1
|
Chen CY, Zhang Y. Berberine: An isoquinoline alkaloid targeting the oxidative stress and gut-brain axis in the models of depression. Eur J Med Chem 2025; 290:117475. [PMID: 40107207 DOI: 10.1016/j.ejmech.2025.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Depression seriously affects people's quality of life, and there is an urgent need to find novel drugs to cure treatment-resistant depression. Berberine (BBR), extracted from Coptis chinensis Franch., Phellodendron bark, Berberis vulgaris, and Berberis petiolaris, could be a potential multi-target drug for depression. To summarize the effects of BBR on depression in terms of in vitro or in vivo experiments, we searched electronic databases, such as PubMed, Web of Science, Google Scholar, Wanfang Database, and China National Knowledge Infrastructure, from inception until May 2024. Then, we summarize that BBR has indirect antidepressant properties to improve depressive symptoms, manifesting in modulating the gut microbial community, strengthening the intestinal barrier, increasing the abundance of short-chain fatty acid-producing bacteria, and regulating tryptophan metabolism. BBR also exerts antidepressant-like effects via remodulating nuclear factor-erythroid 2-related factor 2/antioxidant response element pathway, hypothalamic-pituitary-adrenal axis, and peroxisome proliferators-activated receptor-delta. Nevertheless, further clinical trials and more high-quality animal studies are needed to show the actual clinical value of BBR for depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
2
|
Chen S, Zheng W, Wang Y, Zhao X, Deng W, Chai N. Paeoniflorin attenuates cisplatin induced ototoxicity by inhibiting ferroptosis mediated by HMGB1/NRF2/GPX4 pathway. Food Chem Toxicol 2025:115550. [PMID: 40374000 DOI: 10.1016/j.fct.2025.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Cisplatin-induced ototoxicity is a major dose-limiting complication in cancer therapy, profoundly diminishing quality of life. Paeoniflorin (PAE), a bioactive compound from Paeonia lactiflora, exhibits diverse pharmacological activities. This study aimed to evaluate the efficacy of PAE in countering cisplatin-induced ototoxicity and explore its molecular mechanisms. Cochlear hair cell injury models were established both in vitro and in vivo using cisplatin. Ferroptosis was induced in HEI-OC1 cells with RSL3, and HMGB1-overexpressing models were constructed to investigate its role. The findings indicated that PAE effectively alleviated cisplatin-induced hearing loss and cochlear cell damage in both in vitro and in vivo models. Moreover, PAE significantly mitigated the inflammatory response triggered by cisplatin exposure. Mechanistically, PAE reduced oxidative stress and ferroptosis by upregulating nuclear factor erythroid 2-related factor 2 (NRF2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4). Notably, PAE directly interacted with HMGB1 and suppressed its expression, thereby inhibiting HMGB1-mediated ferroptosis in cochlear cells. This study highlights PAE as a promising therapeutic candidate for preventing cisplatin-induced ototoxicity. By elucidating the role of PAE in modulating ferroptosis through HMGB1 and the NRF2/SLC7A11/GPX4 pathway, our findings provide new insights into potential strategies for mitigating cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Shaoli Chen
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Zheng
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyu Zhao
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenhao Deng
- Department of Otolaryngology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ni Chai
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang YT, Wang XL, Lei L, Zhang Y. Efficacy of ginsenoside Rg1 on rodent models of depression: A systematic review and meta-analysis. Psychopharmacology (Berl) 2025; 242:1137-1155. [PMID: 39039242 DOI: 10.1007/s00213-024-06649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/07/2024] [Indexed: 07/24/2024]
Abstract
RATIONALE Depression is a prevalent psychiatric disease, and ginsenoside Rg1 is a bioactive compound extracted from the root of Panax ginseng C.A.Mey. To systematically investigate the effectiveness of Rg1 in rodent models of depression and provide evidence-based references for treating depression. METHODS Electronic searches for rodent studies were performed from inception to October 2022, e.g., PUBMED and EMBASE. Data extraction and quality evaluation were performed for the references, and meta-analysis was performed on the selected data using Review Manager 5.3.5. The outcomes were analyzed via a random-effect model and presented as mean difference (MD) with 95% confidence intervals (CIs). RESULTS A total of 24 studies and 678 animals were included in this meta-analysis. Rg1 remarkably improved depressive-like symptoms of depressed rodents, including the sucrose preference test (25.08, 95% CI: 20.17-30.00, Z = 10.01, P < 0.00001), forced swimming test (MD = -37.69, 95% CI: (-45.18, -30.2); Z = 9.86, P < 0.00001), and the tail suspension test (MD = -22.93, seconds, 95% CI: (-38.49, -7.37); Z = 2.89, P = 0.004). CONCLUSIONS The main antidepressant mechanism of Rg1 was concluded to be the neurotransmitter system, oxidant stress system, and inflammation. Conclusively, this study indicated the possible protective and therapeutic effects of Rg1 for treating depression via multiple mechanisms.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
4
|
Sun Y, Wang G, Li S, Jiang Y, Liu Y, Gao Y, Yuan Y, Nie H. Paeoniflorin Directly Targets ENO1 to Inhibit M1 Polarization of Microglia/Macrophages and Ameliorates EAE Disease. Int J Mol Sci 2025; 26:3677. [PMID: 40332313 PMCID: PMC12027182 DOI: 10.3390/ijms26083677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
The chronic autoimmune disease multiple sclerosis (MS) now remains incurable. Paeoniflorin (PF), which is a monoterpene glucoside obtained from Paeonia lactiflora Pall, is recognized for neuroprotective and anti-inflammatory properties. However, the precise mechanism by which PF regulates MS is unclear. This work aims to elucidate the underlying mechanisms of PF in EAE, a well established animal model of MS, and to discover the target proteins that PF directly acts on. Our results revealed that PF administration can significantly attenuate the clinical symptoms of EAE and alleviate the central nervous system (CNS) inflammatory environment by inhibiting M1-type microglia/macrophages. Mechanistically, PF was found to directly interact with the glycolytic enzyme α-enolase (ENO1), inhibiting its enzymatic activity and expression to impair glucose metabolism, thereby suppressing microglia/macrophage M1 polarization and ameliorating CNS inflammation. Significantly, Eno1 knockdown in microglia/macrophages diminished their pro-inflammatory phenotype, while treatment with ENOBlock or the specific knockout of Eno1 in microglia led to EAE remission, underscoring the critical role of ENO1 in EAE progression. This study uncovers the molecular mechanism of PF in treating EAE, linking the anti-inflammatory property of PF to the glucose metabolism process, which will broaden the prospective applications of PF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuanyang Yuan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.S.); (G.W.); (S.L.); (Y.J.); (Y.L.); (Y.G.)
| | - Hong Nie
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.S.); (G.W.); (S.L.); (Y.J.); (Y.L.); (Y.G.)
| |
Collapse
|
5
|
Ma S, Zhang Y, Zhu R, Wu S, Zhang S, Zeng H, Zhang W, Ye J. Integration of feature-based molecular networking and high-definition data-dependent acquisition for the comprehensive multicomponent characterization of Honghua Xiaoyao Tablet. Talanta 2025; 285:127298. [PMID: 39616758 DOI: 10.1016/j.talanta.2024.127298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025]
Abstract
Systematically identifying the chemical constituents in complex matrices is a challenge due to the inherent characteristics of compounds. The combination of liquid chromatography-tandem mass spectrometry (LC-MS) and classical molecular networking (CLMN) is a powerful technology for annotating small molecules. However, the low coverage from inappropriate acquisition modes and the inseparability of isomeric compound nodes still hinders the comprehensive metabolite characterization. A novel strategy that integrated high-definition data-dependent acquisition (HDDDA) from traveling-wave ion mobility mass spectrometry (TWIMS) and feature-based molecular networking (FBMN) was developed to improve chemical component characterization and enhance isomeric component discernment. The data-dependent acquisition (DDA) and HDDDA, were effectively and visually evaluated by CLMN and FBMN via the number of nodes, clustered nodes and clusters. Moreover, the efficiency of the three strategies was validated. The results strongly demonstrated that the HDDDA-FBMN strategy improves MS coverage and offers significant advantages for isomer identification. With the assistance of the UNIFI platform, the developed strategy was successfully applied to systematically investigate the chemical profile of Honghua Xiaoyao Tablet (HHXYT), a traditional folk empirical prescription for treating various gynecological diseases. 184 compounds were unambiguously identified or tentatively characterized, including 12 pairs of isomers, and two unreported compounds. In conclusion, this hybrid approach achieves dimensionally enhanced MS data acquisition and visual recognition of isomeric compounds, accelerating the structural characterization in complex systems. We anticipate that HDDDA-FBMN strategies will be a flexible and versatile tool for the chemical components in a complex system of TCMs.
Collapse
Affiliation(s)
- Siyi Ma
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuhao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Renwen Zhu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyu Wu
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fujian, 350122, China
| | - Shiyu Zhang
- School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Huawu Zeng
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Weidong Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Ji Ye
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Kuo SL, Su CH, Lai KH, Chang YC, You JS, Peng HH, Chen CH, Lin CC, Chen PJ, Hwang TL. Guizhi Fuling Wan ameliorates concanavalin A-induced autoimmune hepatitis in mice. Biomed J 2025; 48:100731. [PMID: 38677491 PMCID: PMC11745949 DOI: 10.1016/j.bj.2024.100731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Autoimmune hepatitis (AIH) is an immune-mediated hepatic disease associated with intense complications. AIH is more common in females and needs effective drugs to treat. Guizhi Fuling Wan (GZFLW) is a traditional Chinese herbal formula for treating various gynecologic diseases. In this study, we aim to extend the new use of GZFLW for AIH. METHODS The tandem MS-based analysis was used to identify secondary metabolites in GZFLW. Therapeutic effects of GZFLW were tested in a concanavalin A (Con A)-induced AIH model in mice. Ethnopharmacological mechanisms underlying the antiapoptotic, antioxidant, and immunomodulatory protective effects were determined. RESULTS Oral administration of GZFLW attenuates AIH in a Con A-induced hepatotoxic model in vivo. The tandem MS-based analysis identified 15 secondary metabolites in GZFLW. The Con A-induced AIH syndromes, including hepatic apoptosis, inflammation, reactive oxygen species accumulation, function failure, and mortality, were significantly alleviated by GZFLW in mice. Mechanistically, GZFLW restrained the caspase-dependent apoptosis, restored the antioxidant system, and decreased pro-inflammatory cytokine production in the livers of Con A-treated mice. Besides, GZFLW repressed the Con A-induced hepatic infiltration of inflammatory cells, splenic T cell activation, and splenomegaly in mice. CONCLUSIONS Our findings demonstrate the applicable potential of GZFLW in treating AIH. It prompts further investigation of GZFLW as a treatment option for AIH and possibly other hepatic diseases.
Collapse
Affiliation(s)
- Shun-Li Kuo
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Han Su
- Department of Food Science, College of Human Ecology, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Kuei-Hung Lai
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chia Chang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Jyh-Sheng You
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Division of Chinese Medicine Obstetrics and Gynecology, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Chi-Chen Lin
- Program in Translational Medicine, National Chung-Hsing University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, I-Shou University, Kaohsiung, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
7
|
Zhao FY, Xu P, Kennedy GA, Jin X, Wang YM, Zhang WJ, Yue LP, Ho YS, Fu QQ, Conduit R. Insufficient Evidence to Recommend Shu Mian Capsule in Managing Depression With or Without Comorbid Insomnia: A Systematic Review With Meta-Analysis and Trial Sequential Analysis. Neuropsychiatr Dis Treat 2025; 21:167-183. [PMID: 39912100 PMCID: PMC11794040 DOI: 10.2147/ndt.s499574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/07/2025] Open
Abstract
Aim This systematic review with trial sequential analysis (TSA) aims to evaluate the efficacy and safety of Shu Mian Capsule (SMC), a commercial Chinese polyherbal preparation, for managing depression with or without comorbid insomnia. Methods Controlled clinical trials assessing SMC against waitlist control, placebo or active controls, or as an adjunct treatment were searched across seven databases. Risk of bias and evidence quality were assessed using Cochrane criteria and GRADE framework, respectively. Results Fourteen studies were analyzed, involving 1207 participants. Trials comparing SMC with placebo or standard antidepressive treatments were limited. In depressed patients without comorbid insomnia, combining SMC with antidepressants reduced the incidence of antidepressants-induced sleep disorders (from 12.2% to 3.8%) but did not significantly lower Hamilton Rating Scale for Depression (HAM-D) scores compared to antidepressants alone [SMD = -0.09, 95% CI (-0.32, 0.14), p = 0.45]. In depressed patients with comorbid insomnia, the combination of SMC and psychotropic drugs significantly reduced HAM-D [SMD = -1.29, 95% CI (-1.96, -0.62), p < 0.01] and Pittsburgh Sleep Quality Index scores [SMD = -1.53, 95% CI (-1.95, -1.11), p < 0.01], and exhibited a lower incidence of various drug-related adverse effects compared to psychotropic drugs alone. TSA validated the sample size adequacy; nevertheless, the methodological quality of supporting studies varied from very low to low due to substantial bias risk. Additionally, 92.9% of trials lacked follow-ups. Conclusion The effectiveness of SMC as an alternative to conventional antidepressive treatment is unclear. For depressed patients with comorbid insomnia, adding SMC to standard care demonstrates augmented efficacy and improved safety, though the supporting evidence is methodologically limited. Further rigorous trials are warranted to confirm SMC's short-term efficacy and explore its medium- to long-term effects as either an alternative or complementary therapy. Current evidence precludes recommendations for the administration of SMC in depression.
