1
|
Liu X, Wang Q, Zhang Y, Feng Z, Guan R. Biological Functions and Synthesis of the Active Components in Antrodia camphorata. ACS OMEGA 2025; 10:15908-15922. [PMID: 40321565 PMCID: PMC12044462 DOI: 10.1021/acsomega.5c01669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/27/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
As a fungus endemic to Taiwan, Antrodia camphorata contains a variety of medicinally active substances, such as polysaccharides, triterpenoids, maleic acid and succinic acid derivatives, and ubiquinone derivatives. A. camphorata has attracted widespread attention due to its uniqueness, rarity, remarkable efficacy, and high economic value. In this work, we analyze the recent progress and future development of the artificial culture of mycelium of A. camphorata. This Review focuses on the types, properties, functions, and mechanisms of action of the characteristic active substances of A. camphorata and summarizes the methods of metabolic regulation and biosynthesis of the characteristic active substances. This Review provides valuable information for research on the metabolic regulation and efficacy analysis of the active substances and provides a theoretical basis for the in-depth development of the active ingredients in A. camphorata.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College
of Food Science and Technology, Zhejiang
University of Technology, Zhejiang, Hangzhou 310014, China
| | - Qi Wang
- College
of Food Science and Technology, Zhejiang
University of Technology, Zhejiang, Hangzhou 310014, China
| | - Yao Zhang
- Zhejiang
Provincial Key Lab for Chem and Bio Processing Technology of Farm
Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, Hangzhou 310023, China
| | - Ziwei Feng
- College
of Food Science and Technology, Zhejiang
University of Technology, Zhejiang, Hangzhou 310014, China
| | - Rongfa Guan
- College
of Food Science and Technology, Zhejiang
University of Technology, Zhejiang, Hangzhou 310014, China
| |
Collapse
|
2
|
Zhang YQ, Zhang M, Wang ZL, Bao YO, Wang YQ, Tian YG, Ye L, Ye M. Identification of Key Post‐modification Enzymes Involved in the Biosynthesis of Lanostane‐type Triterpenoids in the Medicinal Mushroom Antrodia camphorata. Angew Chem Int Ed Engl 2025; 64:e202420104. [PMID: 39617723 DOI: 10.1002/anie.202420104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Through different gene mining strategies, three key enzymes (AcCYP4, AcSDR6, AcSMT1) involved in the downstream biosynthesis of major lanostane-type triterpenoids were discovered and identified from Antrodia camphorata. The catalytic mechanisms of AcSDR6 were elucidated by crystal structure analysis. These post-modification enzymes could be used to synthesize at least 11 major Antrodia lanostanoids.
Collapse
Affiliation(s)
- Ya-Qun Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yang-Oujie Bao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yu-Qi Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Yun-Gang Tian
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Lei Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
3
|
Chen D, Fan T, Sun K, Rao W, Sheng X, Wan Z, Shu B, Chen L. Network pharmacology and experimental validation to reveal the pharmacological mechanisms of Astragaloside Ⅳ in treating intervertebral disc degeneration. Eur J Pharmacol 2024; 982:176951. [PMID: 39214272 DOI: 10.1016/j.ejphar.2024.176951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
This study aims to identify potential targets and regulatory mechanisms of Astragaloside Ⅳ (AS-Ⅳ) in treating intervertebral disc degeneration (IDD) through network pharmacology analysis with experimental validation. Lumbar spine instability (LSI) mouse models were first established and treated with AS-Ⅳ. Micro-CT, safranin O-fast green staining, IDD score, RT-PCR and immunohistochemistry staining were employed to demonstrate the effect of AS-Ⅳ. Network pharmacology was used to predict the signaling pathways and potential targets of AS-Ⅳ in treating IDD. RT-PCR and immunohistochemistry staining were used to elucidate and validate the mechanism of AS-Ⅳ in vivo. Animal experiments showed that AS-Ⅳ maintained disc height and volume, improved matrix metabolism in LSI mice, and restored Col2α1, ADAMTS-5, Aggrecan, and MMP-13 expression in degenerated discs. Network pharmacology analysis identified 32 cross-targets between AS-Ⅳ and IDD, and PPI network analysis filtered out 11 core genes, including ALB, MAPK1, MAPK14 (p38 MAPK), EGFR, TGFBR1, MAPK8, MMP3, ANXA5, ESR1, CASP3, and IGF1. Enrichment analysis revealed that 7 of the 11 core target genes enriched in the MAPK signaling pathway, and AS-Ⅳ exhibited stable binding to them according to molecular docking results. Experimental validation indicated that AS-Ⅳ reversed mRNA levels of 7 core targets in degenerated disc tissues in LSI mice. Immunohistochemistry staining further revealed that AS-Ⅳ treatment mainly depressed IDD-elevated protein levels of EGFR, p38 MAPK and CASP3 in the annulus fibrosus. This study elucidates that AS-Ⅳ alleviates lumbar spine instability-induced IDD in mice, suggesting the mechanism may involve inhibition of the EGFR/MAPK signaling pathway.
