboat2, and ameliorated ferroptosis induced by Erastin, while knockdown of AR eliminated the above effects of YB60. Conclusion These findings indicated that YB60 exerted its analgesic effect by inhibiting ferroptosis in spinal cord neurons via modulation of the AR/Mboat2 pathway.
Collapse
Affiliation(s)
- Ze-Ming Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Hong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Nan Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Yu Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Gao P, Yuan S, Wang Y, Wang Y, Li X, Liu T, Zheng Y, Wang J, Liu D, Xu L, Jiang Y, Zeng K, Tu P. Corydalis decumbens and tetrahydropalmatrubin inhibit macrophages inflammation to relieve rheumatoid arthritis by targeting Fosl2. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119348. [PMID: 39805480 DOI: 10.1016/j.jep.2025.119348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Corydalisdecumbens (Thunb.) (CD) is a traditional Chinese medicine and as a single herb or formula has been used to treat RA for decades. Rheumatoid arthritis (RA) is a persistent, systemic autoimmune inflammatory disease. However, the anti-inflammatory target, effective constituents and mechanism was unclear. AIM OF THE STUDY The purpose of this study was to identify anti-RA and anti-inflammatory targets of CD, elucidate effective constituents and molecular pharmacological mechanism. MATERIALS AND METHODS Anti-RA and anti-inflammatory effect of CD were evaluated on CIA-rats and in LPS-induced RAW264.7 cells respectively. The anti-inflammatory target of CD was identified using thermal proteome profiling (TPP). The recombinant Fosl2 protein was expressed and purified and the target-based effective constituents was screened with bio-layer interferometry (BLI) analysis. Combining photoaffinity probe, LC-MS/MS analysis, docking and point mutation, the binding site was confirmed between Fosl2 and THP. Furtherly, immunofluorescence (IF), co-immunoprecipitation (co-IP) were used to research the pharmacological mechanism of THP and the THP-influenced downstream pathways were elucidated by transcriptomics analysis. RESULTS CD had therapeutic effect on CIA-rats and a significant anti-inflammation on macrophages. Fosl2 was identified as a target of CD and we elucidated the target-based effective constituents was protoberberine-type alkaloids. THP can inhibit inflammation and transcription of AP-1 via targeting Fosl2 on LPS-induced RAW264.7 cells. For mechanism, THP promoted Fosl2 nuclear translocating and interacting with c-Jun. CONCLUSIONS These findings firstly elucidated the target and effective constituents of CD treating RA, and found that "undruggable target" Fosl2 can be used as therapeutic targets for RA. Meanwhile, our research suggested that THP has a significant potential for the treatment of RA.
Collapse
Affiliation(s)
- Peng Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Shuo Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yanhang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuqi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaoshuang Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Tingting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongzhe Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Dan Liu
- Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Healthy Analytical Center, Peking University Health Science Center, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
3
|
Luo Z, Zhang Z, Li P, Yi M, Luo A, Zeng H, Wang T, Wang J, Nie H. The analgesic effect and mechanism of the active components screening from Corydalis yanhusuo by P2X3 receptors. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118989. [PMID: 39461390 DOI: 10.1016/j.jep.2024.118989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cavidine (CAV) is the main bioactive ingredient of Corydalis ternata f. yanhusuo (Y.H.Chou & Chun C.Hsu) Y.C.Zhu, which is a traditional Chinese herbal containing a variety of uses such as analgesic, anticancer, and anti-inflammatory properties. AIM OF THE STUDY The goal is to screen Corydalis yanhusuo for anti-central sensitization active components and investigate and clarify the pharmacological mechanism and therapeutic efficacy of the active ingredient CAV in the treatment of chronic pain. MATERIAL AND METHODS First, cell membrane immobilized chromatography was used to screen the bioactive ingredients in Corydalis yanhusuo. Spare nerve injury (SNI) model and complete Freund's adjuvant (CFA) mice model were constructed to identify the analgesic effect of CAV. RNA-seq and bioinformatics analyses were used to explore the potential targets of CAV in CFA mice and SNI mice. HE staining was used to observe the infiltration of inflammatory cells in the dorsal root ganglion (DRG) and spinal cord(SC) of CFA mice and SNI mice. WB and qPCR were used to detect the level of inflammatory factors TNF-α, IL-1β, and IL-6 in DRG and SC of mice. SNI and CFA mice were used to study the effect and mechanism of CAV on microglial activation. RESULTS 9 potential active ingredients were screened out from Corydalis yanhusuo that can regulate P2X3 receptors. CAV showed good analgesic effects, increased the mechanical pain and thermal pain thresholds of CFA mice and SNI mice, inhibited the expression of DRG and SC inflammatory factors, downregulated IBA-1, and inhibited microglial activation. Further in vivo and in vitro experiments showed that CAV significantly inhibited the expression of P2X3 receptors and the activation of its downstream MAPK pathway in DRG neurons and SC. CONCLUSION This study is the first to indicate that CAV exerts an analgesic effect by inhibiting microglia activation via the P2X3 signaling pathway axis, providing the clinical utility of CAV in chronic pain therapy.
