1
|
Zhao Q, Cai D, Xu H, Gao Y, Zhang R, Zhou X, Chen X, Chen S, Wu J, Peng W, Yuan S, Li D, Li G, Nan A. o8G-modified circPLCE1 inhibits lung cancer progression via chaperone-mediated autophagy. Mol Cancer 2025; 24:82. [PMID: 40098195 PMCID: PMC11912650 DOI: 10.1186/s12943-025-02283-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Lung cancer poses a serious threat to human health, but its molecular mechanisms remain unclear. Circular RNAs (circRNAs) are closely associated with tumour progression, and the important role of 8-oxoguanine (o8G) modification in regulating the fate of RNA has been gradually revealed. However, o8G modification of circRNAs has not been reported. We identified circPLCE1, which is significantly downregulated in lung cancer, and further investigated the o8G modification of circPLCE1 and the related mechanism in lung cancer progression. METHODS We identified differentially expressed circRNAs by RNA high-throughput sequencing and then conducted methylated RNA immunoprecipitation (MeRIP), immunofluorescence (IF) analysis, crosslinking immunoprecipitation (CLIP) and actinomycin D (ActD) assays to explore circPLCE1 o8G modification. The biological functions of circPLCE1 in vivo and in vitro were clarified via establishing a circPLCE1 silencing/overexpression system. Tagged RNA affinity purification (TRAP), RNA Immunoprecipitation (RIP) and coimmunoprecipitation (Co-IP) assays, and pSIN-PAmCherry-KFERQ-NE reporter gene were used to elucidate the molecular mechanism by which circPLCE1 inhibits lung cancer progression. RESULTS This study revealed that reactive oxygen species (ROS) can induce circPLCE1 o8G modification and that AUF1 can mediate a decrease in circPLCE1 stability. We found that circPLCE1 significantly inhibited lung cancer progression in vitro and in vivo and that its expression was associated with tumour stage and prognosis. The molecular mechanism was elucidated: circPLCE1 targets the HSC70 protein, increases its ubiquitination level, regulates ATG5-dependent macroautophagy via the chaperone-mediated autophagy (CMA) pathway, and ultimately inhibits lung cancer progression. CONCLUSION o8G-modified circPLCE1 inhibits lung cancer progression through CMA to inhibit macroautophagy and alter cell fate. This study provides not only a new theoretical basis for elucidating the molecular mechanism of lung cancer progression but also potential targets for lung cancer treatment.
Collapse
Affiliation(s)
- Qingyun Zhao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Dunyu Cai
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Haotian Xu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yihong Gao
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Ruirui Zhang
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xiaodong Zhou
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Xingcai Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Sixian Chen
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxi Wu
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Wenyi Peng
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Shengyi Yuan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Deqing Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| | - Aruo Nan
- School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Zhao Q, Li W, Li W, Yang H, Wang X, Ding Z, Liu Z, Wang Z. Porphyromonas gingivalis-induced autophagy exacerbates abnormal lung homeostasis: An in vivo and in vitro study. Arch Oral Biol 2025; 169:106122. [PMID: 39486274 DOI: 10.1016/j.archoralbio.2024.106122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of periodontal Porphyromonas gingivalis (P. gingivalis) infection on lung homeostasis and to explore the underlying mechanism. DESIGNS In in vivo experiments, twelve mice were divided into two groups. The P. gingivalis infection group received P. gingivalis around the maxillary second molar, and the control group was left untreated. After 12 weeks, the histopathological changes of the lung tissue and the autophagy and apoptosis in the lung tissue cells were detected. In in vitro experiments, alveolar epithelial cell A549 was co cultured with P. gingivalis and treated with autophagy inhibitor chloroquine (CQ). Western blot was then used to detect autophagic markers LC3 and P62, and mRFP-GFP-LC3 was used to observe autophagic flux. Cell viability and apoptosis were also detected. RESULTS For the in vivo experiments, pathological changes were observed in the lung tissue of the P. gingivalis infection group at 12 weeks, along with higher levels of autophagy and apoptosis in the lung tissue cells. For the in vitro experiments, infection of alveolar epithelial cells with P. gingivalis inhibited cell viability and promoted cell autophagy and apoptosis. Interestingly, we found that inhibiting P. gingivalis-activated autophagy significantly improved cell apoptosis and viability damage induced by P. gingivalis. CONCLUSION Periodontal P. gingivalis infection can cause pathological changes and abnormal homeostasis in lung tissue, and the up-regulation of autophagy induced by P. gingivalis may play a synergistic role in this process.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wenyue Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjia Yang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhaoyue Ding
