1
|
Wen C, Zhang X, Kantapan J, Yu Z, Yuan L, Liu S, Li H, Liang S, Wei Y, Luo G, Xiao W, Dechsupa N, Lü M. Pentagalloyl glucose targets the JAK1/JAK3-STAT3 pathway to inhibit cancer stem cells and epithelial-mesenchymal transition in 5-fluorouracil-resistant colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156773. [PMID: 40378534 DOI: 10.1016/j.phymed.2025.156773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/25/2025] [Accepted: 04/13/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) resistance to 5-fluorouracil (5-FU), primarily driven by cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT), remains a major clinical challenge, necessitating novel therapeutic strategies. PURPOSE This study aims to evaluate the therapeutic potential of pentagalloyl glucose (PGG), a bioactive compound derived from Bouea macrophylla seeds, in overcoming 5-FU resistance in CRC. METHOD Anti-tumor effects of PGG were investigated using two- and three-dimensional (2D and 3D) cell culture models and subcutaneous xenograft and metastatic mouse models. Transcriptome sequencing, western blotting, and pharmacological inhibitors were employed to elucidate the underlying molecular mechanisms. RESULTS PGG demonstrated potent anti-CSC activity; suppressed EMT-driven invasion and metastasis; and induced apoptosis in 2D monolayers, 3D spheroid models, and xenograft tumor models. Mechanistically, PGG selectively inhibited the JAK1/JAK3-STAT3 signaling pathway, considerably reducing STAT3 phosphorylation. This disruption downregulated the expression of CSC markers (CD133 and CD44), EMT regulators (N-cadherin and vimentin), and anti-apoptotic proteins (Bcl-2), effectively sensitizing 5-FU-resistant CRC to therapy. CONCLUSION PGG inhibit dual-target of CSCs and EMT via JAK1/JAK3-STAT3 signaling pathway in 5-FU-resistant CRC, providing a novel therapeutic approach to overcome chemoresistance.
Collapse
Affiliation(s)
- Chengli Wen
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Critical Care Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Xu Zhang
- Department of Gastroenterology, Honghuagang District People's Hospital of Zunyi City, Zunyi 563000, China.
| | - Jiraporn Kantapan
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Zehui Yu
- Laboratory Animal Center, Southwest Medical University, Luzhou 646000, China; Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China.
| | - Liping Yuan
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Department of Gastroenterology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang 615000, China.
| | - Sha Liu
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; The Clinical Medicine Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Hao Li
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Sicheng Liang
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Yan Wei
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Wanmeng Xiao
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; The Clinical Medicine Research Center, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| | - Nathupakorn Dechsupa
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Muhan Lü
- Human Microecology and Precision Diagnosis and Treatment of Luzhou Key Laboratory, Luzhou 646000, China; Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
2
|
Han M, Zhou X, Cheng H, Qiu M, Qiao M, Geng X. Chitosan and hyaluronic acid in colorectal cancer therapy: A review on EMT regulation, metastasis, and overcoming drug resistance. Int J Biol Macromol 2025; 289:138800. [PMID: 39694373 DOI: 10.1016/j.ijbiomac.2024.138800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/04/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Up to 90% of cancer-related fatalities could be attributed to metastasis. Therefore, understanding the mechanisms that facilitate tumor cell metastasis is beneficial for improving patient survival and results. EMT is considered the main process involved in the invasion and spread of CRC. Essential molecular components like Wnt, TGF-β, and PI3K/Akt play a role in controlling EMT in CRC, frequently triggered by various factors such as Snail, Twist, and ZEB1. These factors affect not only the spread of CRC but also determine the reaction to chemotherapy. The influence of non-coding RNAs, especially miRNAs and lncRNAs, on the regulation of EMT is clear in CRC. Exosomes, involved in cell-to-cell communication, can affect the TME and metastasis of CRC. Pharmacological substances and nanoparticles demonstrate promise as efficient modulators of EMT in CRC. Chitosan and HA are two major carbohydrate polymers with considerable potential in inhibiting CRC. Chitosan and HA can be employed to modify nanoparticles to enhance cargo transport for reducing CRC. Additionally, chitosan and HA-modified nanocarriers, which can be utilized as potential approaches in suppressing EMT and reversing drug resistance in CRC, can inhibit EMT and chemoresistance, crucial components in tumorigenesis.