Collapse
Affiliation(s)
- Zhenhui Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Zhenglang Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peiyang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Mengqin Yi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Anqi Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hekun Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Tingting Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Junlin Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Banerjee M, Efferth T. Pharmaceutical Humanities and Narrative Pharmacy: An Emerging New Concept in Pharmacy. Pharmaceuticals (Basel) 2025; 18:48. [PMID: 39861111 PMCID: PMC11768573 DOI: 10.3390/ph18010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/16/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
The complexity of our life experiences and the rapid progress in science and technology clearly necessitate reflections from the humanities. The ever-growing intersection between science and society fosters the emergence of novel interdisciplinary fields of research. During the past decade, Medical Humanities arose to meet the need to unravel hidden information beyond technology-driven and fact-based medicine. In the present paper, we put forward the hypothesis that there is a similar requirement to develop Pharmaceutical Humanities as an academic discipline within pharmacy and pharmaceutical biology. Based on Thomas Kuhn's epistemological theory on the structure of scientific revolutions, one may argue that a paradigm change for Pharmaceutical Humanities might open new levels of insight. Many complex diseases (e.g., cancer, neurological diseases, and mental disorders) remain uncurable for many patients by current pharmacotherapies, and the old beaten paths in our therapeutic thinking may at least partly have to be left behind. By taking examples from Pharmaceutical Biology, we attempt to illustrate that the transdisciplinary dialogue with the humanities is fertile ground not only for enlarging our understanding of disease-related conditions but also for exploring new ways of combatting diseases. In this context, we discuss aspects related to traditional herbal medicine, fair access and benefit sharing of indigenous knowledge about medicinal plants, post-traumatic stress syndrome, the opioid crisis, stress myocardiopathy (broken heart syndrome), and global environmental pollution with microplastics. We also explore possibilities for a narrative turn in pharmacy. The urgent need for inter- and transdisciplinary solutions to pressing health-related problems in our society may create a scholarly atmosphere for the establishment of Pharmaceutical Humanities as a fruitful terrain to respond to the current demands of both science and society.
Collapse
Affiliation(s)
- Mita Banerjee
- Department of English and Linguistics, Obama Institute for Transnational American Studies, Johannes Gutenberg University, Jakob Welder Weg 20, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
5
|
Damiescu R, Dawood M, Elbadawi M, Klauck SM, Bringmann G, Efferth T. Identification of Cytisine Derivatives as Agonists of the Human Delta Opioid Receptor by Supercomputer-Based Virtual Drug Screening and Transcriptomics. ACS Chem Biol 2024; 19:1963-1981. [PMID: 39167688 DOI: 10.1021/acschembio.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Delta opioid receptors (DORs) are rising as therapeutic targets, not only for the treatment of pain but also other neurological disorders (e.g., Parkinson's disease). The advantage of DOR agonists compared to μ-opioid receptor agonists is that they have fewer side effects and a lower potential to induce tolerance. However, although multiple candidates have been tested in the past few decades, none have been approved for clinical use. The current study focused on searching for new DOR agonists by screening a chemical library containing 40,000 natural and natural-derived products. The functional activity of the top molecules was evaluated in vitro through the cyclic adenosine monophosphate accumulation assay. Compound 3 showed promising results, and its activity was further investigated through transcriptomic methods. Compound 3 inhibited the expression of TNF-α, prevented NF-κB translocation to the nucleus, and activated the G-protein-mediated ERK1/2 pathway. Additionally, compound 3 is structurally different from known DOR agonists, making it a valuable candidate for further investigation for its anti-inflammatory and analgesic potential.
