1
|
Gupta P, Kalvatala S, Joseph A, Panghal A, Santra S. Outline of Therapeutic Potential of Different Plants Reported Against Psoriasis via In Vitro, Pre-Clinical or Clinical Studies. Phytother Res 2025; 39:1139-1173. [PMID: 39754500 DOI: 10.1002/ptr.8405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/28/2024] [Accepted: 11/15/2024] [Indexed: 01/06/2025]
Abstract
Psoriasis is a noncontagious, autoimmune chronic inflammatory disease with an unknown root cause. It is classified as a multifactorial and chronic skin disorder that also affects the immune system and is genetic. Environmental factors such as stress, infections, and injuries all play an important role in the disease's development. Although there is no cure for this disease, topical, oral, and systemic whole-body treatments are available to relieve symptoms. Several plants and phytochemicals which have been found effective in the management of the psoriasis experimentally (preclinical and clinical). These plants/phytochemicals have applications in topical, oral, and systemic treatments. Traditionally, some of the plants have been utilized as the primary treatment, including their extracts and/or phytochemicals, for individuals with moderate to severe psoriasis (due to fewer side effects), while phototherapy is generally reserved for more advanced cases. This report describes various plants and phytochemicals that have been found to be effective against psoriasis in in vitro, preclinical, and clinical studies. This review summarizes the key findings from experimental studies on various pathological aspects of psoriasis and may be useful, effective, and informative for future research.
Collapse
Affiliation(s)
- Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, India
- Research and Development Cell, Lovely Professional University, Phagwara, India
| | - Sudhakar Kalvatala
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abhinav Joseph
- Research and Development Cell, Lovely Professional University, Phagwara, India
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| | - Anil Panghal
- Department of Processing and Food Engineering, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Soumava Santra
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
2
|
Liu T, He Y, Liao Y. Gypenosides alleviates HaCaT keratinocyte hyperproliferation and ameliorates imiquimod-induced psoriasis in mice. Allergol Immunopathol (Madr) 2024; 52:22-32. [PMID: 39515792 DOI: 10.15586/aei.v52i6.1157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Psoriasis is an autoimmune skin condition characterized by hyperproliferation of keratinocytes and chronic immune responses. Gypenosides (Gyp) exhibits anti-proliferative and anti-inflammatory effects on different diseases. However, its functioning and mechanism of Gyp on psoriasis remains unknown. OBJECTIVE To explore the effect and mechanism of Gyp on psoriasis. MATERIAL AND METHODS The impact and mechanism of Gyp on psoriasis in vitro and in vivo were probed through cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, reverse transcription quantitative polymerase chain reaction, hematoxylin and eosin staining, enzyme-linked immunosorbent serologic assay, immunofluorescence, and Western Blotting assays. RESULTS Gyp inhibited cell proliferation and the release of inflammatory cytokinesin interleukin (IL-22)-induced spontaneously transformed human aneuploid immortal keratinocyte cell line (HaCaT). In addition, Gyp demonstrated enhancement in erythema and scaling as well as reductions in the thickness of epidermal layers, release of inflammatory factors, and Ki-67 (a nuclear protein) level in imiquimod (IMQ)-induced mice. Mechanistically, Gyp upregulated nuclear factor erythroid 2-related factor 2 (Nrf-2) expression and diminished the level of p-p65/p65 and p-STAT3/STAT3 in skin tissues from IMQ-induced mice and IL-22-induced HaCaT cells, which were reversed with the application of ML385, an inhibitor of Nrf2. In addition, the administration of ML385 reversed decrease in cell viability and reduced the expressions of IL-1β, IL-6, and tumor necrosis factor-α (TNF-α) in IL-22-induced HaCaT cells caused by Gyp. CONCLUSION In summary, Gyp reduced excessive cell growth and inflammation in psoriasis by suppressing nuclear factor kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3) through activation of Nrf2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China;
| | - Yuanmin He
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yongmei Liao
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
3
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Cao Y, Lv J, Tan Y, Chen R, Jiang X, Meng D, Zou K, Pan M, Tang L. Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity and melanosome transport. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117673. [PMID: 38158096 DOI: 10.1016/j.jep.2023.117673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tribuloside, a natural flavonoid extracted from Chinese medicine Tribulus terrestris L., has shown potent efficacy in treating various diseases. In China, the fruits of Tribulus terrestris L. have long been utilized for relieving headache, dizziness, itchiness, and vitiligo. Water-based extract derived from Tribulus terrestris L. can enhance melanogenesis in mouse hair follicle melanocytes by elevating the expression of α-melanocyte stimulating hormone (α-MSH) and melanocortin-1 recepter (MC-1R). Nevertheless, there is a lack of information regarding the impact of tribuloside on pigmentation in both laboratory settings and living organisms. AIM OF THE STUDY The present research aimed to examine