Collapse
Affiliation(s)
- Deta Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Tianyou Fan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Kanghui Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wu Rao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaoping Sheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Zijian Wan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Shu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Lin Chen
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
4
|
Mashaal A, El-Yamany HY, Mansour HAEH. Systemic/Immune-Modulation of Olea europaea Leaf Extract in Fetuses of Alloxan-Induced T1 Diabetic Rats. J Med Food 2024; 27:981-992. [PMID: 38979597 DOI: 10.1089/jmf.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Maternal glucose is the principal macronutrient that sustains fetal growth. Prolonged exposure of the fetus to hyperglycemia from the early stages of pregnancy accelerates the maturation of the stimulus-secretion coupling mechanism in β cell autoimmunity, which leads to early hyperinsulinemia in type 1 diabetes mellitus (T1DM). Nowadays, diabetes mellitus (DM) is the most common medical complication of pregnancy, and among young women, the prevalence of overt diabetes and undiagnosed hyperglycemia is rising. Even though conventional medication is effective in treating DM, it is expensive and has harmful side effects. Herbal medicine will thus incorporate alternative therapy and be more effective and less toxic. Due to their bioactive components, olive leaves (Olea europaea) are frequently used medicinally; however, little is known about how this plant affects the immune system when it comes to diabetes. The current study used a pregnant mother rat model of alloxan-induced T1DM to examine the antidiabetic properties and embryonic safety of olive leaves. Forty adult female Sprague Dawley rats were split up into four groups as follows: nondiabetic, diabetic, olive, and diabetic-olive groups. All the mother rats were sacrificed on the 20th day of pregnancy, and fetuses were collected for further investigations. In diabetic pregnant mothers, fetuses had systemic modulation-negative effects. These effects were significantly reversed when the diabetic groups were supplemented with extracts from olive leaves. The findings showed that the olive leaf extract inhibits the diabetogenic effect mediated by alloxan with effective and protective systemic immunomodulation during embryonic development.
Collapse
Affiliation(s)
- Alya Mashaal
- Immunology Zoology and Entomology Department , Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| | - Heba Y El-Yamany
- Histology and Cell Biology, Histology Department, Faculty of Medicine (Girls), Al-Azhar University, Cairo, Egypt
| | - Hend Abd El-Halim Mansour
- Embryology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Sharika R, Mongkolpobsin K, Rangsinth P, Prasanth MI, Nilkhet S, Pradniwat P, Tencomnao T, Chuchawankul S. Experimental Models in Unraveling the Biological Mechanisms of Mushroom-Derived Bioactives against Aging- and Lifestyle-Related Diseases: A Review. Nutrients 2024; 16:2682. [PMID: 39203820 PMCID: PMC11357205 DOI: 10.3390/nu16162682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/29/2024] [Accepted: 08/10/2024] [Indexed: 09/03/2024] Open
Abstract
Mushrooms have garnered considerable interest among researchers due to their immense nutritional and therapeutic properties. The presence of biologically active primary and secondary metabolites, which includes several micronutrients, including vitamins, essential minerals, and other dietary fibers, makes them an excellent functional food. Moreover, the dietary inclusion of mushrooms has been reported to reduce the incidence of aging- and lifestyle-related diseases, such as cancer, obesity, and stroke, as well as to provide overall health benefits by promoting immunomodulation, antioxidant activity, and enhancement of gut microbial flora. The multifunctional activities of several mushroom extracts have been evaluated by both in vitro and in vivo studies using cell lines along with invertebrate and vertebrate model systems to address human diseases and disorders at functional and molecular levels. Although each model has its own strengths as well as lacunas, various studies have generated a plethora of data regarding the regulating players that are modulated in order to provide various protective activities; hence, this review intends to compile and provide an overview of the plausible mechanism of action of mushroom-derived bioactives, which will be helpful in future medicinal explorations.