Collapse
Affiliation(s)
- Roxana Damiescu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mona Dawood
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| | - Sabine M Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ) Heidelberg, National Center for Tumor Diseases (NCT), NCT Heidelberg, A Partnership between DKFZ and University Hospital Heidelberg, Heidelberg 69120, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg D-97074, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, Mainz 55099, Germany
| |
Collapse
|
6
|
Cao G, Zhu Z, Yang D, Wu W, Yang F, Liu Y, Xu J, Zhang Y. Fu'cupping Physical Permeation-Enhancing Technique Enhances the Therapeutic Efficacy of Corydalis yanhusuo Gel Plaster. PLANTA MEDICA 2024; 90:876-884. [PMID: 38876472 DOI: 10.1055/a-2344-8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Corydalis yanhusuo, a traditional Chinese medicine, is widely used to treat various pains, and its active ingredients are alkaloids. This study aimed to develop a new type of transdermal gel plaster containing the extract of C. yanhusuo. Studies have shown that Fu'cupping physical permeation-enhancing technique can promote the penetration of alkaloids and improve the efficacy of drugs. A transdermal gel plaster containing the extract of C. yanhusuo was prepared and optimized using an orthogonal experimental design. The skin permeation ability of the gel plaster was studied in vitro, while the anti-inflammatory and analgesic effects of the prepared patch alone or with Fu'cupping physical permeation-enhancing technique were evaluated in a rat model. The formulation of a gel plaster containing C. yanhusuo extract was successfully prepared with an optimized composition consisting of glycerin (15 g), sodium polyacrylate (2 g), silicon dioxide (0.3 g), ethanol (2 g), aluminum oxide (0.1 g), citric acid (0.05 g), the C. yanhusuo extract (3 g), and water (15 g). The cumulative transdermal permeation of dehydrocorydaline, corypalmine, tetrahydropalmatine, and corydaline in 24 h was estimated to be 569.7 ± 63.2, 74.5 ± 13.7, 82.4 ± 17.2, and 38.9 ± 8.1 µg/cm2, respectively. The in vitro diffusion of dehydrocorydaline and corydaline followed the zero-order kinetics profile, while that of corypalmine and tetrahydropalmatine followed a Higuchi equation. The prepared gel plaster significantly reduced paw swelling, downregulated inflammatory cytokines, and mitigated pain induced by mechanical or chemical stimuli. The Fu'cupping physical permeation-enhancing technique further improved the anti-inflammatory and analgesic effects of the patch. The combined application of the Fu'cupping physical permeation-enhancing technique and the alkaloid gel plaster may be effective against inflammation and pain.
Collapse
Affiliation(s)
- Guoqiong Cao
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zilan Zhu
- UCL School of Pharmacy, University College London, London, UK
| | - Dingyi Yang
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Wenyu Wu
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Fangfang Yang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yao Liu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Xu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yongping Zhang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- National Engineering Technology Research Center for Miao Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
7
|
Yu R, Kong DL, Liao C, Yu YJ, He ZW, Wang Y. Natural products as the therapeutic strategies for addiction. Biomed Pharmacother 2024; 175:116687. [PMID: 38701568 DOI: 10.1016/j.biopha.2024.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
World Drug Report 2023 concluded that 296 million people abused drugs, 39.5 million became addiction and 494,000 died as a direct or indirect result of addiction. Addiction has become a growing problem that affects individuals, their families, societies, countries and even the world. However, treatment for addiction is only limited to some developed countries because of the high cost, difficult implementation, and time consuming. Therefore, there is an urgent need to develop a low-cost, effective drug for the development of addiction treatment in more countries, which is essential for the stability and sustainable development of the world. In this review, it provided an overview of the abuse of common addictive drugs, related disorders, and current therapeutic regimen worldwide, and summarized the mechanisms of drug addiction as reward circuits, neuroadaptation and plasticity, cognitive decision-making, genetics, and environment. According to their chemical structure, 43 natural products and 5 herbal combinations with potential to treat addiction were classified, and their sources, pharmacological effects and clinical trials were introduced. It was also found that mitragine, ibogine, L-tetrahydropalmatine and crocin had greater potential for anti-addiction.