Collapse
Affiliation(s)
- Fei-Yi Zhao
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, People’s Republic of China
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Peijie Xu
- School of Computing Technologies, RMIT University, Melbourne, VIC, 3000, Australia
| | - Gerard A Kennedy
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| | - Xiaochao Jin
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Shanghai Jiaotong University School of Nursing, Shanghai, People’s Republic of China
| | - Yan-Mei Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Wen-Jing Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, People’s Republic of China
| | - Li-Ping Yue
- Department of Nursing, School of International Medical Technology, Shanghai Sanda University, Shanghai, 201209, People’s Republic of China
| | - Yuen-Shan Ho
- School of Nursing, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, People’s Republic of China
| | - Qiang-Qiang Fu
- Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, People’s Republic of China
| | - Russell Conduit
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, VIC, 3083, Australia
| |
Collapse
|
8
|
Tang Q, Chu H, Sun N, Fan X, Han B, Li Y, Yu X, Li L, Wang X, Liu L, Chang H. The effects and mechanisms of chai shao jie yu granules on chronic unpredictable mild stress (CUMS)-induced depressive rats based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119268. [PMID: 39706355 DOI: 10.1016/j.jep.2024.119268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chai Shao Jie Yu Granules (CSJY) is a renowned and time-honored formula employed in clinical practice for the management of various conditions, notably depression. Depression, a prevalent psychiatric disorder, poses challenges with limited effective treatment options. Traditional herbal medicines have garnered increasing attention in the realm of combating depression, being perceived as safer alternatives to pharmacotherapy. AIM OF THE STUDY To explore the effects and mechanisms of CSJY in chronic unpredictable mild stress (CUMS)-induced depression. MATERIALS AND METHODS Rat models of CUMS-induced depression were established, and the rats were randomly allocated into six groups: Control, CUMS, CUMS + Paroxetine (PX), CUMS + CSJY-L, CUMS + CSJY-M, and CUMS + CSJY-H. Throughout the study, the rats' body weight was monitored. Depression-related behaviors were assessed using the sucrose preference test (SPT) and open field test (OFT). High-performance liquid chromatography-mass spectrometry (HPLC-MS) measured monoamine neurotransmitters in the rat cortex and hippocampus. We measured adrenocorticotropic hormone (ACTH), corticosterone (CORT), and corticotropin-release hormone (CRH) levels in rat serum. Additionally, network pharmacology was employed to predict relevant molecular targets and potential mechanisms, followed by in vivo validation. Western blot analysis was conducted to evaluate the protein levels of 5-hydroxytryptamine/serotonin receptor 1A (5-HT1A) and Glutamate (Glu)-related proteins, such as p-GluA1, GluA1, p-GluN1, GluN1, p-GluN2A and GluN2A in the hippocampus. RESULTS In behavioral assessments, CUMS rats exhibited depressive behaviors, which were ameliorated by CSJY or PX treatment. Moreover, CSJY or PX treatment increased serotonin (5-HT) levels. It reduced the kynurenine/tryptophan (KYN/TRP) and gamma-aminobutyric acid/glutamate (GABA/Glu) in the hippocampus and cortex, as well as reduced serum levels of ACTH, CORT and CRH. Furthermore, CSJY or PX administration enhanced the decreased expression of p-GluN1/GluN1 while upregulating 5-HT1A and p-GluA1/GluA1 levels in the CUMS group. CONCLUSION CSJY demonstrated the ability to alleviate depressive behaviors in CUMS-induced depression rats, potentially through the inhibition of the hypothalamic-pituitary-adrenal (HPA) axis, modulation of monoamine neurotransmitters, and glutamatergic neurons. These findings suggest that CSJY could serve as a promising treatment option for depression.
Collapse
Affiliation(s)
- Qin Tang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China; Pharmacy Department, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| | - Haolin Chu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Nan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaoxu Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Yu Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lina Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiuli Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liying Liu
- Heilongjiang Jiren Pharmaceutical Co., Ltd, Heilongjiang, 150025, China
| | - Hongsheng Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
9
|
Abdalla M, Khalid A, Hedayati J, Ghayur MN. Cholinesterase Inhibitory Activity of Paeoniflorin: Molecular Dynamics Simulation, and In Vitro Mechanistic Investigation. Biochem Res Int 2024; 2024:9192496. [PMID: 39735856 PMCID: PMC11671635 DOI: 10.1155/bri/9192496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/20/2024] [Accepted: 12/07/2024] [Indexed: 12/31/2024] Open
Abstract
Alzheimer's disease (AD), a neurological disorder, is one of the major reasons for memory loss in the world. AD is characterized by a sequela of cognitive and functional decline caused by brain cell degeneration. Paeoniflorin is a monoterpenoid glycoside found in plants of the Paeoniaceae family, which are known for their medicinal properties including dementia. In this project, we report actions of paeoniflorin on the two related cholinesterases (ChE): acetylChE (AChE) and butyrylChE (BuChE). Paeoniflorin, in a dose-dependent (maximum inhibition at 1 mg/mL) manner, inhibited both AChE (0.06-1 mg/mL) and BuChE (0.007-1 mg/mL) enzymes with maximum inhibition of AChE enzyme at 90.3 ± 1.4%, while 99.4 ± 0.3% for BuChE enzyme. The EC50 value for the inhibitory effect of the compound against AChE was 0.52 mg/mL (0.18-1.52), while against BuChE was 0.13 mg/mL (0.08-0.21). The observed ani-ChE action was like an effect also mediated by the known ChE blocker physostigmine. Molecular interactions between paeoniflorin and both ChE enzymes were additionally sought via molecular docking and molecular dynamics simulations for 100 ns, that showed paeoniflorin interacted with the active-site gorge of AChE and BuChE via hydrogen bonds and water bridging with the many amino acids of the AChE and BuChE enzymes. This study presents the ChE inhibitory potential of paeoniflorin against both AChE and BuChE enzymes. With this kind of inhibitory activity, the chemical can potentially increase ACh levels and may have use in the treatment of dementia of AD.
Collapse
Affiliation(s)
- Mohnad Abdalla
- Pediatric Research Institute, Children's Hospital, Shandong University, Jinan 250022, China
| | - Asaad Khalid
- Substance Abuse & Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum 11111, Sudan
| | - Jasmine Hedayati
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville 41501, Kentucky, USA
| | - Muhammad Nabeel Ghayur
- Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville 41501, Kentucky, USA
| |
Collapse
|
10
|
Yu C, Yang F, Zou Y, Zhang Y, Pan S. The therapeutic effects of Paeoniae Radix Rubra on chronic hepatitis through network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e40796. [PMID: 39654159 PMCID: PMC11630941 DOI: 10.1097/md.0000000000040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUNDS Chronic hepatitis (CH) refers to liver inflammation lasting at least 6 months caused by various factors, significantly impacting patients' daily lives. Paeoniae Radix Rubra (CS) is a classic blood-activating and stasis-dissolving herb known for its protective effects on the liver. This research seeks to investigate the underlying mechanisms by which CS treat CH, employing network pharmacology and molecular docking. METHODS The active constituents of CS for CH treatment were identified through the TCMSP database. Targets associated with CH were gathered from GeneCards, the Therapeutic Target Database, and OMIM databases. The intersecting genes between these targets and the components of CS were considered potential therapeutic targets. Protein-protein interaction analysis was performed with the use of the STRING database and Cytoscape software, leading to the identification of core targets. These core targets underwent KEGG and GO enrichment analysis, and the top 10 pathways were chosen for building a drug-compound-target-pathway-disease' network. Finally, molecular docking was utilized to evaluate the binding affinities between the compounds and the core targets. RESULTS From the TCMSP database, 29 compounds were screened, and 101 potential intersection targets of CS for treating CH were identified. The protein-protein interaction network analysis revealed that the core targets included EGFR, HSP90AA1, SRC, TNF, ALB, ESR1, CASP3, PTGS2, ERBB2, and FGF2. Pathway analysis indicated that CS's treatment of CH is mainly associated with the pathway in cancer. Molecular docking results indicated that Paeoniflorin and Baicalin exhibited strong binding affinity with EGFR and HSP90AA1. CONCLUSION This research uncovers the possible mechanisms of CS in CH treatment, offering new avenues for future studies.
Collapse
Affiliation(s)
- Chunlei Yu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Fan Yang
- Clinical Pathological Diagnosis Center, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Yu Zou
- College of Pharmacy, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Yingbo Zhang
- College of Pathology, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| | - Siwen Pan
- College of Pathology, Qiqihar Medical University, Qiqihar City, Heilongjiang Province, China
| |
Collapse
|
11
|
Hu Q, Xie J, Jiang T, Gao P, Chen Y, Zhang W, Yan J, Zeng J, Ma X, Zhao Y. Paeoniflorin alleviates DSS-induced ulcerative colitis by suppressing inflammation, oxidative stress, and apoptosis via regulating serum metabolites and inhibiting CDC42/JNK signaling pathway. Int Immunopharmacol 2024; 142:113039. [PMID: 39216118 DOI: 10.1016/j.intimp.2024.113039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Ulcerative colitis (UC) poses a threat to human health. The present study attempts to unravel the efficacy and potential mechanisms of paeoniflorin (PF), a naturally sourced active ingredient, for the management of UC. By establishing a DSS (dextran sulphate sodium)-induced experimental rat model of UC, this study found that PF was effective in ameliorating UC symptoms, inhibiting oxidative stress, inflammation and apoptosis, and repairing colonic epithelial damage. In addition, metabolomics revealed that PF may alleviate UC by primarily improving linoleic acid metabolism. Mechanistically, PF inhibited the CDC42/JNK signaling pathway by targeting CDC42. In particular, HuProtTM20K proteomics, molecular docking and MST revealed that PF is a novel CDC42 inhibitor. In LPS-treated Caco-2 cells, PF similarly inhibited oxidative stress, inflammation, and apoptosis and down-regulated the CDC42/JNK signaling pathway. Overall, PF inhibits oxidative stress, inflammation and apoptosis and repairs colonic epithelial damage through modulation of serum metabolites and inhibition of the CDC42/JNK signaling pathway, leading to alleviation of UC.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| | - Jin Xie
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Tao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Pan Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing Yan
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
12
|
Gong X, Tan Z, Xu H, Jiang X, Chen L. Paeoniflorin Attenuates Oxidative Stress and Inflammation in Parkinson's Disease by Activating the HSF1-NRF1 Axis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2131-2159. [PMID: 39663263 DOI: 10.1142/s0192415x24500824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study is to explore the effects of paeoniflorin (PF) on oxidative stress (OS) and inflammation in Parkinson's disease (PD) via the HSF1-NRF1 axis. SH-SY5Y cells were pretreated with PF and induced with α-synuclein preformed fibrils (PFF), followed by gain- and loss-of-function assays. Afterward, detection was conducted on cell viability, mitochondrial membrane potential ([Formula: see text]m), and reactive oxygen species (ROS), cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) levels. The binding of HSF1 to NRF1 promoter was evaluated. HSF1 and NRF1 expression was examined. Lastly, PD mouse models were established, followed by observation of the behavioral features of mice. Apoptosis; cleaved-Caspase 3, cleaved-Caspase 8, repulsive guidance molecule A (RGMa), GAP-43, and brain-derived neurotrophic factor (BDNF) expression; and superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), catalase (CAT), tumor necrosis factor (TNF)-α, interleukin (IL)-2, IL-6, and IL-10 levels were determined in mice and cells. HSF1 and NRF1 were downregulated, and HSF1 promoted NRF1 transcription and PF dose-dependently augmented HSF1 and NRF1 expression. PF dose-dependently reduced RGMa expression, ROS, MDA, TNF-α, IL-2, and IL-6 levels; mitigated apoptosis; and lowered cleaved-Caspase 3, cleaved-Caspase 8, COX-2, and iNOS expression while improving cell viability; increasing [Formula: see text]m, GAP-43, and BDNF expression; and raising SOD, GSH-Px, CAT, and IL-10 levels in PFF-induced SH-SY5Y cells. These effects were neutralized by HSF1 knockdown. In conclusion, PF dose-dependently activated the HSF1-NRF1 axis and alleviated OS and inflammation in PFF-treated mice, thereby impeding PD progression in mice.