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Liu
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
4
|
Guo Y, Yuan Y, Wang R, Bai J, Jia Y, Qiu X, Niu H, Li L, Luo Y, Zhao B, Zhang Z. Monocrotaline-mediated autophagy via inhibiting PI3K/AKT/mTOR pathway induces apoptosis in rat hepatocytes. Front Pharmacol 2024; 15:1499116. [PMID: 39494350 PMCID: PMC11527718 DOI: 10.3389/fphar.2024.1499116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Monocrotaline (MCT), a major pyrrolizidine alkaloid, is well-known for its high liver toxicity. Dysregulation of autophagy induced apoptosis can lead to various liver diseases, including those induced by chemical compounds. Therefore, we aim to explore whether autophagy might serve as a potential strategy for addressing liver apoptosis caused by MCT. In primary rat hepatocytes (PRHs), MCT significantly increased the number of autophagosomes and the expression levels of LC3II, Becline-1, and Atg5, while it decreased the expression of p62 in a concentration-dependent manner at doses of 100, 200, 300, and 400 μM. Western blot assays revealed MCT inhibited the phosphorylation levels of the PI3K/AKT/mTOR pathway. To elucidate the role of autophagy in mediating MCT-induced apoptosis, we further pretreated PRHs with the autophagy agonist Rapamycin and the inhibitors Bafilomycin A1 and Chloroquine, respectively, and assessed the apoptosis of PRHs induced by MCT. The results displayed that Rapamycin increased the apoptosis rate and the expression of cleaved caspase-3, whereas Bafilomycin A1 and Chloroquine reduced the apoptosis and the expression of cleaved caspase-3 in PRHs. This study confirms that autophagy enhances PRHs apoptosis induced by MCT. In summary, this study demonstrates that MCT-induced autophagy via inhibition of the PI3K/AKT/mTOR pathway can lead to apoptosis in PRHs.
Collapse
Affiliation(s)
- Yazhou Guo
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yang Yuan
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Ruibo Wang
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Jun Bai
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yanqing Jia
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Xinxin Qiu
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Huafeng Niu
- Shaanxi Engineering Research Center for Forest Musk Deer Industry, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Long Li
- The Youth Innovation Team of Shaanxi Universities, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Yan Luo
- Key Laboratory for Efficient Ruminant Breeding Technology of Higher Education Institutions in Shaanxi Province, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhencang Zhang
- Shaanxi Engineering Research Center of the Prevention and Control for Animal Disease, Yangling Vocational and Technical College, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Li M, Li Y, Zheng J, Ma Z, Zhang J, Wu H, Zhu Y, Li P, Nie F. Ultrasound-responsive nanocarriers with siRNA and Fe 3O 4 regulate macrophage polarization and phagocytosis for augmented non-small cell lung cancer immunotherapy. J Nanobiotechnology 2024; 22:605. [PMID: 39375761 PMCID: PMC11460142 DOI: 10.1186/s12951-024-02883-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
The immunosuppressive tumor microenvironment (TME) significantly inhibits the effective anti-tumor immune response, greatly affecting the efficacy of immunotherapy. Most tumor-associated macrophages (TAMs) belong to the M2 phenotype, which contributes significantly to the immunosuppressive effects in non-small cell lung cancer (NSCLC) TME. The interaction between signal regulatory protein α (SIRPα) expressed on macrophages and CD47, a transmembrane protein overexpressed on cancer cells, activates the "eat-me-not" signaling pathway, inhibiting phagocytosis. In this study, a folic acid (FA)-modified ultrasound responsive gene/drugs delivery system, named FA@ PFP @ Fe3O4 @LNB-SIRPα siRNA (FA-PFNB-SIRPα siRNA), was developed using 1,2-dioleoacyl-3-trimethylammonium-propane (DOTAP), FA-1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- [amino (polyethylene glycol)2000] (DSPE-PEG2000-FA), cholesterol, and perfluoropentane (PFP), for the delivery of siRNA encoding SIRPα mRNA and immune adjuvant Fe3O4 nanoparticles. Under ultrasound conditions, the nanobubbles effectively transfected macrophages, inhibiting SIRPα mRNA and protein expression, promoting the phagocytosis of TAMs, and synergistically reversing M2 polarization. This system promotes the infiltration of T cells, enhances the proliferation and activation of cytotoxic T cells, and inhibits the infiltration of immunosuppressive cells in tumor tissues. Administration of FA-PFNB-SIRPα siRNA combined with ultrasound significantly inhibits NSCLC progression. The study highlights the potential of ultrasound nanotechnology-enabled delivery of SIRPα siRNA and Fe3O4 as an effective strategy for macrophage-based immunotherapy to reshape the immunosuppressive TME for cancer therapy.