Collapse
Affiliation(s)
- Rui Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - De-Lei Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cai Liao
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ya-Jie Yu
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Zhen-Wei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
8
|
Feng K, Sy SKB, Yu M, Lv Z, Yan M. Simultaneous Determination of Levo-tetrahydropalmatine and Naltrexone in Rat Plasma by LC-MS/MS and its Application in a Pharmacokinetic Study. Curr Pharm Biotechnol 2024; 25:1875-1883. [PMID: 38213152 DOI: 10.2174/0113892010271975231218074830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Levo-tetrahydropalmatine and low-dose naltrexone are used in association with reducing cocaine-related cravings, but there are no analytical methods for the quantitative simultaneous analysis of this drug combination. OBJECTIVE A highly selective and sensitive LC-MS/MS assay was developed and validated to simultaneously quantify l-THP and naltrexone. The analytical method for l-THP offers improved sensitivity compared to previously published methods. METHODS The product ion transitions of l-THP and naltrexone were 357.0→193.0 and 342.2→324.1, respectively. Chromatographic separations were performed using a BEH-C18 column by an isocratic elution mode with acetonitrile and 0.1% formic acid in water containing 3 mM ammonium acetate. L-THP and naltrexone were extracted from rat plasma using a liquidliquid extraction method. RESULTS For l-THP and naltrexone, the assay displayed good linear response over a concentration range of 0.5-1000 ng/mL and 0.25-500 ng/mL, respectively. The intra-day accuracy of the method for l-THP and naltrexone was 93.8-101% with a precision (%CV) of 2.43-8.15% and 93.4-108% with a precision of 3.47-8.22%. The inter-day accuracy for l-THP and naltrexone was 91.2-102% with a CV of 2.46-8.06% and 91.5-97.8% with a CV of 3.29-8.92%, respectively. CONCLUSION The assay has been used for pharmacokinetic studies of l-THP and naltrexone in the rat.
Collapse
Affiliation(s)
- Kun Feng
- Women and Children Hospital, Qingdao University, Qingdao, 266034, China
| | - Sherwin K B Sy
- Department of Statistics, State University of Maringá, Maringá, Paraná, Brazil
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, PR China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, PR China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266003, PR China
| | - Meixing Yan
- Women and Children Hospital, Qingdao University, Qingdao, 266034, China
| |
Collapse
|
9
|
Namballa HK, Decker AM, Dorogan M, Gudipally A, Goclon J, Harding WW. Fluoroalkoxylated C-3 and C-9 (S)-12-bromostepholidine analogues with D1R antagonist activity. Bioorg Chem 2023; 141:106862. [PMID: 37722267 PMCID: PMC10872833 DOI: 10.1016/j.bioorg.2023.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
To illuminate the tolerance of fluoroalkoxylated groups at the C-3 and C-9 positions of tetrahydroprotoberberines (THPBs) on D1R activity, C-3 and C-9 fluoroalkoxylated analogues of (S)-12-bromostepholidine were prepared and evaluated. All compounds examined were D1R antagonists as measured by a cAMP assay. Our structure-activity studies herein indicate that the C-3 position tolerates a 1,1-difluoroethoxy substituent for D1R antagonist activity. Compound 13a was the most potent cAMP-based D1R antagonist identified and was also found to antagonize β-arrestin translocation in a TANGO assay. Affinity assessments at other dopamine receptors revealed that 13a is selective for D1R and unlike other naturally-occurring THPBs such as (S)-stepholidine, lacks D2R affinity. In preliminary biopharmaceutical assays, excellent BBB permeation was observed for 13a. Further pharmacological studies are warranted on (S)-stepholidine congeners to harvest their potential as a source of novel, druggable D1R-targeted agents.