Collapse
Affiliation(s)
- Rajasekharan Sharika
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kuljira Mongkolpobsin
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Panthakarn Rangsinth
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunita Nilkhet
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paweena Pradniwat
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (T.T.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siriporn Chuchawankul
- Immunomodulation of Natural Products Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (K.M.); (S.N.); (P.P.)
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Liu H, Guo D, Wang J, Zhang W, Zhu Z, Zhu K, Bi S, Pan P, Liang G. Aloe-emodin from Sanhua Decoction inhibits neuroinflammation by regulating microglia polarization after subarachnoid hemorrhage. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117583. [PMID: 38122912 DOI: 10.1016/j.jep.2023.117583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Subarachnoid hemorrhage (SAH) triggers a cascade of events that lead to early brain injury (EBI), which contributes to poor outcomes and appears within 3 days after SAH initiation. EBI involves multiple process including neuronal death, blood-brain barrier (BBB) injury and inflammation response. Microglia are cluster of immune cells originating in the brain which respond to SAH by changing their states and releasing inflammatory molecules through various signaling pathways. M0, M1, M2 are three states of microglia represent resting state, promoting inflammation state, and anti-inflammation state respectively, which can be modulated by pharmacological strategies. AIM OF THE STUDY After identified potential active ingredients and targets of Sanhua Decoction (SHD) for SAH, we selected aloe-emodin (AE) as a potential ingredient modulating microglia activation states. MATERIALS AND METHODS Molecular mechanisms, targets and pathways of SHD were reveal by network pharmacology technique. The effects of AE on SAH were evaluated in vivo by assessing neurological deficits, neuronal apoptosis and BBB integrity in a mouse SAH model. Furthermore, BV-2 cells were used to examine the effects of AE on microglial polarization. The influence of AE on microglia transformation was measured by Iba-1, TNF-α, CD68, Arg-1 and CD206 staining. The signal pathways of neuronal apoptosis and microglia polarization was measured by Western blot. RESULTS Network pharmacology identified potential active ingredients and targets of SHD for SAH. And AE is one of the active ingredients. We also confirmed that AE via NF-κB and PKA/CREB pathway inhibited the microglia activation and promoted transformation from M1 phenotype to M2 at EBI stage after SAH. CONCLUSIONS AE, as one ingredient of SHD, can alleviate the inflammatory response and protecting neurons from SAH-induced injury. AE has potential value for treating SAH-induced nerve injury and is expected to be applied in clinical practice.
Collapse
Affiliation(s)
- Hui Liu
- Department of Clinical Medicine, College of Medicine, Lishui University, Lishui, China
| | - Dan Guo
- Department of First Outpatients, General Hospital of Northern Theater Command, Shenyang, China
| | - Jiao Wang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Lishui University, Lishui, China
| | - Wenxu Zhang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zechao Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Pengyu Pan
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
7
|
Boonmuen N, Suksen K, Kaewkittikhun M, Ruknarong L, Silalai P, Saeeng R, Chairoungdua A, Soodvilai S, Tantikanlayaporn D. Genipin Analogue (G300) Inhibits Adipogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells through the Suppression of Adipogenic Promoting Factors. JOURNAL OF NATURAL PRODUCTS 2023; 86:1335-1344. [PMID: 37137165 DOI: 10.1021/acs.jnatprod.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
While obesity is a well-known health threatening condition worldwide, effective pharmacological interventions for obesity suppression have been limited due to adverse effects. Therefore, it is important to explore alternative medical treatments for combating obesity. Inhibition of the adipogenesis process and lipid accumulation are critical targets for controlling and treating obesity. Gardenia jasminoides Ellis is a traditional herbal remedy for various ailments. A natural product from its fruit, genipin, has major pharmacological properties; it is anti-inflammatory and antidiabetic. We investigated the effects of a genipin analogue, G300, on adipogenic differentiation in human bone marrow mesenchymal stem cells (hBM-MSCs). G300 suppressed the expression of adipogenic marker genes and adipokines secreted by adipocytes at concentrations of 10 and 20 μM, which effectively reduced the adipogenic differentiation of hBM-MSCs and lipid accumulation in adipocytes. It also improved adipocyte function by lowering inflammatory cytokine secretion and increasing glucose uptake. For the first time, we show that G300 has the potential to be a novel therapeutic agent for the treatment of obesity and its related disorders.