the impact of tribuloside on pigmentation, and delve into the underlying mechanism. MATERIALS AND METHODS Following the administration of tribuloside in human epidermal melanocytes (HEMCs), we utilized microplate reader, Masson-Fontana ammoniacal silver stain, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to measure melanin contents, dendrite lengths, melanosome counts; L-DOPA oxidation assay to indicate tyrosinase activity, Western blotting to evaluate the expression of melanogenic and associated phosphodiesterase (PDE)/cyclic adenosine monophosphate (cAMP)/cyclic-AMP dependent protein kinase A (PKA) pathway proteins. A PDE-Glo assay to verify the inhibitory effect of tribuloside on PDE was also conducted. Additionally, we examined the impact of tribuloside on the pigmentation in both zebrafish model and human skin samples. RESULTS Tribuloside had a notable impact on the production of melanin in melanocytes, zebrafish, and human skin samples. These functions might be attributed to the inhibitory effect of tribuloside on PDE, which could increase the intracellular level of cAMP to stimulate the phosphorylation of cAMP-response element binding (CREB). Once activated, it induced microphthalmia-associated transcription factor (MITF) expression and increased the expression of tyrosinase, Rab27a and cell division cycle protein 42 (Cdc42), ultimately facilitating melanogenesis, melanocyte dendricity, and melanin transport. CONCLUSION Tribuloside acts on the PDE/cAMP/PKA pathway to enhance melanogenesis, melanocyte dendricity, and melanosome transport; meanwhile, tribuloside does not have any toxic effects on cells and may be introduced into clinical prescriptions to promote pigmentation.
Collapse
Affiliation(s)
- Yan Cao
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Jinpeng Lv
- School of Pharmacy, Changzhou University, Changzhou, 213000, Jiangsu, China
| | - Yan Tan
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Ruolin Chen
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Xiaoxue Jiang
- Department of Dermatology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China
| | - Duo Meng
- School of Pharmacy, Changzhou University, Changzhou, 213000, Jiangsu, China
| | - Kun Zou
- School of Pharmacy, Changzhou University, Changzhou, 213000, Jiangsu, China
| | - Min Pan
- Department of Dermatology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
5
|
Zhang S, Li HJ, Yang CM, Liu L, Sun XY, Wang J, Chen ST, Lu Y, Hu MQ, Yan G, Zhou YQ, Miao X, Li X, Li B. Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes. Chin J Integr Med 2024; 30:222-229. [PMID: 37597119 DOI: 10.1007/s11655-023-3599-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 08/21/2023]
Abstract
OBJECTIVE To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective. METHODS Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction. RESULTS TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01). CONCLUSIONS TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong-Jin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun-Mei Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Ying Sun
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Si-Ting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Man-Qi Hu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-Qiong Zhou
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Integrated Traditional Chinese and Western Medicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| |
Collapse
|
6
|
Tu Z, Wei W, Xiang Q, Wang W, Zhang S, Zhou H. Pro-inflammatory cytokine IL-6 regulates LMO4 expression in psoriatic keratinocytes via AKT/STAT3 pathway. Immun Inflamm Dis 2023; 11:e1104. [PMID: 38156380 PMCID: PMC10698831 DOI: 10.1002/iid3.1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Accepted: 11/18/2023] [Indexed: 12/30/2023] Open
Abstract
The transcription factor LIM-only protein 4 (LMO4) is overexpressed in the psoriatic epidermis and regulates keratinocyte proliferation and differentiation. High LMO4 expression levels are induced by interleukin-23 (IL-23) to activate the AKT/STAT3 signaling pathway. Interleukin-6 (IL-6) is mainly involved in regulating T cell functions and development in patients with psoriasis. However, whether LMO4 expression is regulated by IL-6 remains unclear. Therefore, the purpose of this study is to explore the role and molecular mechanisms of IL-6 in regulating LMO4 expression. The interleukin-6 (IL-6) levels in human plasma were determined using a chemiluminescence immunoassay system. A psoriasis-like mouse model was established using imiquimod induction. Epidermal keratinocytes (HaCaT) were cultured in defined keratinocyte-serum-free medium and stimulated by IL-6 alone or with inhibitors. The proteins of interest were detected using western blot analysis, immunofluorescence, and immunohistochemistry. The 5-ethynyl-2'-deoxyuridine assay was used to detect cell proliferation. The results revealed that IL-6 levels were markedly increased in the plasma of patients with psoriasis, compared to healthy control. The high expression of LMO4 was consistent with high levels of IL-6, p-AKT, and p-STAT3 in the lesions of both psoriasis patients and imiquimod-induced psoriasis-like mice. IL-6 activates the AKT/STAT3 signaling pathway, followed by LMO4 high-expression in HaCaT cells. IL-6 induces HaCaT proliferation and differentiation via AKT/STAT3 signaling pathway activation. We think that the high expression of LMO4 in psoriatic keratinocytes requires IL-6 to activate the AKT/STAT3 signaling pathway and leads to epidermal keratinocytes abnormal proliferation and differentiation.