Collapse
Affiliation(s)
- Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, NC 27709, United States
| | - Michael Dorogan
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Ashok Gudipally
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Chemistry, CUNY Graduate Center 365 5th Avenue, New York, NY 10016, United States
| | - Jakub Goclon
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Chemistry, CUNY Graduate Center 365 5th Avenue, New York, NY 10016, United States; Program in Biochemistry, CUNY Graduate Center 365 5th Avenue, New York, NY 10016, United States.
| |
Collapse
|
10
|
Yang D, Jiang J, Li W, Zhang R, Sun L, Meng J. Neural mechanisms of priming effects of spicy food pictures induced analgesia. Biol Psychol 2023; 184:108688. [PMID: 37730170 DOI: 10.1016/j.biopsycho.2023.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
In this study, the effects of the priming of spicy food pictures on pain perception were evaluated in female participants using standardized methods of pain. Results from behavior tests revealed that the priming of spicy food pictures significantly reduced pain perception, particularly at high-pain intensities. Electrophysiological analysis showed that the analgesic effects of spicy food pictures were linked to decreased pain-related event-related potentials, such as N2 and P2 amplitudes, and suppressed θ-oscillations in the sensorimotor cortex. Both N2 amplitudes and θ-oscillations activities were found to be correlated with participants' pain perception. These results suggest that spicy-arousal stimuli may act as an "antagonist" to the increase in N2 amplitudes and θ-oscillations power induced by pain and influence the neuronal networks involved in integrating spontaneous nociceptive resources, which supports the dissociation theory of pain sensation and affection. These findings highlight the potential use of spicy-arousal stimuli as an analgesic and emphasize the importance of considering both the intensity of the stimuli and the individual's emotional state in the assessment and treatment of pain.
Collapse
Affiliation(s)
- Di Yang
- Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China; Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China; Department of Psychology, Soochow University, Suzhou, China
| | - Jin Jiang
- School of Automotive Engineering, Chongqing Wuyi Polytechinc, Chongqing, China
| | - Wanchen Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | | | - Luzhuang Sun
- School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jing Meng
- Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China; Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.
| |
Collapse
|
11
|
Turnaturi R, Piana S, Spoto S, Costanzo G, Reina L, Pasquinucci L, Parenti C. From Plant to Chemistry: Sources of Active Opioid Antinociceptive Principles for Medicinal Chemistry and Drug Design. Molecules 2023; 28:7089. [PMID: 37894567 PMCID: PMC10609244 DOI: 10.3390/molecules28207089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pain continues to be an enormous global health challenge, with millions of new untreated or inadequately treated patients reported annually. With respect to current clinical applications, opioids remain the mainstay for the treatment of pain, although they are often associated with serious side effects. To optimize their tolerability profiles, medicinal chemistry continues to study novel ligands and innovative approaches. Among them, natural products are known to be a rich source of lead compounds for drug discovery, and they hold potential for pain management. Traditional medicine has had a long history in clinical practice due to the fact that nature provides a rich source of active principles. For instance, opium had been used for pain management until the 19th century when its individual components, such as morphine, were purified and identified. In this review article, we conducted a literature survey aimed at identifying natural products interacting either directly with opioid receptors or indirectly through other mechanisms controlling opioid receptor signaling, whose structures could be interesting from a drug design perspective.
Collapse
Affiliation(s)
- Rita Turnaturi
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Silvia Piana
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Salvatore Spoto
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| | - Giuliana Costanzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy;
| | - Lorena Reina
- Postgraduate School of Clinical Pharmacology, Toxicology University of Catania, Via Santa Sofia n. 97, 95100 Catania, Italy;
| | - Lorella Pasquinucci
- Department of Drug and Health Sciences, Medicinal Chemistry Section, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Carmela Parenti
- Department of Drug and Health Sciences, Section of Pharmacology and Toxicology, University of Catania, 95125 Catania, Italy; (S.S.); (C.P.)