Collapse
Affiliation(s)
- Xin Gong
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Zhijian Tan
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Henghui Xu
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Xu Jiang
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| | - Lei Chen
- Department of Neurosurgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, P. R. China
| |
Collapse
|
13
|
Zeng J, Wu Q, Meng XD, Wang J. Systematic review of Buzhong Yiqi method in alleviating cancer-related fatigue: a meta-analysis and exploratory network pharmacology approach. Front Pharmacol 2024; 15:1451773. [PMID: 39564104 PMCID: PMC11573511 DOI: 10.3389/fphar.2024.1451773] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
Objectives Cancer-related fatigue (CRF) is a prevalent and distressing symptom experienced by many cancer patients, necessitating effective treatments. This study utilizes meta-analysis and network pharmacology to comprehensively assess the efficacy of the Buzhong Yiqi prescription in alleviating cancer-related fatigue and to preliminarily explore the mechanism of its core drugs. Methods We included randomized controlled trials (RCTs) in cancer patients. The inclusion criteria encompassed a diagnosis of cancer-related fatigue, without limitation on cancer type, the experimental group receiving Buzhong Yiqi prescription, the control group receiving conventional treatment, patients awaiting treatment, and articles published in either English or Chinese. We conducted a search through 29 February 2024, across PubMed, Cochrane Database of Systematic Reviews, Cochrane Controlled Clinical Trials (CENTRAL), China Biomedical Literature Service (CBM), China National Knowledge Infrastructure (CNKI), WANFANG Database, and Weipu Database (VIP). Journal articles that met the inclusion criteria were selected for inclusion. Two independent investigators evaluated the quality of the included studies. A meta-analysis was performed utilizing the Stata 12.0 software package, where estimates of cancer-related fatigue were aggregated through the application of a random-effects model. We employed the Cochrane Risk of Bias Tool to evaluate potential biases in RCTs. The primary outcome measures utilized to assess the efficacy and safety of CRF treatment comprised the Revised Piper Fatigue Scale (PFS-R) and the Quality of Life Questionnaire Core 30 (EORTC QLQ-C30). The secondary outcomes encompassed the KPS score, the effective rate, the TCM syndrome score, and an evaluation of adverse reactions. The Traditional Chinese Medicine Systems Pharmacology (TCMSP) was utilized to identify the active ingredients and targets of BZD. Additionally, the Drug bank, Therapeutic Target Database (TTD), DiaGeNET, and GeneCards databases were utilized to retrieve relevant targets for CRC. The Venn diagram was employed to identify overlapping targets. Cytoscape software was utilized to construct a network of "herb-ingredient-target" and identify core targets. GO and KEGG pathway enrichment analyses were performed using R language software. Results In comparison to the control group, patients with CRF who received BZYQ prescription exhibited marked improvements in KPS score, QLQ-C30 quality of life score, and effective rate. Conversely, PFS, TCM syndrome score, and adverse reaction assessments significantly decreased. The primary active ingredients in its core drugs may exert a positive therapeutic effect on CRF by targeting molecules such as AKT1, IL6, IL1B, PTGS2, CASP3, ESR1, and BCL2, as well as through signaling pathways including TNF, IL17, TLR, NF-κB, and C-type lectin receptor. Conclusion BZYQ demonstrates significant efficacy in treating CRF with minimal adverse reactions. It can serve as a fundamental treatment for CRF in clinical practice, and the medication can be tailored to individual patients for personalized therapy. The potential pharmacological mechanism of BZYQ in treating CRF, as predicted by network pharmacology, offers a molecular foundation for clinical CRF treatment. Systematic Review Registration https://inplasy.com, identifier INPLASY202430025.
Collapse
Affiliation(s)
- Ji Zeng
- Clinical Pharmacy Department, Department of Pharmacy, Ma'anshan City Hospital of Traditional Chinese Medicine, Ma'anshan, Anhui, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Qi Wu
- Department of Pharmacy, Ma'anshan City People's Hospital, Ma'anshan, China
| | - Xu-Dong Meng
- The Thyroid and Breast Surgery Department, Ma'anshan City People's Hospital, Ma'anshan, China
| | - Jian Wang
- The Thyroid and Breast Surgery Department, Ma'anshan City People's Hospital, Ma'anshan, China
| |
Collapse
|
14
|
Luo D, Hou Y, Zhan J, Hou Y, Wang Z, Li X, Sui L, Chen S, Lin D. Bu Shen Huo Xue Formula Provides Neuroprotection Against Spinal Cord Injury by Inhibiting Oxidative Stress by Activating the Nrf2 Signaling Pathway. Drug Des Devel Ther 2024; 18:4779-4797. [PMID: 39494153 PMCID: PMC11530378 DOI: 10.2147/dddt.s487307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024] Open
Abstract
Purpose Spinal cord injury (SCI) is an irreversible neurological disease that can result in severe neurological dysfunction. The Bu Shen Huo Xue Formula (BSHXF) has been clinically shown to assist in the recovery of limb function in patients with SCI. However, the underlying mechanisms of BSHXF's therapeutic effects remain unclear. This study aimed to evaluate the effects of BSHXF in a mouse model of SCI and to identify potential therapeutic targets. Methods The composition of BSHXF was analyzed using high-performance liquid chromatography (HPLC). In vivo, SCI was induced in mice following established protocols, followed by administration of BSHXF. Motor function was assessed using the Basso-Beattie-Bresnahan (BBB) and footprint tests. Levels of superoxide dismutase (SOD) and malondialdehyde (MDA) were quantified with specific assay kits. Protein expression analysis was performed using Western blot and immunofluorescence. Additionally, reactive oxygen species (ROS) levels and apoptosis rates were evaluated with dedicated staining kits. In vitro, neurons were exposed to lipopolysaccharide (LPS) to investigate the effects of BSHXF on neuronal oxidative stress. The protective effects of BSHXF against LPS-induced neuronal injury were examined through RT-PCR, Western blot, and immunofluorescence. Results The eight primary bioactive constituents of BSHXF were identified using HPLC. BSHXF significantly reduced tissue damage and enhanced functional recovery following SCI. Meanwhile, BSHXF treatment led to significant reductions in oxidative stress and apoptosis rates. It also reversed neuronal loss and reduced glial scarring after SCI. LPS exposure induced neuronal apoptosis and axonal degeneration; however, after intervention with BSHXF, neuronal damage was reduced, and the protective effects of BSHXF were mediated by the activation of the Nrf2 pathway. Conclusion BSHXF decreased tissue damage and enhanced functional recovery after SCI by protecting neurons against oxidative stress and apoptosis. The effects of BSHXF on SCI may be related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Dan Luo
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yonghui Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Jiheng Zhan
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yu Hou
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
- Laboratory of Osteology and Traumatology of Traditional Chinese Medicine, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zenglu Wang
- ICU Critical Care Medicine Department, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, People’s Republic of China
| | - Xing Li
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Lili Sui
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Shudong Chen
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Dingkun Lin
- Research Laboratory of Spine Degenerative Disease, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
- Spinal Minimally Invasive Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Zhi SM, Cui Y, Liu Y, Zhang JT, Li XJ, Sheng B, Chen XX, Yan CL, Li W, Mao JN, Yan HY, Jin W. Paeoniflorin suppresses ferroptosis after traumatic brain injury by antagonizing P53 acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155940. [PMID: 39128303 DOI: 10.1016/j.phymed.2024.155940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) could induce multiple forms of cell death, ferroptosis, a novel form of cell death distinct from apoptosis and autophagy, plays an important role in disease progression in TBI. Therapies targeting ferroptosis are beneficial for recovery from TBI. Paeoniflorin (Pae) is a water-soluble monoterpene glycoside and the active ingredient of Paeonia lactiflora pall. It has been shown to exert anti-inflammatory and antioxidant effects. However The effects and mechanisms of paeoniflorin on secondary injury after TBI are unknown. PURPOSE To investigate the mechanism by which Pae regulates ferroptosis after TBI. METHODS The TBI mouse model and cortical primary neurons were utilized to study the protective effect of paeoniflorin on the brain tissue after TBI. The neuronal cell ferroptosis model was established by treating cortical primary neurons with erastin. Liproxstatin-1(Lip-1) was used as a positive control drug. Immunofluorescence staining, Nissl staining, biochemical analyses, pharmacological analyses, and western blot were used to evaluate the effects of paeoniflorin on TBI. RESULTS Pae significantly ameliorated neuronal damage after TBI, inhibited mitochondrial damage, increased glutathione peroxidase 4 (GPX4) activity, decreased malondialdehyde (MDA) production, restored neurological function and inhibited cerebral edema. Pae promotes the degradation of P53 in the form of proteasome, promotes its ubiquitination, and reduces the stability of P53 by inhibiting its acetylation, thus alleviating the P53-mediated inhibition of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) by P53. CONCLUSION Pae inhibits ferroptosis by promoting P53 ubiquitination out of the nucleus, inhibiting P53 acetylation, and modulating the SLC7A11-GPX4 pathway.
Collapse
Affiliation(s)
- Si-Min Zhi
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yue Cui
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yang Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jia-Tong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiao-Jian Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Bin Sheng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chao-Long Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jian-Nan Mao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hui-Ying Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Wei Jin
- Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
16
|
Zhang Y. Parkin, a Parkinson's disease-associated protein, mediates the mitophagy that plays a vital role in the pathophysiology of major depressive disorder. Neurochem Int 2024; 179:105808. [PMID: 39047792 DOI: 10.1016/j.neuint.2024.105808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Depression is a complex mood disorder with multifactorial etiology and is also the most frequent non-motor symptom of Parkinson's disease. Emerging research suggests a potential link between mitochondrial dysfunction and the pathophysiology of major depressive disorder. By synthesizing current knowledge and research findings, this review sheds light on the intricate relationship between Parkin, a protein classically associated with Parkinson's disease, and mitochondrial quality control mechanisms (e.g., mitophagy, mitochondrial biogenesis, and mitochondrial dynamic), specifically focusing on their relevance in the context of depression. Additionally, the present review discusses therapeutic strategies targeting Parkin-medicated mitophagy and calls for further research in this field. These findings suggest promise for the development of novel depression treatments through modulating Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
17
|
Le S, Wu X, Dou Y, Song T, Fu H, Luo H, Zhang F, Cao Y. Promising strategies in natural products treatments of psoriasis-update. Front Med (Lausanne) 2024; 11:1386783. [PMID: 39296901 PMCID: PMC11408484 DOI: 10.3389/fmed.2024.1386783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/31/2024] [Indexed: 09/21/2024] Open
Abstract
Psoriasis is a chronic, relapsing, inflammatory skin disease and has been increasing year by year. It is linked to other serious illnesses, such as psoriatic arthritis, cardiometabolic syndrome, and depression, resulting in a notable decrease in the quality of life for patients. Existing therapies merely alleviate symptoms, rather than providing a cure. An in-depth under-standing of the pathogenesis of psoriasis is helpful to discover new therapeutic targets and develop effective novel therapeutic agents, so it has important clinical significance. This article reviews the new progress in the study of pathogenesis and natural products of psoriasis in recent years. These natural products were summarized, mainly classified as terpenoids, polyphenols and alkaloids. However, the translation of experimental results to the clinic takes a long way to go.
