1
|
Sheng C, Zhu B, Lin X, Shen H, Wu Z, Shi J, Ge L. Hydrogel doped with sinomenine-CeO 2 nanoparticles for sustained intra-articular therapy in knee osteoarthritis. J Drug Target 2025; 33:804-816. [PMID: 39745919 DOI: 10.1080/1061186x.2024.2449488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
In this study, we developed an intra-articular injectable hydrogel drug depot (SMN-CeO2@G) for sustained OA treatment. This hydrogel system, which carries sinomenine-loaded cerium dioxide nanoparticles (SMN-CeO2), enhances anti-inflammatory and anti-apoptotic effects within the joint cavity. SMN-CeO2@G features a three-dimensional network structure with an approximate pore size of 10 μm, stably encapsulating SMN-CeO2 nanoparticles (∼75 nm). Under hydrogen peroxide (H2O2) exposure and simulated mechanical stress, SMN-CeO2@G achieves a cumulative SMN release of 44.72 ± 7.83% over 48 hours, demonstrating controlled release capabilities. At an SMN concentration of 0.5 μg/mL, SMN-CeO2@G significantly enhances proliferation, reduces apoptosis, and lowers matrix metalloproteinases-13 (MMP-13) secretion in IL-1β-induced ATDC5 chondrocytes. In the ATDC5-RAW264.7 co-culture model, SMN-CeO2@G effectively reduces reactive oxygen species (ROS) levels, apoptosis (∼20%), and MMP13 concentrations (24.3 ± 3.1 ng/mL) in chondrocytes, likely due to the promotion of macrophages M2 polarisation. In anti-OA efficacy studies, a single intra-articular injection of SMN-CeO2@G significantly reduces osteophyte formation, promotes subchondral bone normalisation, alleviates pain sensitivity, and lowers serum IL-1β (59.3 ± 2.4 pg/mL) and MMP-13 (23.6 ± 1.7 ng/mL) levels in OA model rats. SMN-CeO2@G also achieves prolonged retention in the synovial fluid, with 6.7 ± 2.8% SMN still detectable at 72 hours post-injection, a factor crucial for sustained therapeutic effect. Overall, SMN-CeO2@G presents a promising tool for intra-articular OA treatment.
Collapse
Affiliation(s)
- Chuanyi Sheng
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Baorong Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Xiaomei Lin
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Hongyuan Shen
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Zhonghua Wu
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Jinjun Shi
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Liang Ge
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
- Nanjing Liuhe District Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Lu J, Zhou Y, Song YX, Wang JY, Xian JX. Natural alkaloids modulating macrophage polarization: Innovative therapeutic strategies for inflammatory, cardiovascular, and cancerous diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156709. [PMID: 40250001 DOI: 10.1016/j.phymed.2025.156709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/21/2025] [Accepted: 03/29/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Macrophage polarization, switching between pro-inflammatory M1 and anti-inflammatory M2 states, is crucial for disease dynamics in inflammatory, metabolic, and cancer contexts. Modulating this polarization is a clinical challenge, but natural alkaloids, with their potent anti-inflammatory and immunomodulatory effects, show promise in reprogramming macrophage phenotypes. PURPOSE This review explores the applications of natural alkaloids-such as matrine, berberine, koumine, sophoridine, and curcumin-in modulating macrophage polarization. It aims to highlight their potential in reprogramming macrophage phenotypes and improving therapeutic outcomes across various diseases. METHODS A comprehensive literature review was conducted using databases like PubMed, Web of Science, Science Direct and Google Scholar, employing targeted keywords related to natural alkaloids, macrophage polarization, and disease treatment. The analysis primarily focused on articles published between 2020 and 2024. RESULTS This review summarizes how natural alkaloids regulate macrophage polarization, promoting the M2 phenotype to reduce inflammation, thereby playing a therapeutic role in anti-inflammatory, cardiovascular, and metabolic diseases. At the same time, they also promote M1 polarization to inhibit tumor development. CONCLUSION Accumulating evidence demonstrates that macrophage polarization regulation by natural alkaloids holds notable clinical value for disease intervention. They alleviate inflammation, enhance antitumor immunity, and improve treatment outcomes, demonstrating their importance in innovative therapeutic strategies. Moreover, combining alkaloids with immunotherapy enhances treatment efficacy, further highlighting their versatility in a variety of therapeutic applications.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ying Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi-Xuan Song
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie-Ying Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jia-Xun Xian
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
3
|
Luo Z, Zheng S, Hu Z, Li P, Zeng J, Lu Y, Ali M, Chen Z, Wang Q, Qi F. Ultrasound-responsive taurine lipid nanoparticles attenuate oxidative stress and promote macrophage polarization for diabetic wound healing. Free Radic Biol Med 2025; 233:302-316. [PMID: 40187503 DOI: 10.1016/j.freeradbiomed.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/22/2025] [Accepted: 04/03/2025] [Indexed: 04/07/2025]
Abstract