| |
Collapse
|
12
|
Oleinichenko D, Ahn S, Song R, Snutch TP, Phillips AG. Morphine Withdrawal-Induced Hyperalgesia in Models of Acute and Extended Withdrawal Is Attenuated by l-Tetrahydropalmatine. Int J Mol Sci 2023; 24:ijms24108872. [PMID: 37240217 DOI: 10.3390/ijms24108872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Effective pain control is an underappreciated aspect of managing opioid withdrawal, and its absence presents a significant barrier to successful opioid detoxification. Accordingly, there is an urgent need for effective non-opioid treatments to facilitate opioid detoxification. l-Tetrahydropalmatine (l-THP) possesses powerful analgesic properties and is an active ingredient in botanical formulations used in Vietnam for the treatment of opioid withdrawal syndrome. In this study, rats receiving morphine (15 mg/kg, i.p.) for 5 days per week displayed a progressive increase in pain thresholds during acute 23 h withdrawal as assessed by an automated Von Frey test. A single dose of l-THP (5 or 7.5 mg/kg, p.o.) administered during the 4th and 5th weeks of morphine treatment significantly improves pain tolerance scores. A 7-day course of l-THP treatment in animals experiencing extended withdrawal significantly attenuates hyperalgesia and reduces the number of days to recovery to baseline pain thresholds by 61% when compared to vehicle-treated controls. This indicates that the efficacy of l-THP on pain perception extends beyond its half-life. As a non-opioid treatment for reversing a significant hyperalgesic state during withdrawal, l-THP may be a valuable addition to the currently limited arsenal of opioid detoxification treatments.
Collapse
Affiliation(s)
- Daria Oleinichenko
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Djavad Mowafaghian Centre for Brain Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Djavad Mowafaghian Centre for Brain Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Ru Song
- Djavad Mowafaghian Centre for Brain Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Terrance P Snutch
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Djavad Mowafaghian Centre for Brain Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 2A1, Canada
- Djavad Mowafaghian Centre for Brain Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
13
|
High-Throughput Sequencing Reveals That Rotundine Inhibits Colorectal Cancer by Regulating Prognosis-Related Genes. J Pers Med 2023; 13:jpm13030550. [PMID: 36983731 PMCID: PMC10052610 DOI: 10.3390/jpm13030550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Background: Rotundine is an herbal medicine with anti-cancer effects. However, little is known about the anti-cancer effect of rotundine on colorectal cancer. Therefore, our study aimed to investigate the specific molecular mechanism of rotundine inhibition of colorectal cancer. Methods: MTT and cell scratch assay were performed to investigate the effects of rotundine on the viability, migration, and invasion ability of SW480 cells. Changes in cell apoptosis were analyzed by flow cytometry. DEGs were detected by high-throughput sequencing after the action of rotundine on SW480 cells, and the DEGs were subjected to function enrichment analysis. Bioinformatics analyses were performed to screen out prognosis-related DEGs of COAD. Followed by enrichment analysis of prognosis-related DEGs. Furthermore, prognostic models were constructed, including ROC analysis, risk curve analysis, PCA and t-SNE, Nomo analysis, and Kaplan–Meier prognostic analysis. Results: In this study, we showed that rotundine concentrations of 50 μM, 100 μM, 150 μM, and 200 μM inhibited the proliferation, migration, and invasion of SW480 cells in a time- and concentration-dependent manner. Rotundine does not induce SW480 cell apoptosis. Compared to the control group, high-throughput results showed that there were 385 DEGs in the SW480 group. And DEGs were associated with the Hippo signaling pathway. In addition, 16 of the DEGs were significantly associated with poorer prognosis in COAD, with MEF2B, CCDC187, PSD2, RGS16, PLXDC1, HELB, ASIC3, PLCH2, IGF2BP3, CLHC1, DNHD1, SACS, H1-4, ANKRD36, and ZNF117 being highly expressed in COAD and ARV1 being lowly expressed. Prognosis-related DEGs were mainly enriched in cancer-related pathways and biological functions, such as inositol phosphate metabolism, enterobactin transmembrane transporter activity, and enterobactin transport. Prognostic modeling also showed that these 16 DEGs could be used as predictors of overall survival prognosis in COAD patients. Conclusions: Rotundine inhibits the development and progression of colorectal cancer by regulating the expression of these prognosis-related genes. Our findings could further provide new directions for the treatment of colorectal cancer.