Collapse
Affiliation(s)
- Sihua Le
- Ningbo Medical Center LiHuiLi Hosptial, Ningbo, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Wu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Dou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tianhao Song
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Hongbin Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Yi Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
18
|
Ni J, Yang M, Zheng X, Wang M, Xiao Q, Han H, Dong P. Synthesis, Antioxidant Activity, and Molecular Docking of Novel Paeoniflorin Derivatives. Chem Biol Drug Des 2024; 104:e14629. [PMID: 39327238 DOI: 10.1111/cbdd.14629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Paeoniflorin (PF) is one of the active constituents of the traditional Chinese medicine Paeoniae Radix Rubra and has been actively explored in the pharmaceutical area due to its numerous pharmacological effects. However, severe difficulties such as limited bioavailability and low permeability limit its utilization. Therefore, this study developed and synthesized 25 derivatives of PF, characterized them by 1H NMR, 13C NMR, and HR-MS, and evaluated their antioxidant activity. Firstly, the antioxidant capacity of PF derivatives was investigated through DPPH radical scavenging experiment, ABTS radical scavenging experiment, reducing ability experiment, and O2 .- radical scavenging experiment. PC12 cells are routinely used to evaluate the antioxidant activity of medicines, therefore we utilize it to establish a cellular model of oxidative stress. Among all derivatives, compound 22 demonstrates high DPPH radical scavenging capacity, ABTS radical scavenging ability, reduction ability, and O2 .- radical scavenging ability. The results of cell tests reveal that compound 22 has a non-toxic effect on PC12 cells and a protective effect on H2O2-induced oxidative stress models. This might be due to the introduction of 2, 5-difluorobenzene sulfonate group in PF, which helps in scavenging free radicals under oxidative stress. Western blot and molecular docking indicated that compound 22 may exert antioxidant activity by activating Nrf2 protein expression. As noted in the study, compound 22 has the potential to be a novel antioxidant.
Collapse
Affiliation(s)
- Jiating Ni
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Meng Yang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Zheng
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingtao Wang
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qian Xiao
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hua Han
- College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Teng XX, Xu LW, Lin J, Zhang JF, Zhang Q, Sun Y, Yang DF, Li HM, Zhao P, Liu J. Efficacy and Safety of Ganyushu Granule in Treatment of Premenstrual Syndrome with Gan (Liver) Depression and Qi Stagnation Syndrome: A Randomized, Double-Blind, Multicenter, Phase-II Clinical Trial. Chin J Integr Med 2024; 30:771-779. [PMID: 38907069 DOI: 10.1007/s11655-024-3755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 06/23/2024]
Abstract
OBJECTIVE To confirm the efficacy and safety of Ganyushu Granule (GYSG) in treating premenstrual syndrome (PMS) in patients with Gan (Liver) depression and qi stagnation syndrome (GDQSS) and determine its effective dosage. METHODS From June 2018 to March 2021, a total of 240 PMS women with GDQSS were included and randomly divided into 3 groups in a 1:1:1 ratio using central block randomization: high-dose GYSG group (n=78, GYSG 2 packs/time), low-dose GYSG group (n=82, GYSG and its simulant 1 pack/time), and placebo group (n=80, GYSG simulant 2 packs/time). Treatment with GYSG or placebo was given thrice daily and for up to 3 menstrual cycles. Primary outcomes were PMS diary (PMSD) score and premenstrual tension syndrome self-rating scale (PMTS). Secondary outcomes were Chinese medicine (CM) syndrome efficacy. PMSD, PMTS, and efficacy of CM were evaluated with menstrual cycles during the treatment period. Outcome indicators were analyzed after each menstrual cycle. All analyses were performed using an intention-to-treat method, and clinical safety was assessed. RESULTS Of the 216 patients included in the effectiveness analysis, 70, 75, and 71 patients were in the high-, low-dose GYSG, and placebo groups, respectively. From the 2nd treatment cycle, the change in PMSD scores in the high- and low-dose groups was lower than that in the placebo group (P<0.05). PMTS scores in the high-dose GYSG group after the 1st treatment cycle was lower than that in the placebo group (P<0.05), while after the 3rd treatment cycle, that in the low-dose group was lower than that in the placebo group (P<0.05). After the 2nd treatment cycle, the high-dose GYSG group had the best CM syndrome efficacy (P<0.05). No serious adverse reactions were reported. CONCLUSIONS GYSG was safe and well-tolerated at both doses for treating PMS patients with GDQSS. High-dose GYSG might be the optimal dose for a phase III trial. (Registration No. ChiCTR1800016595).
Collapse
Affiliation(s)
- Xiu-Xiang Teng
- Department of Gynecology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100700, China.
| | - Lian-Wei Xu
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jie Lin
- Department of Gynecology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China
| | - Jin-Feng Zhang
- Department of Gynecology, Shanxi Traditional Chinese Medicine Hospital, Taiyuan, 030024, China
| | - Qin Zhang
- Department of Gynecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, 310005, China
| | - Yun Sun
- Department of Gynecology, Wenzhou Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, Wenzhou, Zhejiang Province, 325000, China
| | - De-Feng Yang
- Department of Gynecology, Luoyang First People's Hospital, Luoyang, Henan Province, 471000, China
| | - Hong-Mei Li
- Department of Gynecology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Pei Zhao
- Department of Gynecology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100700, China
| | - Jun Liu
- Department of Gynecology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100700, China
| |
Collapse
|
20
|
Fan Z, Liu J, Wang X, Yang S, Wang Q, Yan L, Zhang Y, Wu X. Paeoniae Radix Rubra: A Review of Ethnopharmacology, Phytochemistry, Pharmacological Activities, Therapeutic Mechanism for Blood Stasis Syndrome, and Quality Control. Chem Biodivers 2024; 21:e202401119. [PMID: 38850115 DOI: 10.1002/cbdv.202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.
Collapse
Affiliation(s)
- Zuowang Fan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Sanming Medical and Polytechnic Vocational College, Sanming, 365000, China
| | - Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Li Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
21
|
Shi Y, Wang S, Deng D, Wang Y. Taohong Siwu Decoction: a classical Chinese prescription for treatment of orthopedic diseases. Chin J Nat Med 2024; 22:711-723. [PMID: 39197962 DOI: 10.1016/s1875-5364(24)60581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 09/01/2024]
Abstract
The pathogenesis of orthopedic diseases is intimately linked to blood stasis, frequently arising from damage to primary and secondary blood channels. This disruption can lead to "blood leaving the meridians" or Qi stagnation, resulting in blood stasis syndrome. Taohong Siwu Decoction (THSWD) is a renowned classical Chinese medicinal formula extensively used to promote blood circulation and mitigate blood stasis. Clinical studies have demonstrated its significant therapeutic effects on various orthopedic conditions, particularly its anti-inflammatory and analgesic properties, as well as its efficacy in preventing deep vein thrombosis post-surgery. Despite these findings, research on THSWD remains fragmented, and its interdisciplinary impact is limited. This review aims to provide a comprehensive evaluation of the efficacy and pharmacological mechanisms of THSWD in treating common orthopedic diseases. Additionally, we employ bibliometric analysis to explore research trends and hotspots related to THSWD. We hope this review will enhance the recognition and application of THSWD in orthopedic treatments and guide future research into its pharmacological mechanisms.
Collapse
Affiliation(s)
- Yunzhen Shi
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China
| | - Disi Deng
- Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
22
|
Malang SD, Shambhavi, Sahu AN. Transethosomal gel for enhancing transdermal delivery of natural therapeutics. Nanomedicine (Lond) 2024; 19:1801-1819. [PMID: 39056148 PMCID: PMC11421302 DOI: 10.1080/17435889.2024.2375193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Transethosomes, a fusion of transferosomes and ethosomes, combine the advantageous attributes of both vesicular systems to enhance deformability and skin permeation. While skin delivery is effective for drug transport, overcoming the skin barrier remains a significant challenge, particularly for plant-based products with poor permeability. Transethosomes offer a promising solution, but their low viscosity and retention on skin surfaces led to the development of transethosomal gels. These gels can entrap unstable and high molecular weight herbal extracts, fractions and bioactive compounds, facilitating enhanced drug delivery to the inner layers of the skin. This review focuses on the superior performance of transethosomes compared with conventional lipid-based nanovesicular systems, offering an advanced approach for transdermal delivery of plant-based drugs with improved permeability and stability.
Collapse
Affiliation(s)
- Soki Daeme Malang
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Shambhavi
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
23
|
Chen Y, Li H, Zhang XL, Wang W, Rashed MMA, Duan H, Li LL, Zhai KF. Exploring the anti-skin inflammation substances and mechanism of Paeonia lactiflora Pall. Flower via network pharmacology-HPLC integration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155565. [PMID: 38579646 DOI: 10.1016/j.phymed.2024.155565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Paeonia lactiflora Pall. (PL) is widely used in China as a homologous plant of medicine and food. PL flower is rich in bioactive substances with anti-inflammatory effects, while the pathogenesis of skin inflammation is complex and the specific mechanism is not clear, the current treatment of skin inflammation is mainly hormonal drugs, and hormonal drugs have obvious toxic side effects. The research on the treatment of skin inflammation by PL flowers is relatively small, so this study provides a basis for the development and utilisation of PL resources. OBJECTIVE Our study was to investigate the interventional effects of PL flower extracts on skin inflammation and thus to understand its functional role in the treatment of skin inflammation and its molecular mechanisms. METHODS The major active substances in PL flower extracts were investigated by the HPLC-DAD method, and the potential targets of action were predicted by network pharmacology, which was combined with in vitro experimental validation to explore the mechanism of PL flower extracts on the regulation of skin inflammation. The HPLC-DAD analysis identified seven major active components in PL flower extracts, and in response to the results, combined with the potential mechanism of network pharmacological prediction with skin inflammation, the PL flower extract is closely related to MAPK and NF-κB signaling pathways. In addition, we also investigated the interventional effects of PL flower extract on skin inflammation by western blot detection of MAPK signaling pathway and NF-κB signaling pathway proteins in cells. RESULT Seven active components were identified and quantified from the extract of PL flowers, including Gallic acid, 1,2,3,4,6-O-Pentagalloylglucose, Oxypaeoniflorin, Paeoniflorin, Albiflorin, Benzoyloxypeoniflorin, and Rutin. It was predicted targets for the treatment of skin inflammation, with PPI showing associations with targets such as TNF, MAPK1, and IL-2. KEGG enrichment analysis revealed that the main signaling pathways involved included MAPK and T cell receptor signaling pathways. Cell experiments showed that the peony flower extract could inhibit the release of NO and inflammatory factors, as well as reduce ROS levels and inhibit cell apoptosis. Furthermore, the extract was found to inhibit the activation of the MAPK and NF-κB signaling pathways in cells. CONCLUSIONS In this study, we found that PL flower extract can inhibit the production of cell inflammatory substances, suppress the release of inflammatory factors, and deactivate inflammatory signaling pathways, further inhibiting the production of cell inflammation. This indicates that PL flower extract has a therapeutic effect on skin inflammation.
Collapse
Affiliation(s)
- Yuan Chen
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Han Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Xin-Lian Zhang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Wei Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Marwan M A Rashed
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China
| | - Hong Duan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China.
| | - Li-Li Li
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou 234000, China.
| | - Ke-Feng Zhai
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000, China.
| |
Collapse
|
24
|
Lu Y, Yin L, Yang W, Wu Z, Niu J. Antioxidant effects of Paeoniflorin and relevant molecular mechanisms as related to a variety of diseases: A review. Biomed Pharmacother 2024; 176:116772. [PMID: 38810407 DOI: 10.1016/j.biopha.2024.116772] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
Paeoniflorin (PF), which is the main component of the Paeonia lactiflora Pall extract, is one of the traditional Chinese medicines. The pharmacological effects associated with PF include antioxidant, immunomodulatory, anti-inflammatory, anticancer, antidepressant-like and neuroprotective effects. Our previous studies had revealed that PF protected melanocytes and inhibited photodamage through the suppression of oxidative stress (OS). As OS plays a vital role in the progression of a variety of diseases, the capacity for PF to suppress OS may exert important effects upon them. However, no review exists on these antioxidant effects of PF as related to various diseases. Therefore, in this review we summarized studies involved with examining the antioxidant effects and molecular mechanisms of PF. Through its capacity to inhibit OS, PF has been shown to exert beneficial effects upon several systems including nervous, cardiac/vascular, digestive, and respiratory as well as specific diseases such as diabetes, autoimmune, pregnancy related, ocular, kidney, dermatology, along with suppression of distal flap necrosis, postoperative adhesions, and hearing loss. Such findings provide new insights and directions for future research directed at the development of PF as a natural antioxidant for the treatment of clinical diseases.