Collapse
Affiliation(s)
- Ming Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yuanyuan Li
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jun Zheng
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhen Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Jianye Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Hao Wu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yangyang Zhu
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Pan Li
- State Key Laboratory of Ultrasound in Medicine and Engineering, Institute of Ultrasound Imaging, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| | - Fang Nie
- Ultrasound Medical Center, Gansu Province Clinical Research Center forā Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Xu M, Zhang D, Yan J. Targeting ferroptosis using Chinese herbal compounds to treat respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155738. [PMID: 38824825 DOI: 10.1016/j.phymed.2024.155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Respiratory diseases pose a grave threat to human life. Therefore, understanding their pathogenesis and therapeutic strategy is important. Ferroptosis is a novel type of iron-dependent programmed cell death, distinct from apoptosis, necroptosis, and autophagy, characterised by iron, reactive oxygen species, and lipid peroxide accumulation, as well as glutathione (GSH) depletion and GSH peroxidase 4 (GPX4) inactivation. A close association between ferroptosis and the onset and progression of respiratory diseases, including chronic obstructive pulmonary disease, acute lung injury, bronchial asthma, pulmonary fibrosis, and lung cancer, has been reported. Recent studies have shown that traditional Chinese medicine (TCM) compounds exhibit unique advantages in the treatment of respiratory diseases owing to their natural properties and potential efficacy. These compounds can effectively regulate ferroptosis by modulating several key signalling pathways such as system Xc- -GSH-GPX4, NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1, thus playing a positive role in improving respiratory diseases. PURPOSE This comprehensive review systematically outlines the regulatory role of ferroptosis in the onset and progression of respiratory diseases and provides evidence for treating respiratory diseases by targeting ferroptosis with TCM compounds. These insights aim to offer potential remedies for the clinical prevention and treatment of respiratory diseases. STUDY DESIGN AND METHODS We searched scientific databases PubMed, Web of Science, Scopus, and CNKI using keywords such as "ferroptosis","respiratory diseases","chronic obstructive pulmonary disease","bronchial asthma","acute lung injury","pulmonary fibrosis","lung cancer","traditional Chinese medicine","traditional Chinese medicine compound","monomer", and "natural product" to retrieve studies on the therapeutic potential of TCM compounds in ameliorating respiratory diseases by targeting ferroptosis. The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS TCM compounds possess unique advantages in treating respiratory diseases, stemming from their natural origins and proven clinical effectiveness. TCM compounds can exert therapeutic effects on respiratory diseases by regulating ferroptosis, which mainly involves modulation of pathways such as system Xc- -GSH-GPX4,NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1. CONCLUSION TCM compounds have demonstrated promising potential in improving respiratory diseases through the regulation of ferroptosis. The identification of specific TCM-related inducers and inhibitors of ferroptosis holds great significance in developing more effective strategies. However, current research remains confined to animal and cellular studies, emphasizing the imperative for further verifications through high-quality clinical data.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Di Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
7
|
Ma C, Zhang X, Mo X, Yu Y, Xiao Z, Wu J, Ding L, Lei C, Zhu Y, Zhang H. Xie-Bai-San increases NSCLC cells sensitivity to gefitinib by inhibiting Beclin-1 mediated autophagosome formation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155351. [PMID: 38232540 DOI: 10.1016/j.phymed.2024.155351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Autophagy, a cellular process involving lysosomal self-digestion, plays a crucial role in recycling biomolecules and degrading dysfunctional proteins and damaged organelles. However, in non-small cell lung cancer (NSCLC), cancer cells can exploit autophagy to survive metabolic stress and develop resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), which reduce treatment efficacies. Currently, most studies have found that late-stage autophagy inhibitors can hinder EGFR-TKIs resistance, while research on early-stage autophagy inhibitors is still limited. PURPOSE This study investigates the mechanism via which the Xie-Bai-San (XBS) formula enhances NSCLC cell sensitivity to gefitinib, revealing the relationship between XBS-induced cell death and the inhibition of autophagosome formation. METHODS Cell viability was assessed using CCK-8 and EdU assays, lentivirus transfection was utilized to generate PC9 cells harboring the PIK3CA E545K mutation (referred to as PC9-M), autophagic flux was monitored using mCherry-GFP-LC3 adenovirus. Protein expression and colocalization were observed through immunofluorescence staining. The interaction between Bcl-2 and Beclin-1 in PC9-GR and PC9-M cells was determined via co-immunoprecipitation (Co-IP) assay, cell apoptosis was assessed by flow cytometry and PI staining, and overall survival analysis of lung adenocarcinoma patients was conducted using the TCGA database. In vivo experiments included a patient-derived xenograft (PDX) model with EGFR and PIK3CA mutations and subcutaneous mice xenografts of NSCLC cell lines (PC9 and PC9-GR). In addition, autophagic vesicles in mouse tumor tissues were observed via transmission electron microscopy analysis. RESULTS XBS effectively inhibits the proliferation of gefitinib-resistant NSCLC cells and induces apoptosis both in vitro and in vivo. Mechanistically, XBS suppresses gefitinib-induced autophagic flux by inhibiting autophagy through the upregulation of p-mTOR and Bcl-2 and downregulation of Beclin-1. Additionally, XBS enhances the interaction between Bcl-2 and Beclin-1, and the overexpression of Beclin-1 promotes NSCLC cell proliferation and counteracts XBS-induced cell death, while XBS demonstrates minimal impact on autophagosome-lysosome fusion or lysosome function. CONCLUSION This study reveals a novel role for the XBS formula in impeding autophagy initiation and demonstrates its potential as a candidate drug to counteract autophagy-induced treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Changju Ma
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Xin Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaomin Mo
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yaya Yu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Zhenzhen Xiao
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China
| | - Jingjing Wu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lina Ding
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chenjing Lei
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yanjuan Zhu
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China.