Collapse
Affiliation(s)
- Nittaya Boonmuen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology, OPS, MHESI, Thailand, https://eht.sc.mahidol.ac.th/
| | - Kanoknetr Suksen
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Mintra Kaewkittikhun
- Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani 12120, Thailand
| | - Laongthip Ruknarong
- Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani 12120, Thailand
| | - Patamawadee Silalai
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Longhaad Bangsaen Rd., Chonburi 20131, Thailand
| | - Rungnapha Saeeng
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, The Research Unit in Synthetic Compounds and Synthetic Analogues from Natural Product for Drug Discovery (RSND), Burapha University, Longhaad Bangsaen Rd., Chonburi 20131, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence on Environmental Health and Toxicology, OPS, MHESI, Thailand, https://eht.sc.mahidol.ac.th/
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, 10400, Thailand
| | - Duangrat Tantikanlayaporn
- Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani 12120, Thailand
- Division of Cell Biology, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
8
|
Ibrahim RM, Abdelhafez HM, El-Shamy SAEM, Eid FA, Mashaal A. Arabic gum ameliorates systemic modulation in Alloxan monohydrate-induced diabetic rats. Sci Rep 2023; 13:5005. [PMID: 36973339 PMCID: PMC10042862 DOI: 10.1038/s41598-023-31897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Medicinal plants are considered an alternative therapy for diabetes mellitus as they regulate glucose levels. Moreover, a variety of plants offer a rich source of bioactive compounds that have potent pharmacological effects without any negative side effects. The present study aimed to clarify the effects of Arabic gum/Gum Acacia (GA) on the biochemical, histopathological, and immunohistochemical changes observed in diabetic rats. Further, the anti-inflammatory activity of GA in response to diabetes, through inflammatory mediators analysis. Male rats were divided into four groups: untreated control, diabetic, Arabic gum-treated, and Arabic gum-treated diabetic rats. Diabetes was induced using alloxan. Animals were sacrificed after 7 and 21 days of treatment with Arabic gum. Body weight, blood and pancreas tissue samples were collected for analysis. Alloxan injection significantly decreased body weight, increased glucose levels, decreased insulin levels, and caused depletion of islets of Langerhans and β-cell damage in the pancreas. Arabic gum treatment of diabetic rats significantly increased body weight, decreased serum glucose levels, increased insulin levels, exerts anti-inflammatory effect, and improved the pancreas tissue structure. Arabic gum has beneficial pharmacological effects in diabetic rats; therefore, it might be employed as diabetic therapy to reduce the hyperglycemic damage and may be applicable for many autoimmune and inflammatory diseases treatment. Further, the new bioactive substances, such as medications made from plants, have larger safety margins, and can be used for a longer period of time.
Collapse
Affiliation(s)
- Rasha Mohammed Ibrahim
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | - Hemmat Mansour Abdelhafez
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | | | - Fatma Ahmed Eid
- Cytochemistry and Histology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Nasr City, Cairo, 11865, Egypt
| | - Alya Mashaal
- Immunology, Zoology and Entomology Department, Faculty of Science (for Girls), Al-Azhar University, Cairo, 11865, Egypt.