Collapse
Affiliation(s)
- Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Hang Cheng
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China
| | - Mengru Qiu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Meng Qiao
- Department of Bioanalytical Laboratory (ClinicalLaboratory), Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| | - Xiao Geng
- Department of Party Committee Office, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University, Shandong Province Hospital Occupational Disease Hospital, Jinan, Shandong, China.
| |
Collapse
|
3
|
Jie S, Wenying G, Lebo S. Dehydroevodiamine Alleviates Doxorubicin-Induced Cardiomyocyte Injury by Regulating Neuregulin-1/ErbB Signaling. Cardiovasc Ther 2024; 2024:5538740. [PMID: 39742014 PMCID: PMC11646148 DOI: 10.1155/cdr/5538740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/19/2024] [Indexed: 01/03/2025] Open
Abstract
Background: Doxorubicin (DOX) is a widely used antitumor drug; however, its use is limited by the risk of serious cardiotoxicity. Dehydroevodiamine (DHE) is a quinazoline alkaloid which has antiarrhythmic effects. The aim of this study was to investigate the protective effect of DHE on doxorubicin-induced cardiotoxicity (DIC) and its potential mechanism. Materials and Methods: Rat H9c2 cardiomyocytes were exposed to DOX for 24 h to establish a DOX-induced cardiomyocyte injury model. DHE and ErbB inhibitor AG1478 were used to treat H9c2 cells to investigate their effects. Cell counting kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays were used to evaluate cell viability. Flow cytometry and caspase-3 activity assay were used to detect apoptosis. Western blot was used to detect the expression levels of apoptosis-related proteins and neuregulin-1 (NRG1)/ErbB pathway-related proteins. The levels of proinflammatory cytokines and markers of oxidative stress were also detected, respectively. Quantitative polymerase chain reaction (qPCR) was used to detect mRNA expression levels of hub genes. Results: DHE enhanced cardiomyocyte viability and decreased LDH release in a concentration- and time-dependent manner. DHE also significantly inhibited DOX-induced cardiomyocyte apoptosis, inflammation, and oxidative stress. Bioinformatics analysis showed that the protective mechanism of DHE against DIC was related to ErbB signaling pathway. DOX treatment significantly reduced NRG1, p-ErbB2, and p-ErbB4 protein expression levels in cardiomyocytes, while DHE pretreatment reversed this effect. ErbB inhibitor AG1478 reversed the protective effect of DHE on cardiomyocytes. Conclusion: DHE protects cardiomyocytes against DOX by regulating NRG1/ErbB pathway. DHE may be a potential agent for the prevention and treatment of DIC.
Collapse
Affiliation(s)
- Song Jie
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China
| | - Guo Wenying
- Department of Digestive, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China
| | - Sun Lebo
- Department of Cardiothoracic Surgery, Ningbo Medical Center Lihuili Hospital of Ningbo University, No. 57, Xingning Rd, Ningbo City 315041, Zhejiang Province, China
| |
Collapse
|
4
|
Cao Y, Guo A, Li M, Ma X, Bian X, Chen Y, Zhang C, Huang S, Zhao W, Zhao S. ETS1 deficiency in macrophages suppresses colorectal cancer progression by reducing the F4/80+TIM4+ macrophage population. Carcinogenesis 2024; 45:745-758. [PMID: 39162797 DOI: 10.1093/carcin/bgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Tumor-associated macrophages (TAMs) take on pivotal and complex roles in the tumor microenvironment (TME); however, their heterogeneity in the TME remains incompletely understood. ETS proto-oncogene 1 (ETS1) is a transcription factor that is mainly expressed in lymphocytes. However, its expression and immunoregulatory role in colorectal cancer (CRC)-associated macrophages remain unclear. In the study, the expression levels of ETS1 in CD68+ macrophages in the CRC microenvironment were significantly higher than those in matched paracarcinoma tissues. Importantly, ETS1 increased the levels of chemokines C-C motif chemokine ligand 2 (CCL2) and C-X-C motif chemokine ligand 10 (CXCL10) in lipopolysaccharide-stimulated THP-1 cells. It also boosted the migration and invasion of CRC cells during the in vitro co-culture. In the ETS1 conditional knockout mouse model, ETS1 deficiency in macrophages ameliorated the histological changes in DSS-induced ulcerative colitis mouse models and prolonged the survival in an azomethane/dextran sodium sulfate (AOM/DSS)-induced CRC model. ETS1 deficiency in macrophages substantially inhibited tumor formation, reduced F4/80+TIM4+ macrophages in the mesenteric lymph nodes, and decreased CCL2 and CXCL10 protein levels in tumor tissues. Moreover, ETS1 deficiency in macrophages effectively prevented liver metastasis of CRC and reduced the infiltration of TAMs into the metastasis sites. Subsequent studies have indicated that ETS1 upregulated the expression of T-cell immunoglobulin mucin receptor 4 in macrophages through the signal transducer and activator of the transcription 1 signaling pathway activated by the autocrine action of CCL2/CXCL10. Collectively, ETS1 deficiency in macrophages potentiates antitumor immune responses by repressing CCL2 and CXCL10 expression, shedding light on potential therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Yuanyuan Cao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Anning Guo