Collapse
Affiliation(s)
- Zhenzhen Tu
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Wei Wei
- Department of DermatologyAffiliated Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Qiantong Xiang
- Department of DermatologySecond People's Hospital of Hefei Affiliated of Anhui Medical UniversityHefeiChina
| | - Wenwen Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Siping Zhang
- Department of DermatologyAffiliated Provincial Hospital of Anhui Medical UniversityHefeiChina
| | - Haisheng Zhou
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
- The Center for Scientific Research of Anhui Medical UniversityHefeiChina
- The Institute of DermatologyAnhui Medical UniversityHefeiChina
| |
Collapse
|
7
|
Ju Y, Luo M, Yan T, Zhou Z, Zhang M, Zhao Z, Liu X, Mei Z, Xiong H. TRPA1 is involved in the inhibitory effect of Ke-teng-zi on allergic contact dermatitis via MAPK and JAK/STAT3 signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116182. [PMID: 36706935 DOI: 10.1016/j.jep.2023.116182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Entada phaseoloides (Linn.) Merr. commonly named "Ke-teng-zi" is a traditional Chinese folk medicine and reported to treat dermatitis, spasm, and headache. However, the exact effect and the mechanism of Ke-teng-zi on the treatment of dermatitis is unclear. AIM OF THE STUDY To elucidate the antipruritic effect and molecular mechanisms of Ke-teng-zi on the treatment of allergic contact dermatitis (ACD). MATERIALS AND METHODS The main components of the n-butanol fraction of 70% ethanol extract from Ke-teng-zi (abbreviated as KB) were analyzed by HPLC. The chloroquine (CQ)-induced acute itch and squaraine dibutyl ester (SADBE)-induced ACD chronic itch in mice was established, and the TNF-α/IFN-γ stimulated Human keratinocytes (HaCaT) were used to evaluate the antipruritic and anti-inflammatory effects of KB. Behavioral tests, lesion scoring, and histology were also examined. The expression levels of molecules in MAPK and JAK/STAT3 pathways, the mRNA levels of chemokines and cytokines in both the skin of ACD mice and the HaCaT cells were detected by western blot and qPCR. Furthermore, whole-cell patch-clamp recordings in TRPA1-tranfected HEK293T cells were used to elucidate the effect of KB on TRPA1 channels. TRPA1 siRNA was used to evaluate the role of TRPA1 in the anti-inflammatory effect of KB in keratinocytes. RESULTS The main compounds in KB could bind to the active sites of TRPA1 mainly through hydrogen bond and hydrophobic bond interactions. KB could inhibit the scratching behavior in CQ-induced acute itch, and the inhibitory effect of KB was blocked by TRPA1 inhibitor HC-030031. In addition, KB significantly decreased the scratching bouts of ACD mice, reduced the skin lesion scores, mast cells degranulation, and epidermal thickening, inhibited the production of inflammatory chemokines/cytokines and CGRP, and down-regulated the levels of p-ERK1/2, p-p38, and p-STAT3, compared to the ACD mice. Moreover, continuous application of KB induced the desensitization of TRPA1 channels. Also, KB inhibited the expression of p-ERK1/2, p-p38, and p-STAT3, and down-regulated the expression of inflammatory chemokines and cytokines in vitro, which were reversed by the TRPA1 siRNA. CONCLUSIONS KB alleviated the pruritus and skin inflammation in ACD mice through TRPA1 channels desensitization and down-regulation of intracellular MAPK and JAK/STAT3 signaling pathways. Our results suggested that Ke-teng-zi is a potential drug for the treatment of inflammatory skin diseases such as ACD.