| | - Haibo Zhang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China; Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, PR China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
8
|
Li S, Wang A, Wu Y, He S, Shuai W, Zhao M, Zhu Y, Hu X, Luo Y, Wang G. Targeted therapy for non-small-cell lung cancer: New insights into regulated cell death combined with immunotherapy. Immunol Rev 2024; 321:300-334. [PMID: 37688394 DOI: 10.1111/imr.13274] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Non-small-cell lung cancer (NSCLC), which has a high rate of metastatic spread and drug resistance, is the most common subtype of lung cancer. Therefore, NSCLC patients have a very poor prognosis and a very low chance of survival. Human cancers are closely linked to regulated cell death (RCD), such as apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. Currently, small-molecule compounds targeting various types of RCD have shown potential as anticancer treatments. Moreover, RCD appears to be a specific part of the antitumor immune response; hence, the combination of RCD and immunotherapy might increase the inhibitory effect of therapy on tumor growth. In this review, we summarize small-molecule compounds used for the treatment of NSCLC by focusing on RCD and pharmacological systems. In addition, we describe the current research status of an immunotherapy combined with an RCD-based regimen for NSCLC, providing new ideas for targeting RCD pathways in combination with immunotherapy for patients with NSCLC in the future.
Collapse
Affiliation(s)
- Shutong Li
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Aoxue Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongya Wu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Shengyuan He
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Wen Shuai
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Min Zhao
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yumeng Zhu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiuying Hu
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yubin Luo
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Rheumatology & Immunology, Laboratory of Rheumatology & Immunology, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Li M, Xiao Y, Liu P, Wei L, Zhang T, Xiang Z, Liu X, Zhang K, Zhong Q, Chen F. 4‑Methoxydalbergione inhibits esophageal carcinoma cell proliferation and migration by inactivating NF‑κB. Oncol Rep 2023; 49:42. [PMID: 36633144 PMCID: PMC9868687 DOI: 10.3892/or.2023.8479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/07/2022] [Indexed: 01/13/2023] Open
Abstract
4‑Methoxydalbergione (4‑MD) can inhibit the progression of certain types of cancer; however, its effects on esophageal cancer (EC) remain unclear. The present study aimed to investigate the inhibitory effect of 4‑MD on EC and its molecular mechanism. ECA‑109 and KYSE‑105 cells were treated with or without lipopolysaccharide (LPS) and 4‑MD. Cell Counting Kit‑8 and colony formation assays were used to analyze cell proliferation. Wound healing assay was performed to evaluate cell migration. ELISA and western blotting were performed to measure the expression levels of NF‑κB and inflammatory cytokines. In cells treated with 4‑MD, proliferation and migration were significantly inhibited, the levels of inflammatory cytokines were downregulated and the NF‑κB signaling pathway was inactivated. Notably, proliferation, migration, inflammation and NF‑κB were promoted by LPS, whereas 4‑MD reversed the increases induced by LPS in EC cells. In conclusion, 4‑MD may attenuate the proliferation and migration of EC cells by inactivating the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Ming Li
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Yubo Xiao
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Pinyue Liu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Le Wei
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Ti Zhang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Ziye Xiang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Xiaoyan Liu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Keyun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Qiaoqing Zhong
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02115, USA,Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China,Correspondence to: Professor Qiaoqing Zhong, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard University, CC-454, 1 Deaconess Road (Rosenberg Building), Boston, MA 02215, USA, E-mail:
| | - Fangzhi Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China,Professor Fangzhi Chen, Department of Gastroenterology, The Second Affiliated Hospital of Hengyang Medical School, University of South China, 28 West Changsheng Road, Hengyang, Hunan 421001, P.R. China, E-mail:
| |
Collapse
|