Diabetic wound healing presents a significant clinical challenge due to disrupted neuro-immune interactions. This study identifies the α7 nicotinic acetylcholine receptor (α7nAChR) as a key regulator of wound repair by linking cholinergic signaling to macrophage reprogramming. GEO analysis of diabetic foot ulcer (DFU) microenvironments revealed neuronal loss, M1 macrophage dominance, and chronic inflammation, all driven by impaired acetylcholine (ACh) secretion and α7nAChR inactivation. Mechanistically, taurine (TA) restored PC12 cell function under high glucose conditions by activating AMPK, alleviating oxidative and endoplasmic reticulum stress, and promoting ACh production. ACh activated macrophage α7nAChR, modulating M1/M2 polarization through JAK2/STAT3 activation and NF-κB suppression. To enhance TA bioavailability, ultrasound-responsive Ccr2-targeted TA nanoparticles (Ccr2@TA@LNP) were developed for site-specific delivery via Ccl2/Ccr2 chemotaxis. In diabetic neuropathy (DPN) mice, Ccr2@TA@LNP accelerated wound healing by increasing ACh levels, enhancing α7nAChR/CD206 expression, and reducing Ccl2-mediated inflammation. By integrating neuroprotection, macrophage reprogramming, and targeted nanotherapy, this study highlights TA as a multi-target agent that restores neuro-immune balance through the AMPK/α7nAChR/JAK2-STAT3 axis, offering a novel therapeutic strategy for diabetic wound treatment.
Collapse
Affiliation(s)
- Zucheng Luo
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shaoluan Zheng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Zhichao Hu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Li
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junhao Zeng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yao Lu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mohyeddin Ali
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zijian Chen
- Department of Plastic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Qi Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fazhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Li J, Ma W, Tang Z, Li Y, Zheng R, Xie Y, Li G. Macrophage‑driven pathogenesis in acute lung injury/acute respiratory disease syndrome: Harnessing natural products for therapeutic interventions (Review). Mol Med Rep 2025; 31:16. [PMID: 39513609 PMCID: PMC11551695 DOI: 10.3892/mmr.2024.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) is a common respiratory disease characterized by hypoxemia and respiratory distress. It is associated with high morbidity and mortality. Due to the complex pathogenesis of ALI, the clinical management of patients with ALI/ARDS is challenging, resulting in numerous post‑treatment sequelae and compromising the quality of life of patients. Macrophages, as a class of innate immune cells, play an important role in ALI/ARDS. In recent years, the functions and phenotypes of macrophages have been better understood due to the development of flow cytometry, immunofluorescence, single‑cell sequencing and spatial genomics. However, no macrophage‑targeted drugs for the treatment of ALI/ARDS currently exist in clinical practice. Natural products are important for drug development, and it has been shown that numerous natural compounds from herbal medicine can alleviate ALI/ARDS caused by various factors by modulating macrophage abnormalities. In the present review, the natural products from herbal medicine that can modulate macrophage abnormalities in ALI/ARDS to treat ALI/ARDS are introduced, and their mechanisms of action, discovered in the previous five years (2019‑2024), are presented. This will provide novel ideas and directions for further research, to develop new drugs for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Jincun Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenyu Ma
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Zilei Tang
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yingming Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Ruiyu Zheng
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yuhuan Xie
- Yunnan Innovation Team of Application Research on Traditional Chinese Medicine Theory of Disease Prevention, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Gang Li
- Yunnan Provincial University Key Laboratory of Aromatic Chinese Herb Research, Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
5
|
Zhang C, Lv P, Liang Q, Zhou J, Wu B, Xu W. Conditioned Medium Derived From Human Dental Follicle Mesenchymal Stem Cells Alleviates Macrophage Proinflammatory Responses Through MAPK-ERK-EGR1 Axis. Stem Cells Int 2024; 2024:5514771. [PMID: 39650749 PMCID: PMC11623994 DOI: 10.1155/sci/5514771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/09/2024] [Accepted: 11/02/2024] [Indexed: 12/11/2024] Open
Abstract
The regulation of macrophage polarization by mesenchymal stem cells (MSCs) is a prominent area of research but faces challenges due to limited MSC sources and incomplete understanding of underlying mechanisms. We sought to identify an accessible MSC source and investigate how MSCs regulate macrophage polarization using high-throughput sequencing. We isolated dental follicle MSCs from discarded human third molar dental follicles and cocultured them with THP-1-derived macrophages in the conditioned medium. Transcriptome sequencing identified differentially expressed genes (DEGs) in macrophages, integrating with multiomics database analysis to uncover polarization mechanisms. Our findings demonstrated successful MSC extraction from dental follicles, with the conditioned medium suppressing proinflammatory macrophage functions and influencing macrophage subtyping. MSCs, through paracrine signaling, activated the mitogen-activated protein kinase (MAPK) pathway, leading to extracellular regulated protein kinases (ERK)1/2 phosphorylation and upregulation of early growth response 1 (EGR1) protein. Elevated EGR1 levels inhibited inflammatory gene expression, inhibiting the pro-inflammatory immunoregulatory function of macrophages in inflammatory states. This study provides an efficient method for in vitro macrophage polarization identification. It offers insights into MSC-regulated polarization mechanisms, with potential clinical implications for anti-inflammatory therapy and immune regulation.