Collapse
Affiliation(s)
- Yansong Lu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lu Yin
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wei Yang
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ze Wu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jun Niu
- Department of Dermatology, General Hospital of Northern Theater Command, No. 83 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
25
|
Lv S, Zhang G, Lu Y, Zhong X, Huang Y, Ma Y, Yan W, Teng J, Wei S. Pharmacological mechanism of natural antidepressants: The role of mitochondrial quality control. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155669. [PMID: 38696923 DOI: 10.1016/j.phymed.2024.155669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Depression is a mental illness characterized by persistent sadness and a reduced capacity for pleasure. In clinical practice, SSRIs and other medications are commonly used for therapy, despite their various side effects. Natural products present distinct advantages, including synergistic interactions among multiple components and targeting multiple pathways, suggesting their tremendous potential in depression treatment. Imbalance in mitochondrial quality control (MQC) plays a significant role in the pathology of depression, emphasizing the importance of regulating MQC as a potential intervention strategy in addressing the onset and progression of depression. However, the role and mechanism through which natural products regulate MQC in depression treatments still need to be comprehensively elucidated, particularly in clinical and preclinical settings. PURPOSE This review was aimed to summarize the findings of recent studies and outline the pharmacological mechanisms by which natural products modulate MQC to exert antidepressant effects. Additionally, it evaluated current research limitations and proposed new strategies for future preclinical and clinical applications in the depression domain. METHODS To study the main pharmacological mechanisms underlying the regulation of MQC by natural products in the treatment of depression, we conducted a thorough search across databases such as PubMed, Web of Science, and ScienceDirect databases to classify and summarize the relationship between MQC and depression, as well as the regulatory mechanisms of natural products. RESULTS Numerous studies have shown that irregularities in the MQC system play an important role in the pathology of depression, and the regulation of the MQC system is involved in antidepressant treatments. Natural products mainly regulate the MQC system to induce antidepressant effects by alleviating oxidative stress, balancing ATP levels, promoting mitophagy, maintaining calcium homeostasis, optimizing mitochondrial dynamics, regulating mitochondrial membrane potential, and enhancing mitochondrial biogenesis. CONCLUSIONS We comprehensively summarized the regulation of natural products on the MQC system in antidepressants, providing a unique perspective for the application of natural products within antidepressant therapy. However, extensive efforts are imperative in clinical and preclinical investigations to delve deeper into the mechanisms underlying how antidepressant medications impact MQC, which is crucial for the development of effective antidepressant treatments.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Xia Zhong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355,China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Sheng Wei
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; High Level Key Disciplines of Traditional Chinese Medicine: Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Shandong Provincial Engineering Research Center for the Prevention and Treatment of Major Brain Diseases with Traditional Chinese Medicine (PTMBD), Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
26
|
Deng Y, Zhao Q, Zhou HY, Zhang ZQ, Zhan Y. Activation of ASIC3/ERK pathway by paeoniflorin improves intestinal fluid metabolism and visceral sensitivity in slow transit constipated rats. Kaohsiung J Med Sci 2024; 40:561-574. [PMID: 38634140 DOI: 10.1002/kjm2.12829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Slow transit constipation (STC) is one of the most common gastrointestinal disorders in children and adults worldwide. Paeoniflorin (PF), a monoterpene glycoside compound extracted from the dried root of Paeonia lactiflora, has been found to alleviate STC, but the mechanisms of its effect remain unclear. The present study aimed to investigate the effects and mechanisms of PF on intestinal fluid metabolism and visceral sensitization in rats with compound diphenoxylate-induced STC. Based on the evaluation of the laxative effect, the abdominal withdrawal reflex test, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, western blot, and immunohistochemistry were used to detect the visceral sensitivity, fluid metabolism-related proteins, and acid-sensitive ion channel 3/extracellular signal-regulated kinase (ASIC3/ERK) pathway-related molecules. PF treatment not only attenuated compound diphenoxylate-induced constipation symptoms and colonic pathological damage in rats but also ameliorated colonic fluid metabolic disorders and visceral sensitization abnormalities, as manifested by increased colonic goblet cell counts and mucin2 protein expression, decreased aquaporin3 protein expression, improved abdominal withdrawal reflex scores, reduced visceral pain threshold, upregulated serum 5-hydroxytryptamine, and downregulated vasoactive intestinal peptide levels. Furthermore, PF activated the colonic ASIC3/ERK pathway in STC rats, and ASIC3 inhibition partially counteracted PF's modulatory effects on intestinal fluid and visceral sensation. In conclusion, PF alleviated impaired intestinal fluid metabolism and abnormal visceral sensitization in STC rats and thus relieved their symptoms through activation of the ASIC3/ERK pathway.
Collapse
Affiliation(s)
- Yuan Deng
- Department of Chinese Pediatrics, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Zhao
- Department of Chinese Pediatrics, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong-Yun Zhou
- Department of Pediatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zi-Qi Zhang
- Department of Chinese Pediatrics, College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zhan
- Department of Anorectal, Chengdu First People's Hospital, Chengdu, China
| |
Collapse
|
27
|
Zhou W, Zuo H, Qian Y, Miao W, Chen C. Paeoniflorin attenuates particulate matter-induced acute lung injury by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis through activation of the Nrf2 signaling pathway. Chem Biol Interact 2024; 395:111032. [PMID: 38705442 DOI: 10.1016/j.cbi.2024.111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Particulate matter (PM), the main component of air pollutants, emerges as a research hotspot, especially in the area of respiratory diseases. Paeoniflorin (PAE), known as anti-inflammatory and immunomodulatory effects, has been reported to alleviate acute lung injury (ALI). However, the effect of PAE on PM-induced ALI and the underlying mechanisms are still unclear yet. In this study, we established the PM-induced ALI model using C57BL/6J mice and BEAS-2B cells to explore the function of PAE. In vivo, mice were intraperitoneally injected with PAE (100 mg/kg) or saline 1 h before instilled with 4 mg/kg PM intratracheally and were euthanized on the third day. For lung tissues, HE staining and TUNEL staining were used to evaluate the degree of lung injury, ELISA assay was used to assess inflammatory mediators and oxidative stress level, Immunofluorescence staining and western blotting were applied to explore the role of pyroptosis and Nrf2 signaling pathway. In vitro, BEAS-2B cells were pretreated with 100 μM PAE before exposure to 200 μg/ml PM and were collected after 24h for the subsequent experiments. TUNEL staining, ROS staining, and western blotting were conducted to explore the underlying mechanisms of PAE on PM-induced ALI. According to the results, PAE can attenuate the degree of PM-induced ALI in mice and reduce PM-induced cytotoxicity in BEAS-2B cells. PAE can relieve PM-induced excessive oxidative stress and NLRP3 inflammasome-mediated pyroptosis. Additionally, PAE can also activate Nrf2 signaling pathway and inhibition of Nrf2 signaling pathway can impair the protective effect of PAE by aggravating oxidative stress and pyroptosis. Our findings demonstrate that PAE can attenuate PM-induced ALI by inhibiting oxidative stress and NLRP3 inflammasome-mediated pyroptosis, which is mediated by Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Wanting Zhou
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hao Zuo
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yao Qian
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqi Miao
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Chengshui Chen
- Zhejiang Provincial Key Laboratory of Interventional Pulmonology, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China.
| |
Collapse
|
28
|
Jiao K, Lai Z, Cheng Q, Yang Z, Liao W, Liao Y, Long H, Sun R, Lang T, Shao L, Deng C, She Y. Glycosides of Buyang Huanwu decoction inhibits inflammation associated with cerebral ischemia-reperfusion via the PINK1/Parkin mitophagy pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117766. [PMID: 38266949 DOI: 10.1016/j.jep.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. AIM OF THE STUDY A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. MATERIALS AND METHODS Analyzing glycosides containing serum components was performed with ultra-performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its anti-inflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/Parkin mitophagy activation, and levels of pyroptosis. RESULTS (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3Ⅰ protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g · kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g · kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g · kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 μg·mL-1 and 4.72 μg·mL-1) neuronal protection being the strongest. Glycosides (4.72 μg·mL-1) maintained LC3II/LC3Ⅰ protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 μg·mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. CONCLUSION Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.
Collapse
Affiliation(s)
- Keyan Jiao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zili Lai
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qiaochu Cheng
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhengyu Yang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenxin Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yanhao Liao
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hongping Long
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ruiting Sun
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ting Lang
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Changqing Deng
- Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Yan She
- Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
29
|
Guo Y, Lu Q, Yang XJ, He Y, Wu Y, Qin B, Li T, Duan M, Liu N, Wu X, He Y. Efficacy of Shu-yi-ning-chang decoction on IBS-D: Modulating Nr4a3 pathway to reduce visceral hypersensitivity. PLoS One 2024; 19:e0299376. [PMID: 38630738 PMCID: PMC11023393 DOI: 10.1371/journal.pone.0299376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 04/19/2024] Open
Abstract
AIM OF THE STUDY To evaluate the therapeutic effect of SYNC in diarrhea irritable bowel syndrome (IBS-D) and explore its underlying mechanism through transcriptomic sequencing (RNA-Seq). MATERIALS AND METHODS A rat model of IBS-D was constructed to elucidate the effects of SYNC. Abdominal withdrawal reflex (AWR), fecal water content (FWC), and recording body weight were calculated to assess visceral sensitivity in rats. Histopathological changes in the colon and alterations in mast cell (MC) count were determined. Immunohistochemistry was employed to assess mast cell tryptase (MCT) expression in rat colons. Serum levels of corticotropin-releasing Hormone (CRH), interleukin-6 (IL-6), calcitonin gene-related peptide (CGRP), and 5-hydroxytryptamine (5-HT) were quantified using ELISA. RNA-Seq of colon tissue was performed, followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Western blot analysis was conducted to quantify the expression levels of key proteins in the Nr4a3 pathway in the colon and hypothalamus tissues of rats. RESULTS SYNC alleviated visceral hypersensitivity and mood disorders in rats with IBS-D. Moreover, it was positively correlated with its dosage and the observed effects, such as the enhancement of the colon's mucosal lining condition and reduction in the number and activation of MCs within the model group. SYNC reduced the expression levels of factors related to the brain-gut axis and inflammatory markers in the bloodstream. RNA-Seq analysis indicated that SYNC down-regulated the expression of Nr4a3 and PI3K. These SYNC-targeted genes primarily played roles in immune regulation and inflammatory responses, correlating with the modulation of Nr4a3 and the PI3K/AKT pathway. Western blot analysis further confirmed SYNC's influence on inflammation-related MC activation by downregulating key proteins in the Nr4a3/PI3K pathway. CONCLUSIONS SYNC inhibited mast cell activation and attenuated visceral hypersensitivity in the colon tissues of IBS-D rats. These effects were mediated by the Nr4a3/PI3K signaling pathway.
Collapse
Affiliation(s)
- Yajing Guo
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiongqiong Lu
- Department of Gastroenterology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiao-Jun Yang
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Gastroenterology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yuxi He
- Department of Gastroenterology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Yue Wu
- Department of Gastroenterology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Baijun Qin
- Department of Gastroenterology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ting Li
- Department of Pharmaceutical, Chongqing Medical University, Chongqing, China
| | - Min Duan
- Department of Clinical medicine, Changsha Hospital of Traditional Chinese Medicine Affiliated to Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Nvping Liu
- Department of Clinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Xin Wu
- Department of Clinical medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuanjun He
- Department of Gastroenterology, Chongqing City Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
30
|
Gan H, Ma Q, Hao W, Yang N, Chen ZS, Deng L, Chen J. Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res 2024; 202:107112. [PMID: 38403256 DOI: 10.1016/j.phrs.2024.107112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Depression is a common disease that affects physical and mental health and imposes a considerable burden on afflicted individuals and their families worldwide. Depression is associated with a high rate of disability and suicide. It causes a severe decline in productivity and quality of life. Unfortunately, the pathophysiological mechanisms underlying depression have not been fully elucidated, and the risk of its treatment is still presented. Studies have shown that the expression of autophagic markers in the brain and peripheral inflammatory mediators are dysregulated in depression. Autophagy-related genes regulate the level of autophagy and change the inflammatory response in depression. Depression is related to several aspects of immunity. The regulation of the immune system and inflammation by autophagy may lead to the development or deterioration of mental disorders. This review highlights the role of autophagy and neuroinflammation in the pathophysiology of depression, sumaries the autophagy-targeting small moleculars, and discusses a novel therapeutic strategy based on anti-inflammatory mechanisms that target autophagy to treat the disease.