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Muxin Li
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Xinghua Ma
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Xiaofeng Bian
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - YiRong Chen
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Caixia Zhang
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Shijia Huang
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| | - Wei Zhao
- Department of Pathology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
| | - Shuli Zhao
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, Jiangsu, China
- General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, Jiangsu, China
| |
Collapse
|
5
|
Li K, Wang H, Chen T, Wang X, Wang X, Zhong M, Gao X, Hao Z. Dehydroevodiamine inhibits PEDV through regulateing ERK1/2 MAPK pathway in Vero cells. Virology 2024; 598:110166. [PMID: 39024722 DOI: 10.1016/j.virol.2024.110166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) results in severe economic losses to the swine industry due to its widespread prevalence and high mortality. Currently, there is no effective treatment against PEDV. New antiviral therapies are urgently needed to control this highly contagious pathogen. In this research, the anti-PEDV activity and mechanism of Dehydroevodiamine (DHED) were investigated in vitro. Our results showed that DHED exerted satisfactory anti-PEDV activity by ameliorating cytopathic effects (CPEs), reducing virus titer, and inhibiting PEDV N protein expression and gene transcription dose-dependently. The antiviral mechanism of DHED is related to its inhibition of the entry, replication, and assembly stages of PEDV life cycle. In addition, DHED can regulate the MAPK signaling pathway, and suppress phosphorylated ERK1/2 activation, thus exerting antiviral effects. In conclusion, our research confirmed the anti-PEDV activity and mechanism of DHED, preliminarily providing a new strategy for anti-PEDV drug development.
Collapse
Affiliation(s)
- Kaiyuan Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Huiru Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Tingting Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Xuebo Wang
- Shandong Lvdu Bio-sciences & Technology Co., LTD, Binzhou, 256600, China
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Muqi Zhong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueyan Gao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China
| | - Zhihui Hao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100193, China.
| |
Collapse
|
6
|
Ma X, Hu Q, Jiang T, Chen Y, Zhang W, Gao P, Zeng J, Efferth T. Dehydroevodiamine Alleviates Ulcerative Colitis by Inhibiting the PI3K/AKT/NF-κB Signaling Pathway via Targeting AKT1 and Regulating Gut Microbes and Serum Metabolism. Molecules 2024; 29:4031. [PMID: 39274878 PMCID: PMC11397320 DOI: 10.3390/molecules29174031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Ulcerative colitis (UC) is a typical inflammatory bowel disease (IBD), impairing the quality of life of patients. Dehydroevodiamine (DHE) is an active alkaloid isolated from Tetradium ruticarpum that exerts significant anti-inflammatory effects in gastrointestinal diseases. However, the effect and mechanisms of DHE on UC remain unclear. We performed a DSS-induced experimental UC rat model to reveal the efficacy and potential mechanisms of DHE on UC. HE and AB-PAS staining were used for the evaluation of pathologies, and 16S rRNA sequencing was used to detect changes in gut microbes. Metabolomics was used to detect changes in serum metabolites. Network pharmacology and transcriptomics were conducted to reveal the underlying mechanisms of DHE for UC. HuProt proteome microarrays, molecular docking, and SPR were used to reveal the targets of action of DHE. WB, RT-qPCR, and IHC were used to assess the action effects of DHE. DHE demonstrated significant alleviation of DSS-induced colitis symptoms in rats by suppressing inflammatory and oxidative stress responses, amending colonic barrier injury, and inhibiting apoptosis. In terms of gut microbial modulation, DHE decreased the abundance of Allobaculum, Clostridium, Escherichia, Enterococcus, and Barnesiella and increased the abundance of Lactobacillus, Bifidobacterium, and SMB5. Moreover, metabolomics suggested that the regulation of DHE in DSS-induced UC rats mainly involved aminoacyl-tRNA biosynthesis, vitamin B6 metabolism, phenylalanine, tyrosine, and so on. Mechanically, DHE alleviated UC in rats by targeting AKT1, thereby inhibiting the PI3K/AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (T.J.); (Y.C.); (W.Z.); (P.G.)