| |
Collapse
|
9
|
Li B, Xiao Q, Zhang J, Wang Y, Liu J, Zhang B, Liu H. Exploring the active compounds and potential mechanism of the anti-nonalcoholic fatty liver disease activity of the fraction from Schisandra chinensis fruit extract based on multi-technology integrated network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115769. [PMID: 36183952 DOI: 10.1016/j.jep.2022.115769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/20/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis fruit is a well-known traditional Chinese medicine (TCM) that has been used to treat various liver diseases. Our previous study revealed that its extract is effective against nonalcoholic fatty liver disease (NAFLD). AIM OF THIS STUDY This study aimed to elucidate the active components and explore the underlying mechanisms of action of S. chinensis fruit in the treatment of NAFLD. MATERIALS AND METHODS A HepG2 cell model was used to screen the anti-NAFLD activity of the fraction from S. chinensis fruit extract. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) was used to determine the components of the active fraction. Active compounds, potential targets, and key pathways were predicted for the active fraction treatment of NAFLD using network pharmacology. The anti-NAFLD effects of the active fraction and core active compound 3 were further validated using a high-fat diet (HFD)-induced NAFLD mouse model, intraperitoneal glucose tolerance test (IPGTT), and intraperitoneal insulin tolerance test (IPITT). Related hepatic mRNA expression was detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) to preliminarily validate the mechanism. RESULTS In vitro experiments showed that the active fraction of S. chinensis fruit ethanol (EtOH) extract was mainly concentrated in the soluble fraction of petroleum ether (PET). Thirty-seven lignans were identified in this active fraction using UPLC-Q-TOF/MS. Network pharmacology studies have indicated that its anti-NAFLD effects lie in three major active lignans (3, 24, and 27) contained in PET, which may regulate the insulin resistance signaling pathway. In vivo experiments demonstrated that PET and core active compound 3 treatment significantly attenuated hepatic steatosis and reduced the levels of serum alanine transaminase (ALT), aspartate transaminase (AST), insulin, malondialdehyde (MDA), hepatic triglyceride (TG), and total cholesterol (TC) in HFD-induced mice (P < 0.05). Moreover, treatment with PET and compound 3 alleviated glucose tolerance and insulin resistance. These beneficial effects can be achieved by regulating the expression of Pik3ca, Gsk3β, Jnk1, and Tnf-α. CONCLUSION This study identified the main active fraction and compounds responsible for the anti-NAFLD activity of S. chinensis fruit. This mechanism may be related to regulation of the resistance pathway.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Qi Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Jianuo Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Yumeng Wang
- Animal Science and Technology College Beijing University of Agriculture, Beijing, 102206, China.
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
10
|
Lu CL, Lee BH, Ren YL, Ji D, Rao SQ, Li HX, Yang ZQ. Effects of exopolysaccharides from Antrodia cinnamomea on inflammation and intestinal microbiota disturbance induced by antibiotics in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Systematic Elaboration of the Pharmacological Targets and Potential Mechanisms of ZhiKe GanCao Decoction for Preventing and Delaying Intervertebral Disc Degeneration. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8786052. [PMID: 35497916 PMCID: PMC9054440 DOI: 10.1155/2022/8786052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 12/24/2022]
Abstract
Background ZhiKe GanCao Decoction (ZKGCD) is a commonly used traditional Chinese medicine in the clinical treatment of intervertebral disc degeneration (IDD). However, its active ingredients and mechanism of action remain unclear. This study aims to propose the systematic mechanism of ZKGCD action on IDD based on network pharmacology, molecular docking, and enrichment analysis. Methods Firstly, the common target genes between ZKGCD and IDD were identified through relevant databases. Secondly, the protein-protein interaction (PPI) network of common genes was constructed and further analyzed to determine the core active ingredients and key genes. Thirdly, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of common genes were performed. Finally, the stability of the binding between core active ingredients and key genes was verified by molecular docking analysis. Results “Intersecting genes-active components” network consists of 154 active ingredients and 133 common genes. The ten key genes are AKT1, TNF, IL6, TP53, IL1B, JUN, CASP3, STAT3, MMP9, and MAPK3. Meanwhile, quercetin (Mol000098), luteolin (Mol000006), and kaempferol (Mol000422) are the most important core active ingredients. The main signal pathways selected by KEGG enrichment analysis includes AGE-RAGE signaling pathway in diabetic complications (hsa04933), TNF signaling pathway (hsa04668), IL-17 signaling pathway (hsa04657), cellular senescence (hsa04218), apoptosis (hsa04210), and PI3K-Akt signaling pathway (hsa04151), which are mainly involved in inflammation, apoptosis, senescence, and autophagy. Conclusion This study provides a basis for further elucidating the mechanism of action of ZKGCD in the treatment of IDD and offers a new perspective on the conversion of the active ingredient in ZKGCD into new drugs for treating IDD.
Collapse
|
12
|
Xin BS, Zhao P, Qin SY, Yao GD, Huang XX, Song SJ. Lignans with neuroprotective activity from the fruits of Crataegus pinnatifida. Fitoterapia 2022; 160:105216. [DOI: 10.1016/j.fitote.2022.105216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
|