Collapse
|
14
|
Nie Q, Wang C, Xu H, Mittal P, Naeem A, Zhou P, Li H, Zhang Y, Guo T, Sun L, Zhang J. Highly efficient pulmonary delivery of levo-tetrahydropalmatine using γ-cyclodextrin metal-organic framework as a drug delivery platform. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
15
|
Emori W, Louis H, Adalikwu SA, Timothy RA, Cheng CR, Gber TE, Agwamba EC, Owen AE, Ling L, Offiong OE, Adeyinka AS. Molecular Modeling of the Spectroscopic, Structural, and Bioactive Potential of Tetrahydropalmatine: Insight from Experimental and Theoretical Approach. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2110908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Wilfred Emori
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, Sichuan, P. R. China
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan, P. R. China
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Stephen A. Adalikwu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Rawlings A. Timothy
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Chun-Ru Cheng
- Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, Sichuan, P. R. China
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Sichuan University of Science & Engineering, Zigong, Sichuan, P. R. China
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Ernest C. Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Ihie, Nigeria
| | - Aniekan E. Owen
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Liu Ling
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Sichuan University of Science & Engineering, Zigong, Sichuan, P. R. China
| | - Offiong E. Offiong
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Adedapo S. Adeyinka
- Department of Chemical Sciences, Research Centre for Synthesis and Catalysis, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
16
|
Hou Y, Dong B, Peng Y, Peng C, Wang M, Li X. Pharmacodynamics assessment of β-carboline from the roots of Psammosilene tunicoides as analgesic compound. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115163. [PMID: 35247473 DOI: 10.1016/j.jep.2022.115163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Psammosilene tunicoides (W. C. Wu et C. Y. Wu) is a well-known medicinal herb for the treatment of pain, hemostasia and rheumatoid arthritis among Chinese people. AIM OF THE STUDY The present study aimed to investigate the antinociceptive activity and mechanism of β-carboline alkaloids 1-4 which were extracted from the roots of P. tunicoides. MATERIALS AND METHODS The analgesic effects were evaluated using peripheral and central pain mouse models of nociception, including the formalin test and the tail flick test. The levels of glutamic acid (Glu) and nitric oxide (NO) in cerebellar cortexes and spinal cords (L4-6) were determined. The anti-inflammatory of all compounds were then assessed on RAW264.7 cells. RESULTS Our results showed that compounds 1-4 had significant analgesic effects on both phases of formalin test of mice. Furthermore, all compounds showed suppressive effects on Glu in the brain and NO levels in the brain cortex and the spinal cord. Except for compound 1, the others could extend the pain threshold of hot water tail-flick in mice. In addition, compounds 2 and 3 (60 μmol/kg) could decrease GABAAα1 protein levels in spinal cord. All compounds exhibited anti-inflammatory effects by inhibiting lipopolysaccharide (LPS)-induced NO production in RAW264.7 cells with half-maximal inhibitory concentration (IC50) 1.1-34.9 μM. CONCLUSION β-carboline alkaloids from the roots of P. tunicoides had significant analgesic activity by both central and peripheral mechanisms. Our findings suggested that regulating the release of NO or Glu or GABAα1 are some of the mechanisms of analgesic activity of β-carboline alkaloids.
Collapse
Affiliation(s)
- Yinhuan Hou
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
17
|
Alhassen L, Dabbous T, Ha A, Dang LHL, Civelli O. The Analgesic Properties of Corydalis yanhusuo. Molecules 2021; 26:molecules26247498. [PMID: 34946576 PMCID: PMC8704877 DOI: 10.3390/molecules26247498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Corydalis yanhusuo extract (YHS) has been used for centuries across Asia for pain relief. The extract is made up of more than 160 compounds and has been identified as alkaloids, organic acids, volatile oils, amino acids, alcohols, and sugars. However, the most crucial biological active constituents of YHS are alkaloids; more than 80 have been isolated and identified. This review paper aims to provide a comprehensive review of the phytochemical and pharmacological effects of these alkaloids that have significant ties to analgesia.
Collapse
Affiliation(s)
- Lamees Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Travis Dabbous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Allyssa Ha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Leon Hoang Lam Dang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|