Collapse
Affiliation(s)
- Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Qingyu Ma
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Wenzhi Hao
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Nating Yang
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Lijuan Deng
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China.
| | - Jiaxu Chen
- Guangzhou Key Laboratory of Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
31
|
Yang K, Zeng L, He Q, Wang S, Xu H, Ge J. Advancements in research on the immune-inflammatory mechanisms mediated by NLRP3 inflammasome in ischemic stroke and the regulatory role of natural plant products. Front Pharmacol 2024; 15:1250918. [PMID: 38601463 PMCID: PMC11004298 DOI: 10.3389/fphar.2024.1250918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/11/2024] [Indexed: 04/12/2024] Open
Abstract
Ischemic stroke (IS) is a major cause of mortality and disability among adults. Recanalization of blood vessels to facilitate timely reperfusion is the primary clinical approach; however, reperfusion itself may trigger cerebral ischemia-reperfusion injury. Emerging evidence strongly implicates the NLRP3 inflammasome as a potential therapeutic target, playing a key role in cerebral ischemia and reperfusion injury. The aberrant expression and function of NLRP3 inflammasome-mediated inflammation in cerebral ischemia have garnered considerable attention as a recent research focus. Accordingly, this review provides a comprehensive summary of the signaling pathways, pathological mechanisms, and intricate interactions involving NLRP3 inflammasomes in cerebral ischemia-reperfusion injury. Moreover, notable progress has been made in investigating the impact of natural plant products (e.g., Proanthocyanidins, methylliensinine, salidroside, α-asarone, acacia, curcumin, morin, ginsenoside Rd, paeoniflorin, breviscapine, sulforaphane, etc.) on regulating cerebral ischemia and reperfusion by modulating the NLRP3 inflammasome and mitigating the release of inflammatory cytokines. These findings aim to present novel insights that could contribute to the prevention and treatment of cerebral ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| | - Liuting Zeng
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi He
- Department of Critical Care Medicine, People’s Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
32
|
Cheng W, Yuan Z, Wu S, Yu X, Xia K, Zhao L, Wang Y, Kang C, Yang W, Liu L, Li Y. Simultaneous determination of five compounds of fried Radix Paeoniae Alba extract in beagle dogs plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and its application in a pharmacokinetic study. Biomed Chromatogr 2024; 38:e5803. [PMID: 38098275 DOI: 10.1002/bmc.5803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024]
Abstract
In this present study, we developed a reliable and simple ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) assay for the simultaneous quantification of paeoniflorin, albiflorin, oxypaeoniflorin, benzoylpaeoniflorin and isomaltopaeoniflorin in beagle dog plasma. We also analyzed the pharmacokinetics of those components after oral administration of fried Radix Paeoniae Alba (FRPA) in beagle dogs. Plasma samples were processed by protein precipitation with methanol. Chromatographic separation was performed with a Waters HSS-T3 C18 column (100 × 2.1 mm, 1.8 μm, kept at 40°C) using multiple reaction monitoring mode. A gradient elution procedure was used with solvent A (0.02% formic acid-water) and solvent B (0.02% formic acid-acetonitrile) as mobile phases. Method validation was performed as US Food and Drug Administration guidelines, and the results met the acceptance criteria. The method we establish in this experiment was successfully applied to the pharmacokinetic study after oral administration of FRPA extract to beagle dogs.
Collapse
Affiliation(s)
- Wenhao Cheng
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Yuan
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Siyang Wu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Yu
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kexin Xia
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lifeng Zhao
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyan Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chen Kang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Yang
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luyang Liu
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yingfei Li
- Center for DMPK Research of Herbal Medicines, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
33
|
Lv S, Huang Y, Ma Y, Teng J. Antidepressant mechanism of traditional Chinese medicine: Involving regulation of circadian clock genes. Medicine (Baltimore) 2024; 103:e36266. [PMID: 38306565 PMCID: PMC10843535 DOI: 10.1097/md.0000000000036266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/01/2023] [Indexed: 02/04/2024] Open
Abstract
Numerous studies have demonstrated an intimate relationship between circadian rhythm disorders and the development and prevention of depression. The biological clock genes, which constitute the molecular basis of endogenous circadian rhythms, hold promising prospects for depression treatment. Based on an extensive review of recent domestic and international research, this article presents a comprehensive analysis of how traditional Chinese medicine (TCM) intervenes in depression by regulating circadian rhythms. The findings indicate that TCM exerts its antidepressant effects by targeting specific biological clock genes such as Bmal1, clock, Arntl, Per1, Per2, Per3, Nr1d1, Cry2, and Dbp, as well as regulating circadian rhythms of hormone secretion. However, most current research is still confined to basic experimental studies, lacking clinical double-blind control trials to further validate these viewpoints. Furthermore, there is insufficient research on the signal transduction pathway between biological clock genes and pathological changes in depression. Additionally, further clarification is needed regarding the specific targets of TCM on the biological clock genes.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
34
|
Wang YT, Wang XL, Lei L, Guo ZY, Kan FF, Hu D, Gai C, Zhang Y. A systematic review and meta-analysis of the efficacy of ketamine and esketamine on suicidal ideation in treatment-resistant depression. Eur J Clin Pharmacol 2024; 80:287-296. [PMID: 38117332 DOI: 10.1007/s00228-023-03605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE To systematically assess the evidence of efficacy and safety of the use of ketamine and esketamine for patients with treatment-resistant depression (TRD) with suicidal ideation (SI). METHODS We independently searched for clinical trials from inception to January 2023 using electronic databases, e.g., PubMed and EMBASE. A systematic review and meta-analysis were performed to assess SI scores of depression rating scales, which were regarded as the outcomes. RESULTS A total of five independent double-blind, placebo controlled randomized clinical trials (RCTs) are eligible for inclusion. Four of the studies used ketamine as an intervention and one used esketamine as an intervention. Three hundred ninety-one patients with TRD were included (the intervention group with ketamine or esketamine is 246, and the control group is 145). No statistically significant interaction between the subscales of suicide ideation (SMD = - 0.66, 95% CI (- 1.61, 0.29); Z = 1.36, P = 0.17) and antidepressant effects (SMD = - 0.99, 95% CI (- 2.33, 0.34); Z = 1.46, P = 0.15) based on the results of ketamine and esketamine, compared with placebo groups. CONCLUSION This meta-analysis suggested that esketamine and ketamine have failed to reduce suicidal ideation in patients with TRD. Further studies are desirable to confirm the effects of ketamine and esketamine in TRD patients.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Fei-Fei Kan
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Sunshine Southern Avenue, Fang-Shan District, Beijing, 102488, China.
| |
Collapse
|
35
|
Du Q, Gao C, Tsoi B, Wu M, Shen J. Niuhuang Qingxin Wan ameliorates depressive-like behaviors and improves hippocampal neurogenesis through modulating TrkB/ERK/CREB signaling pathway in chronic restraint stress or corticosterone challenge mice. Front Pharmacol 2024; 14:1274343. [PMID: 38273824 PMCID: PMC10808638 DOI: 10.3389/fphar.2023.1274343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Chronic stress-associated hormonal imbalance impairs hippocampal neurogenesis, contributing to depressive and anxiety behaviors. Targeting neurogenesis is thus a promising antidepressant therapeutic strategy. Niuhuang Qingxin Wan (NHQXW) is an herbal formula for mental disorders in Traditional Chinese Medicine (TCM) practice, but its anti-depressant efficacies and mechanisms remain unverified. Methods: In the present study, we tested the hypothesis that NHQXW could ameliorate depressive-like behaviors and improve hippocampal neurogenesis by modulating the TrkB/ERK/CREB signaling pathway by utilizing two depression mouse models including a chronic restraint stress (CRS) mouse model and a chronic corticosterone (CORT) stress (CCS) induced mouse model. The depression-like mouse models were orally treated with NHQXW whereas fluoxetine was used as the positive control group. We evaluated the effects of NHQXW on depressive- and anxiety-like behaviors and determined the effects of NHQXW on inducing hippocampal neurogenesis. Results: NHQXW treatment significantly ameliorated depressive-like behaviors in those chronic stress mouse models. NHQXW significantly improved hippocampal neurogenesis in the CRS mice and CCS mice. The potential neurogenic mechanism of NHQXW was identified by regulating the expression levels of BDNF, TrkB, p-ERK (T202/T204), p-MEK1/2 (S217/221), and p-CREB (S133) in the hippocampus area of the CCS mice. NHQXW revealed its antidepressant and neurogenic effects that were similar to fluoxetine. Moreover, NHQXW treatment revealed long-term effects on preventing withdrawal-associated rebound symptoms in the CCS mice. Furthermore, in a bioactivity-guided quality control study, liquiritin was identified as one of the bioactive compounds of NHQXW with the bioactivities of neurogenesis-promoting effects. Discussion: Taken together, NHQXW could be a promising TCM formula to attenuate depressive- and anxiety-like behaviors against chronic stress and depression. The underlying anti-depressant mechanisms could be correlated with its neurogenic activities by stimulating the TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chong Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Meiling Wu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
36
|
Li X, Dai E, Li M, Kong R, Yuan J, Li T, Wang S, Zhang Y, Kong H, Zhao Y. Aurantii fructus immaturus carbonisata-derived carbon dots and their anti-depression effect. Front Mol Biosci 2024; 10:1334083. [PMID: 38259687 PMCID: PMC10801177 DOI: 10.3389/fmolb.2023.1334083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Depression is a common illness worldwide. However, the current treatments available for depression only achieve relative success, often come with several side effects, and are associated with high costs. Aurantii Fructus Immaturus (AFI) has a rich historical legacy in Traditional Chinese Medicine (TCM) for its traditional use as a treatment for depression. In this research, our primary objective is to examine the potential antidepressant properties and the mechanisms at play behind a particular bioactive compound found in AFI, which is referred to as carbon dots derived from AFI Carbonisata (AFIC-CDs). Methods: Extracted and isolated the AFIC-CDs from the decoction of AFIC, then characterized the morphological structure and functional groups comprehensively. We then utilized two distinct models to investigate the anti-depressive properties of AFIC-CDs: the chronic unpredictable mild stress (CUMS) model and the reserpine-induced pain-depression dyad model. In the CUMS model, we assessed immobile time and measured neurotransmitter levels in the mouse brain cortex. In the pain-depression dyad model, we evaluated immobile time, neurotransmitter levels, interleukin-1 (IL-1β) and tumor necrosis factor-α (TNF-α) levels, and the expression of mRNA of brain-derived neurotrophic factor (BDNF) and tryptophan hydroxylase 2 (Tph2). Results: AFIC-CDs were found to have abundant chemical groups, and their diameter ranged from 2 to 10 nm. In the CUMS model, AFIC-CDs demonstrated significant effects. They reduced the immobile time of the mice and increased the levels of serotonin (5-HT), dopamine (DA), and norepinephrine (NE) in the mouse brain cortex. In the pain-depression dyad model, the AFIC-CDs groups decreased the immobile time, showed effect in increasing both the neurotransmitters' levels and the expression of mRNA of BDNF and Tph2, and decreased the IL-1β and TNF-α levels in mouse brain cortex. Taken together, these results strongly indicate that AFIC-CDs possess significant antidepressant activity. Conclusion: AFIC-CDs demonstrate promising therapeutic potential in the treatment of depression, suggesting that they may become a valuable candidate for depression management. This not only extends the understanding of the biological activity of carbon dots (CDs) but also opens up new possibilities for the development of effective depression treatment strategies.