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (T.J.); (Y.C.); (W.Z.); (P.G.)
| | - Tao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (T.J.); (Y.C.); (W.Z.); (P.G.)
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (T.J.); (Y.C.); (W.Z.); (P.G.)
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (T.J.); (Y.C.); (W.Z.); (P.G.)
| | - Pan Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Q.H.); (T.J.); (Y.C.); (W.Z.); (P.G.)
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128 Mainz, Germany
| |
Collapse
|
7
|
Zhu SL, Qi M, Chen MT, Lin JP, Huang HF, Deng LJ, Zhou XW. A novel DDIT3 activator dehydroevodiamine effectively inhibits tumor growth and tumor cell stemness in pancreatic cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155377. [PMID: 38503154 DOI: 10.1016/j.phymed.2024.155377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.
Collapse
Affiliation(s)
- Su-Li Zhu
- Department of Biochemistry and Pharmacology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Mei-Ting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Jia-Peng Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hai-Fu Huang
- Internal Medicine-Oncology, Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, PR China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Xing-Wang Zhou
- Department of Biochemistry and Pharmacology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
8
|
Chen L, Hu Y, Ye Z, Li L, Qian H, Wu M, Qin K, Li N, Wen X, Pan T, Ye Q. Major Indole Alkaloids in Evodia Rutaecarpa: The Latest Insights and Review of Their Impact on Gastrointestinal Diseases. Biomed Pharmacother 2023; 167:115495. [PMID: 37741256 DOI: 10.1016/j.biopha.2023.115495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Evodia rutaecarpa, the near-ripe fruit of Euodia rutaecarpa (Juss.) Benth, Euodia rutaecarpa (Juss.) Benth. var. officinalis (Dode) Huang, or Euodia rutaecarpa (Juss.) Benth. var. bodinieri (Dode) Huang, is a famous herbal medicine with several biological activities and therapeutic values, which has been applied for abdominalgia, abdominal distension, vomiting, and diarrhea as a complementary and alternative therapy in clinic. Indole alkaloids, particularly evodiamine (EVO), rutaecarpine (RUT), and dedhydroevodiamine (DHE), are received rising attention as the major bioactivity compounds in Evodia rutaecarpa. Therefore, this review summarizes the physicochemical properties, pharmacological activities, pharmacokinetics, and therapeutic effects on gastrointestinal diseases of these three indole alkaloids with original literature collected by PubMed, Web of Science Core Collection, and CNKI up to June 2023. Despite sharing the same parent nucleus, EVO, RUT, and DHE have different structural and chemical properties, which result in different advantages of biological effects. In their wide range of pharmacological activities, the anti-migratory activity of RUT is less effective than that of EVO, and the neuroprotection of DHE is significant. Additionally, although DHE has a higher bioavailability, EVO and RUT display better permeabilities within blood-brain barrier. These three indole alkaloids can alleviate gastrointestinal inflammatory in particular, and EVO also has outstanding anti-cancer effect, although clinical trials are still required to further support their therapeutic potential.
Collapse
Affiliation(s)
- Liulin Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhen Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Linzhen Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huanzhu Qian
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingquan Wu
- Department of Pharmacy, Sichuan Province Orthopedic Hospital, Chengdu 610041, China
| | - Kaihua Qin
- Health Preservation and Rehabilitation College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Nan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xudong Wen
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610059, China
| | - Tao Pan
- Department of Gastroenterology, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu 610059, China.