Collapse
Affiliation(s)
- Yankun Ju
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Miao Luo
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Ting Yan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zhengfan Zhou
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Man Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zhongqiu Zhao
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St Louis, MO, 63110, USA; Barnes-Jewish Hospital, St Louis, MO, 63110, USA
| | - Xinqiao Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430074, China.
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
8
|
Liu X, Li L, Jiang J, Ge W, Huang Y, Jin Z, Liu X, Kong Y, Zhanmu O, Zeng X, Li F, Li M, Chen H. Role of Type I Cannabinoid Receptor in Sensory Neurons in Psoriasiform Skin Inflammation and Pruritus. J Invest Dermatol 2023; 143:812-821.e3. [PMID: 36410425 DOI: 10.1016/j.jid.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Type I cannabinoid receptor (CB1R) has been reported to exhibit favorable anti-inflammation and antipruritus effects against inflammation-based skin diseases, but the specific mechanism remains to be explored. In this study, we found that the activation of CB1R significantly relieved the scratching behavior and skin inflammation in a psoriatic mouse model, whereas CB1R antagonist aggravated these symptoms. Because the expression of CB1R was abundant in dorsal root ganglia, we constructed mice with conditional CB1R knockout in primary sensory neurons and found that imiquimod-induced psoriasiform inflammation and itch were both worsened in CB1R-conditional knockout mice. Next, we observed that the CB1R was mostly located in peptidergic neurons, and deletion of CB1R in primary sensory neurons promoted the production and release of substance P to the skin tissue. Furthermore, the elevated substance P in the skin affected the activation of extracellular signal‒regulated kinase in keratinocytes and induced the accumulation of mast cells in the dermis. Finally, we showed that blocking the substance P signal significantly alleviated the exacerbation of psoriasiform inflammation and itch caused by imiquimod in CB1R-conditional knockout mice. Together, our work reveals that CB1R in sensory neurons plays a key role in psoriasiform skin inflammation and pruritus by regulating substance P expression.
Collapse
Affiliation(s)
- Xin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Dermatology, School of Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Jiang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenqiang Ge
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqiong Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilin Jin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - XinXin Liu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Kong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ouyang Zhanmu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zeng
- Department of Dermatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Fei Li
- Department of Dermatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China
| | - Man Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongxiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Dermatology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, China.
| |
Collapse
|
9
|
Zhang J, Zhao S, Xing X, Shang L, Cao J, He Y. Effects of Neuropeptides on Dendritic Cells in the Pathogenesis of Psoriasis. J Inflamm Res 2023; 16:35-43. [PMID: 36636251 PMCID: PMC9831526 DOI: 10.2147/jir.s397079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Psoriasis is an autoimmune disease that is characterized by discolored, scaled patches of skin. Clinically, it is found that psychological factors often induce or aggravate the disease. Current research suggests that the pathogenesis of psoriasis involves the nervous and immune systems. This article reviews how neuropeptides secreted by nerve fibers affect dendritic cells in psoriasis. In this review, we describe that the neuropeptides calcitonin gene-related peptide, substance P, and vasoactive intestinal peptide can act on dendritic cells and participate in the pathogenesis of psoriasis. These neuropeptides can affect the secretion of interleukin (IL)-12 and IL-23 by dendritic cells, which stimulate T helper (Th)1, Th17, and Th22 cells to produce immune responses and cause the manifestation of psoriasis. The application of neuropeptide inhibitors can improve the skin lesions of psoriasis, which has been confirmed in clinical trials. Therefore, neuroimmune response may be a new direction to develop new drug treatments and perspectives in the development of psoriasis.
Collapse
Affiliation(s)
- Jingya Zhang
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Siqi Zhao
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Xinzhu Xing
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lin Shang
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jiali Cao
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yanling He
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China,National Clinical Research Center for Skin and Immune Diseases, Branch in Beijing Chaoyang Hospital, Beijing, People’s Republic of China,Correspondence: Yanling He, Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongti South Road, Chaoyang District, Beijing, 100020, People’s Republic of China, Tel/Fax +86-10-85231889, Email
| |
Collapse
|