Collapse
Affiliation(s)
- Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ertong Dai
- Qingdao Eighth People’s Hospital, Qingdao, Shandong, China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruolan Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinye Yuan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tingjie Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuxian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
37
|
Wu Q, Chen M, Li Y, Zhao X, Fan C, Dai Y. Paeoniflorin Alleviates Cisplatin-Induced Diminished Ovarian Reserve by Restoring the Function of Ovarian Granulosa Cells via Activating FSHR/cAMP/PKA/CREB Signaling Pathway. Molecules 2023; 28:8123. [PMID: 38138611 PMCID: PMC10745843 DOI: 10.3390/molecules28248123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Paeoniflorin (PAE) is the main active compound of Radix Paeoniae Rubra (a valuable traditional Chinese medicine and a dietary supplement) and exerts beneficial effects on female reproductive function. However, the actions of PAE on diminished ovarian reserve (DOR, a very common ovarian function disorder) are still unclear. Herein, our study investigated the effect and potential mechanism of PAE on DOR by using cisplatin-induced DOR mice and functional impairment of estradiol (E2) synthesis of ovarian granulosa-like KGN cells. Our data show that PAE improved the estrous cycle, ovarian index, and serum hormones levels, including E2, and the number of antral follicles and corpora lutea in DOR mice. Further mechanism results reveal that PAE promoted aromatase expression (the key rate-limiting enzyme for E2 synthesis) and upregulated the FSHR/cAMP/PKA/CREB signaling pathway in the ovaries. Subsequently, PAE improved the levels of E2 and aromatase and activated the FSHR/cAMP/PKA/CREB signaling pathway in KGN cells, while these improving actions were inhibited by the siRNA-FSHR and FSHR antagonist treatments. In sum, PAE restored the function of E2 synthesis in ovarian granulosa cells to improve DOR by activating the FSHR/cAMP/PKA/CREB signaling pathway, which exhibited a new clue for the development of effective therapeutic agents for the treatment of DOR.
Collapse
Affiliation(s)
- Qingchang Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Miao Chen
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Yao Li
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| | - Xiangyun Zhao
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Cailian Fan
- College of Medicine, Henan Engineering Research Center of Funiu Mountain’s Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China;
| | - Yi Dai
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China; (Q.W.); (M.C.); (Y.L.)
| |
Collapse
|
38
|
Lv S, Zhang G, Huang Y, Zhong X, Yi Y, Lu Y, Li J, Ma Y, Teng J. Adult hippocampal neurogenesis: pharmacological mechanisms of antidepressant active ingredients in traditional Chinese medicine. Front Pharmacol 2023; 14:1307746. [PMID: 38152691 PMCID: PMC10751940 DOI: 10.3389/fphar.2023.1307746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023] Open
Abstract
Depression is characterized by prominent indicators and manifestations, such as anhedonia, which refers to the inability to experience pleasure, and persistent feelings of hopelessness. In clinical practice, the primary treatment approach involves the utilization of selective serotonin reuptake inhibitors (SSRIs) and related pharmacological interventions. Nevertheless, it is crucial to recognize that these agents are associated with significant adverse effects. Traditional Chinese medicine (TCM) adopts a multifaceted approach, targeting diverse components, multiple targets, and various channels of action. TCM has potential antidepressant effects. Anomalies in adult hippocampal neurogenesis (AHN) constitute a pivotal factor in the pathology of depression, with the regulation of AHN emerging as a potential key measure to intervene in the pathogenesis and progression of this condition. This comprehensive review presented an overview of the pharmacological mechanisms underlying the antidepressant effects of active ingredients found in TCM. Through examination of recent studies, we explored how these ingredients modulated AHN. Furthermore, we critically assessed the current limitations of research in this domain and proposed novel strategies for preclinical investigation and clinical applications in the treatment of depression in future.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
39
|
Bao T, Zhang X, Xie W, Wang Y, Li X, Tang C, Yang Y, Sun J, Gao J, Yu T, Zhao L, Tong X. Natural compounds efficacy in complicated diabetes: A new twist impacting ferroptosis. Biomed Pharmacother 2023; 168:115544. [PMID: 37820566 DOI: 10.1016/j.biopha.2023.115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023] Open
Abstract
Ferroptosis, as a way of cell death, participates in the body's normal physiological and pathological regulation. Recent studies have shown that ferroptosis may damage glucose-stimulated islets β Insulin secretion and programmed cell death of T2DM target organs are involved in the pathogenesis of T2DM and its complications. Targeting suppression of ferroptosis with specific inhibitors may provide new therapeutic opportunities for previously untreated T2DM and its target organs. Current studies suggest that natural bioactive compounds, which are abundantly available in drugs, foods, and medicinal plants for the treatment of T2DM and its target organs, have recently received significant attention for their various biological activities and minimal toxicity, and that many natural compounds appear to have a significant role in the regulation of ferroptosis in T2DM and its target organs. Therefore, this review summarized the potential treatment strategies of natural compounds as ferroptosis inhibitors to treat T2DM and its complications, providing potential lead compounds and natural phytochemical molecular nuclei for future drug research and development to intervene in ferroptosis in T2DM.
Collapse
Affiliation(s)
- Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiangyuan Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China; Graduate school, Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Ying Wang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, No. 1035, Boshuo Road, Jingyue National High-tech Industrial Development Zone, Changchun 130117, China
| | - Yingying Yang
- National Center for Integrated Traditional and Western Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jun Sun
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, No. 1478, Gongnong Road, Chaoyang District, Changchun 130021, China
| | - Jiaqi Gao
- School of Qi-Huang Chinese Medicine, Beijing University of Chinese Medicine, No. 11, North 3rd Ring East Roa, Chaoyang Distric, Beijing 10010, China
| | - Tongyue Yu
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
40
|
Lv S, Zhang G, Huang Y, Li J, Yang N, Lu Y, Ma H, Ma Y, Teng J. Antidepressant pharmacological mechanisms: focusing on the regulation of autophagy. Front Pharmacol 2023; 14:1287234. [PMID: 38026940 PMCID: PMC10665873 DOI: 10.3389/fphar.2023.1287234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
The core symptoms of depression are anhedonia and persistent hopelessness. Selective serotonin reuptake inhibitors (SSRIs) and their related medications are commonly used for clinical treatment, despite their significant adverse effects. Traditional Chinese medicine with its multiple targets, channels, and compounds, exhibit immense potential in treating depression. Autophagy, a vital process in depression pathology, has emerged as a promising target for intervention. This review summarized the pharmacological mechanisms of antidepressants by regulating autophagy. We presented insights from recent studies, discussed current research limitations, and proposed new strategies for basic research and their clinical application in depression.
Collapse
Affiliation(s)
- Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yufei Huang
- Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamin Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ni Yang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haoteng Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuexiang Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
41
|
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A, Ge J. Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev 2023; 91:102063. [PMID: 37673132 DOI: 10.1016/j.arr.2023.102063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder of the central nervous system after Alzheimer's disease. The current understanding of PD focuses mainly on the loss of dopamine neurons in the substantia nigra region of the midbrain, which is attributed to factors such as oxidative stress, alpha-synuclein aggregation, neuroinflammation, and mitochondrial dysfunction. These factors together contribute to the PD phenotype. Recent studies on PD pathology have introduced a new form of cell death known as ferroptosis. Pathological changes closely linked with ferroptosis have been seen in the brain tissues of PD patients, including alterations in iron metabolism, lipid peroxidation, and increased levels of reactive oxygen species. Preclinical research has demonstrated the neuroprotective qualities of certain iron chelators, antioxidants, Fer-1, and conditioners in Parkinson's disease. Natural plant products have shown significant potential in balancing ferroptosis-related factors and adjusting their expression levels. Therefore, it is vital to understand the mechanisms by which natural plant products inhibit ferroptosis and relieve PD symptoms. This review provides a comprehensive look at ferroptosis, its role in PD pathology, and the mechanisms underlying the therapeutic effects of natural plant products focused on ferroptosis. The insights from this review can serve as useful references for future research on novel ferroptosis inhibitors and lead compounds for PD treatment.
Collapse
Affiliation(s)
- Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Shanshan Wang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Mengxia Yuan
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou University Medical College, Shantou, China
| | - Yanfang Luo
- The Central Hospital of Shaoyang, Shaoyang, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
42
|
Fang S, Wu Z, Guo Y, Zhu W, Wan C, Yuan N, Chen J, Hao W, Mo X, Guo X, Fan L, Li X, Chen J. Roles of microglia in adult hippocampal neurogenesis in depression and their therapeutics. Front Immunol 2023; 14:1193053. [PMID: 37881439 PMCID: PMC10597707 DOI: 10.3389/fimmu.2023.1193053] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Adult hippocampal neurogenesis generates functional neurons from neural progenitor cells in the hippocampal dentate gyrus (DG) to complement and repair neurons and neural circuits, thus benefiting the treatment of depression. Increasing evidence has shown that aberrant microglial activity can disrupt the appropriate formation and development of functional properties of neurogenesis, which will play a crucial role in the occurrence and development of depression. However, the mechanisms of the crosstalk between microglia and adult hippocampal neurogenesis in depression are not yet fully understood. Therefore, in this review, we first introduce recent discoveries regarding the roles of microglia and adult hippocampal neurogenesis in the etiology of depression. Then, we systematically discuss the possible mechanisms of how microglia regulate adult hippocampal neurogenesis in depression according to recent studies, which involve toll-like receptors, microglial polarization, fractalkine-C-X3-C motif chemokine receptor 1, hypothalamic-pituitary-adrenal axis, cytokines, brain-derived neurotrophic factor, and the microbiota-gut-brain axis, etc. In addition, we summarize the promising drugs that could improve the adult hippocampal neurogenesis by regulating the microglia. These findings will help us understand the complicated pathological mechanisms of depression and shed light on the development of new treatment strategies for this disease.
Collapse
Affiliation(s)
- Shaoyi Fang
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhibin Wu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yali Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wenjun Zhu
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chunmiao Wan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Naijun Yuan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Shenzhen People’s Hospital, 2Clinical Medical College, Jinan University, Shenzhen, China
| | - Jianbei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenzhi Hao
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Mo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Guo
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lili Fan
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xiaojuan Li
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiaxu Chen
- Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
43
|
Xie Z, Xie H, Peng X, Hu J, Chen L, Li X, Qi H, Zeng J, Zeng N. The antidepressant-like effects of Danzhi Xiaoyao San and its active ingredients. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:155015. [PMID: 37597362 DOI: 10.1016/j.phymed.2023.155015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND Depression is a severe mental illness that endangers human health. Depressed individuals are prone to sleep less and to the loss of appetite for food; their thinking and cognition processes, as well as mood, may even be affected. Danzhi Xiaoyao San (DXS), documented in the Internal Medicine Summary, has been used for hundreds of years in China and is widely applied traditionally to treat liver qi stagnation, liver and spleen blood deficiency, menstrual disorders, and spontaneous and night sweating. DXS can also clear heat and drain the liver. Presently, it is used frequently in the treatment of depression based on its ability to clear the liver and alleviate depression. PURPOSE To summarize clinical and preclinical studies on the antidepressant-like effects of DXS, understand the material basis and mechanisms of these effects, and offer new suggestions and methods for the clinical treatment of depression. METHODS "Danzhi Xiaoyao", "Danzhixiaoyao", "Xiaoyao", "depression" and active ingredients were entered as keywords in PubMed, Google Scholar, CNKI and WANFANG DATA databases in the search for material on DXS and its active ingredients. The PRISMA guidelines were followed in this review process. RESULTS Per clinical reports, DXS has a therapeutic effect on patients with depression but few side effects. DXS and its active ingredients allegedly produce their neuroprotective antidepressant-like effects by modulating monoamine neurotransmitter levels, inhibiting the hypothalamic-pituitary-adrenal (HPA) axis hyperfunction, reducing neuroinflammation and increasing neurotrophic factors. CONCLUSION Overall, DXS influences multiple potential mechanisms to exert its antidepressant-like effects thanks to its multicomponent character. Because depression is not caused by a single mechanism, probing the antidepressant-like effects of DXS could further help understand the pathogenesis of depression and discover new antidepressant drugs.