| | - Qiaobo Ye
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Zhang J, Jiang S, Li S, Jiang J, Mei J, Chen Y, Ma Y, Liu Y, Liu Y. Nanotechnology: A New Strategy for Lung Cancer Treatment Targeting Pro-Tumor Neutrophils. ENGINEERING 2023; 27:106-126. [DOI: 10.1016/j.eng.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Han YH, Kee JY. Extract of Isatidis Radix Inhibits Lipid Accumulation in In Vitro and In Vivo by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1426. [PMID: 37507964 PMCID: PMC10376543 DOI: 10.3390/antiox12071426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Isatidis Radix (IR), the root of Isatis tinctoria L. belonging to Brassicaceae, has been traditionally used as a fever reducer. Although some pharmacological effects, such as anti-diabetes, anti-virus, and anti-inflammatory, have been reported, there is no study on the anti-obesity effect of IR. This study used 3T3-L1 cells, human mesenchymal adipose stem cells (hAMSCs), and a high-fat diet (HFD)-induced obese mouse model to confirm the anti-adipogenic effect of IR. Intracellular lipid accumulation in 3T3-L1 cells and hAMSCs was decreased by IR treatment.IR extract especially suppressed reactive oxygen species (ROS) production through a cluster of differentiation 36 (CD36)-AMP-activated protein kinase (AMPK) pathway. Consequently, the expressions of peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT-enhancer-binding proteins alpha (C/EBPα), and fatty acid synthesis (FAS) were inhibited by IR extract. In addition, β-oxidation-related genes were also decreased by treatment of IR extract. IR inhibited weight gain through this cascade in the HFD-induced obese mouse model. IR significantly suppressed lipid accumulation in epididymal white adipose tissue (eWAT). Furthermore, the administration of IR extract decreased serum free fatty acid (FFA), total cholesterol (TC), and LDL cholesterol, suggesting that it could be a potential drug for obesity by inhibiting lipid accumulation.
Collapse
Affiliation(s)
- Yo-Han Han
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang-Oriental Medicines Research Institute, Wonkwang University, Iksan 54538, Republic of Korea
| |
Collapse
|
11
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
12
|
Qiao D, Xing J, Duan Y, Wang S, Yao G, Zhang S, Jin J, Lin Z, Chen L, Piao Y. The molecular mechanism of baicalein repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154046. [PMID: 35306368 DOI: 10.1016/j.phymed.2022.154046] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/20/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Baicalein (BAI) has a significant anti-cancerous function in the treatment of gastric cancer (GC). Focal adhesion kinase (FAK) is a key regulatory molecule in integrin and growth factor receptor mediated signaling. MicroRNA-7 (miR-7), has been considered as a potential tumor suppressor in a variety of cancers. However, the possible mechanisms by which BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway remain unclear. PURPOSE To investigate the molecular mechanism and effects of BAI inhibiting progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway. METHODS Gastric cancer cell lines with FAK knockdown and overexpression were constructed by lentivirus transfection. After BAI treatment, the effects of FAK protein on proliferation, metastasis and angiogenesis of gastric cancer cells were detected by MTT, EdU, colony formation, wound healing, transwell and Matrigel tube formation assays. In vivo experiment was performed by xenograft model. Immunofluorescence and western blot assay were used to detect the effects of FAK protein on the expression levels of EMT markers and PI3K/AKT signaling pathway related proteins. qRT-PCR and luciferase reporter assay were used to clarify the targeting relationship between miR-7 and FAK. RESULTS BAI can regulate FAK to affect proliferation, metastasis and angiogenesis of gastric cancer cells through PI3K/AKT signaling pathway. qRT-PCR showed BAI can upregulated the expression of miR-7 and luciferase reporter assay showed the targeting relationship between miR-7 and FAK. Additionally, miR-7 mediates cell proliferation, metastasis and angiogenesis by directly targeting FAK 3'UTR to inhibit FAK expression. CONCLUSION BAI repressing progression of gastric cancer mediating miR-7/FAK/AKT signaling pathway.
Collapse
Affiliation(s)
- Dan Qiao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jian Xing
- Department of Image, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Yunxiao Duan
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shiyu Wang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Guangyuan Yao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Shengjun Zhang
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Jingchun Jin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Zhenhua Lin
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China; Department of Internal Medicine of Yanbian University Hospital, Yanji 133000, P.R. China
| | - Liyan Chen
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China
| | - Yingshi Piao
- Cancer Research Center, Yanbian University Medical College, Key Laboratory of Pathobiology (Yanbian University), State Ethnic Affairs Commission, Research and Innovation Group of Yanbian University, Yanji, P.R. China.
| |
Collapse
|