Collapse
Affiliation(s)
- Zhiqiang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hongxiao Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xi Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jingwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Department of Pharmacy, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, China
| | - Xiangyu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
44
|
Zhang H, Qi G, Wang K, Yang J, Shen Y, Yang X, Chen X, Yao X, Gu X, Qi L, Zhou C, Sun H. Oxidative stress: roles in skeletal muscle atrophy. Biochem Pharmacol 2023:115664. [PMID: 37331636 DOI: 10.1016/j.bcp.2023.115664] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Oxidative stress, inflammation, mitochondrial dysfunction, reduced protein synthesis, and increased proteolysis are all critical factors in the process of muscle atrophy. In particular, oxidative stress is the key factor that triggers skeletal muscle atrophy. It is activated in the early stages of muscle atrophy and can be regulated by various factors. The mechanisms of oxidative stress in the development of muscle atrophy have not been completely elucidated. This review provides an overview of the sources of oxidative stress in skeletal muscle and the correlation of oxidative stress with inflammation, mitochondrial dysfunction, autophagy, protein synthesis, proteolysis, and muscle regeneration in muscle atrophy. Additionally, the role of oxidative stress in skeletal muscle atrophy caused by several pathological conditions, including denervation, unloading, chronic inflammatory diseases (diabetes mellitus, chronic kidney disease, chronic heart failure, and chronic obstructive pulmonary disease), sarcopenia, hereditary neuromuscular diseases (spinal muscular atrophy, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy), and cancer cachexia, have been discussed. Finally, this review proposes the alleviation oxidative stress using antioxidants, Chinese herbal extracts, stem cell and extracellular vesicles as a promising therapeutic strategy for muscle atrophy. This review will aid in the development of novel therapeutic strategies and drugs for muscle atrophy.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Guangdong Qi
- Department of Endocrinology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, PR China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong 226001, China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Chun Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
45
|
Zhou Z, Wang Y, Sun S, Zhang K, Wang L, Zhao H, Zhang Y. Paeonia lactiflora Pall. Polysaccharide alleviates depression in CUMS mice by inhibiting the NLRP3/ASC/Caspase-1 signaling pathway and affecting the composition of their intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2023:116716. [PMID: 37295570 DOI: 10.1016/j.jep.2023.116716] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (PL) has been commonly used to de-stressing the liver and relieve depression in traditional Chinese medicine for over a thousand years. Recently, it has been widely used in studies on anti-depressant, anti-inflammatory and regulation of intestinal flora. However, the polysaccharide component has received less attention than the saponin component of PL. AIM OF THE STUDY This study aimed to elucidate the effects of Paeonia lactiflora polysaccharide (PLP) on depressive behavior in mice in a chronic unpredictable mild stress (CUMS) model and its possible action mechanisms. MATERIALS AND METHODS A model of chronic depression induced by the CUMS approach. Behavioral experiments were used to assess the success of the CUMS model and the therapeutic impact of PLP. Then the extent of damage to the colonic mucosa was assessed by H&E staining; the extent of neuronal damage was assessed by Nissler staining. Inflammatory factor expression was assessed at different sites in the mouse by enzyme-linked immunoassay (Elisa). The alterations of fecal microflora were detected by 16S rRNA gene sequencing. In the colonic tissues, NLRP3, ASC and Caspase-1 mRNA and protein levels detected by quantitative real-time PCR (qRT-PCR) and Western blot(WB). RUSULTS PLP can improve depressive behavior in CUMS mice, and colonic mucosal and neuronal damage. Elisa assay showed that PLP could reduce interleukin-1β (IL-1β), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) levels, and increase 5-Hydroxytryptamine(5-HT) levels in CUMS mice. 16S sequencing analysis showed that PLP could regulate the intestinal flora of CUMS mice and increase their species richness. In addition, PLP significantly inhibited NLRP3/ASC/Caspase-1 signalling pathways activation in the colonic tissues of CUMS mice. CONCLUSIONS PLP modulates depression-related intestinal ecological dysregulation, increases species richness, and inhibits inflammatory factors levels and NLRP3 inflammasome activation to reduce colonic mucosal and neurons damage, thereby improving depression-like behavior and neurotransmitter release in CUMS mice.
Collapse
Affiliation(s)
- Zijun Zhou
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Shiqing Sun
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Kai Zhang
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Lihong Wang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, 154007, Jiamusi, China
| | - Hong Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, 154007, Jiamusi, China.
| | - Yu Zhang
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China.
| |
Collapse
|
46
|
Yin P, Han X, Yu L, Zhou H, Yang J, Chen Y, Zhang T, Wan H. Pharmacokinetic analysis for simultaneous quantification of Saikosaponin A- paeoniflorin in normal and poststroke depression rats: A comparative study. J Pharm Biomed Anal 2023; 233:115485. [PMID: 37267872 DOI: 10.1016/j.jpba.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Bupleurum and Paeonia are common compatibilities for the treatment of depression, most of which are used in classical prescriptions. The main active ingredients saikosaponin A (SSA) and paeoniflorin (PF) have significant therapeutic effects on poststroke depression (PSD). However, the pharmacokinetic (PK) behavior based on the combination of the two components has not been reported in rats. The aim of this study was to compare the pharmacokinetic characteristics of combined administration of SSA and PF in normal and PSD rats. Plasma samples were collected after SSA and PF were injected into the rat tail vein, and plasma pretreatments were analyzed by HPLC. Based on the concentration levels of SSA and PF in plasma, Drug and Statistics 3.2.6 (DAS 3.2.6) software was used to establish the blood drug concentration model. PK data showed that compared with the normal rats, the values of related parameters t1/2α, AUC(0-t), AUC(0-∞) were decreased in diseased rats, while the values of CL1 was increased. These findings suggest that PSD can significantly affect the PK parameters of SSA-PF. This study established a PK model to explore the time-effect relationship, in order to provide experimental and theoretical support for clinical application.
Collapse
Affiliation(s)
- Ping Yin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
47
|
Hua X, Feng X, Hua Y, Wang D. Paeoniflorin attenuates polystyrene nanoparticle-induced reduction in reproductive capacity and increase in germline apoptosis through suppressing DNA damage checkpoints in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162189. [PMID: 36775158 DOI: 10.1016/j.scitotenv.2023.162189] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Due to high sensitivity to environmental exposures, Caenorhabditis elegans is helpful for toxicity evaluation and toxicological study of pollutants. Using this animal model, we investigated the reproductive toxicity of 20 nm polystyrene nanoparticle (PS-NP) in the range of μg/L and the following pharmacological intervention of paeoniflorin. After exposure from L1-larvae to young adults, 10-100 μg/L PS-NP could cause the reduction in reproductive capacity reflected by the endpoints of brood size and number of fertilized eggs in uterus. Meanwhile, the enhancements in germline apoptosis analyzed by AO staining and germline DNA damage as shown by alteration in HUS-1::GFP signals were detected in 10-100 μg/L PS-NP exposed nematodes, suggesting the role of DNA damage-induced germline apoptosis in mediating PS-NP toxicity on reproductive capacity. Following the exposure to 100 μg/L PS-NP, posttreatment with 25-100 mg/L paeoniflorin increased the reproductive capacity and inhibited both germline apoptosis and DNA damage. In addition, in 100 μg/L PS-NP exposed nematodes, treatment with 100 mg/L paeoniflorin modulated the expressions of genes governing germline apoptosis as indicated by the decrease in ced-3, ced-4, an egl-1 expressions and the increase in ced-9 expression. After exposure to 100 μg/L PS-NP, treatment with 100 mg/L paeoniflorin also decreased expressions of genes (cep-1, clk-2, hus-1, and mrt-2) governing germline DNA damage. Molecular docking analysis further demonstrated the binding potential of paeoniflorin with three DNA damage checkpoints (CLK-2, HUS-1, and MRT-2). Therefore, our data suggested the toxicity of PS-NP in the range of μg/L on reproductive capacity after exposure from L1-larvae to young adults, which was associated with the enhancement in DNA damage-induced germline apoptosis. More importantly, the PS-NP-induced reproductive toxicity on nematodes could be inhibited by the following paeoniflorin treatment.
Collapse
Affiliation(s)
- Xin Hua
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Xiao Feng
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Yingshun Hua
- Lintao Maternity and Child Health Center, Lintao 730500, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China.
| |
Collapse
|
48
|
Wang Q, Li H, You J, Yan B, Jin W, Shen M, Sheng Y, He B, Wang X, Meng X, Qin L. An integrated strategy of spectrum-effect relationship and near-infrared spectroscopy rapid evaluation based on back propagation neural network for quality control of Paeoniae Radix Alba. ANAL SCI 2023:10.1007/s44211-023-00334-4. [PMID: 37037970 DOI: 10.1007/s44211-023-00334-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
The quantitative analysis of near-infrared spectroscopy in traditional Chinese medicine has still deficiencies in the selection of the measured indexes. Then Paeoniae Radix Alba is one of the famous "Eight Flavors of Zhejiang" herbs, however, it lacks the pharmacodynamic support, and cannot reflect the quality of Paeoniae Radix Alba accurately and reasonably. In this study, the spectrum-effect relationship of the anti-inflammatory activity of Paeoniae Radix Alba was established. Then based on the obtained bioactive component groups, the genetic algorithm, back propagation neural network, was combined with near-infrared spectroscopy to establish calibration models for the content of the bioactive components of Paeoniae Radix Alba. Finally, three bioactive components, paeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, and benzoyl paeoniflorin, were successfully obtained. Their near-infrared spectroscopy content models were also established separately, and the validation sets results showed the coefficient of determination (R2 > 0.85), indicating that good calibration statistics were obtained for the prediction of key pharmacodynamic components. As a result, an integrated analytical method of spectrum-effect relationship combined with near-infrared spectroscopy and deep learning algorithm was first proposed to assess and control the quality of traditional Chinese medicine, which is the future development trend for the rapid inspection of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qi Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Jinling You
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Binjun Yan
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Menglan Shen
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Bingqian He
- Academy of Chinese Medical Science, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xinrui Wang
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Traditional Chinese Medicine Resources and Quality Evaluation Ressearch, Zhejiang Chinese Medical University, Sphingolipid Metabolomics, Hangzhou, 310053, China.
| |
Collapse
|
49
|
Paeoniflorin protects 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease mice by inhibiting oxidative stress and neuronal apoptosis through activating the Nrf2/HO-1 signaling pathway. Neuroreport 2023; 34:255-266. [PMID: 36881748 DOI: 10.1097/wnr.0000000000001884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
OBJECTIVES This study aimed to explore the neuroprotective effects of paeoniflorin on oxidative stress and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease (PD) mice. METHODS The effects of paeoniflorin on motor function in mice were evaluated by behavioral test. Then substantia nigra of mice were collected and neuronal damage was assessed using Nissl staining. Positive expression of tyrosine hydroxylase (TH) was detected by immunohistochemistry. Levels of malondialdehyde, superoxide dismutase (SOD) and glutathione were measured by biochemical method. terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay was used to detect apoptosis of dopaminergic neurons. Western blotting and real-time fluorescence quantitative PCR were used to detect the protein and mRNA expressions of Nrf2, heme oxygenase-1 (HO-1), B-cell lymphoma-2(Bcl-2), Bax and cleaved caspase-3. RESULTS Paeoniflorin treatment significantly ameliorated the motor performance impairment in MPTP-induced PD mice. Moreover, it notably increased the positive expression rate of TH and reduced the damage and apoptosis of dopaminergic neurons in the substantia nigra. Furthermore, paeoniflorin increased the levels of SOD and glutathione and decreased the malondialdehyde content. It also promoted Nrf2 nuclear translocation, increased the protein and mRNA expressions of HO-1 and Bcl-2 and reduced the protein and mRNA expressions of BCL2-Associated X2 (Bax) and cleaved caspase-3. Treatment with the Nrf2 inhibitor, ML385, notably reduced the effects of paeoniflorin in MPTP-induced PD mice. CONCLUSIONS Neuroprotective effects of paeoniflorin in MPTP-induced PD mice may be mediated via inhibition of oxidative stress and apoptosis of dopaminergic neurons in substantia nigra through activation of the Nrf2/HO-1 signaling pathway.
Collapse
|
50
|
Guo W, Yao X, Cui R, Yang W, Wang L. Mechanisms of paeoniaceae action as an antidepressant. Front Pharmacol 2023; 13:934199. [PMID: 36844911 PMCID: PMC9944447 DOI: 10.3389/fphar.2022.934199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/05/2022] [Indexed: 02/10/2023] Open
Abstract
Paeoniflorin (PF) has been widely used for the treatment of depression in mice models, some Chinese herbal compound containing PF on treating depression, such as Xiaoyao San, Chaihu-Shugan-San, Danggui Shaoyao San etc. Many experiments are also verifying whether PF in these powders can be used as an effective component in the treatment of depression. Therefore, in this review the antidepressant effect of PF and its mechanism of action are outlined with particular focus on the following aspects: increasing the levels of monoamine neurotransmitters, inhibiting the HPA axis, promoting neuroprotection, enhancing neurogenesis in the hippocampus, and elevating levels of brain-derived neurotrophic factor (BDNF). This review may be helpful for the application of PF in the treatment of depression.
Collapse
Affiliation(s)
- Wanxu Guo
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoxiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- *Correspondence: Wei Yang, ; Lei Wang,
| | - Lei Wang
- *Correspondence: Wei Yang, ; Lei Wang,
| |
Collapse
|