Collapse
Affiliation(s)
- Chuhan Zhang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Peiyi Lv
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Qiuying Liang
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Buling Wu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| | - Wenan Xu
- Shenzhen Clinical College of Stomatology, School of Stomatology, Southern Medical University, Guangzhou, China
- Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen, China
| |
Collapse
|
6
|
Ye A, Li L, Chen H, Tao P, Lou S. Nicotine regulates abnormal macrophage polarization and trophoblast invasion associated with preterm labor via the α7nAChR/SIRT1 axis. Placenta 2024; 147:42-51. [PMID: 38308901 DOI: 10.1016/j.placenta.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION Preterm birth (PTB) frequently results from the syndrome of preterm labor (PTL). PTL is linked to an atypical maternal inflammatory response, as well as intrauterine inflammation and/or infection. In this study, we explored the mechanisms involved in nicotine-mediated abnormal macrophage polarization and trophoblast invasion associated with PTL. METHODS First, THP-1-M0 macrophages were generated by treating the human monocytic leukemia cell line (THP-1) with phorbol 12-myristate 13-acetate for a duration of 24 h. Afterward, nicotine treatment was administered, followed by coculturing with the HTR-8/SVneo trophoblast cell line (HTR-8) at a ratio of 1:1. Next, we transfected sh-α7nAChR and treated THP-1-M0 macrophages and HTR-8 cells with nicotine. In addition, we transfected THP-1-M0 macrophages with sh-NC or sh-SIRT1 or subjected them to 4 nM nicotinamide adenine dinucleotide (NAD) metabolic inhibitor FK866 treatment. Moreover, HTR-8 cells were treated with nicotine, after which THP-1-M0 macrophages were cocultured with HTR-8 cells. Finally, we constructed an in vivo RU486-induced PTL rat model to verify the effect of nicotine and the mechanisms involved. RESULTS We found that nicotine affected polarization and α7nAChR expression in HTR-8 cocultured THP-1-M0 macrophages. Knocking down α7nAChR blocked the effect of nicotine on the proliferation and invasion of HTR-8 cells. Furthermore, nicotine activated the α7nAChR/SIRT1 axis to regulate THP-1-M0 macrophage polarization through the cholinergic anti-inflammatory pathway. Additionally, NAD metabolism mediated the role of the α7nAChR/SIRT1 axis in nicotine-induced polarization of HTR-8 cocultured THP-1-M0 macrophages. In vivo experiments demonstrated that nicotine alleviated inflammation in PTL rats, which involved the α7nAChR/SIRT1 axis. CONCLUSION Nicotine regulated abnormal macrophage polarization and trophoblast invasion associated with PTL via the α7nAChR/SIRT1 axis.
Collapse
Affiliation(s)
- Aihua Ye
- Department of Obstetrics and Gynecology, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Liling Li
- Department of Obstetrics, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Haozhong Chen
- Department of Emergency, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China
| | - Ping Tao
- Department of Medical Administrating, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China.
| | - Shuiping Lou
- Department of Obstetrics, The Maternal and Child Health Hospital of Longhua District, Shenzhen, Guangdong, 518109, China.
| |
Collapse
|
7
|
Ni H, Liu M, Cao M, Zhang L, Zhao Y, Yi L, Li Y, Liu L, Wang P, Du Q, Zhou H, Dong Y. Sinomenine regulates the cholinergic anti-inflammatory pathway to inhibit TLR4/NF-κB pathway and protect the homeostasis in brain and gut in scopolamine-induced Alzheimer's disease mice. Biomed Pharmacother 2024; 171:116190. [PMID: 38278026 DOI: 10.1016/j.biopha.2024.116190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Sinomenine (SIN), an alkaloid extracted from the Chinese herbal medicine Sinomenium acutum, has great potential in anti-inflammatory, immune regulation, analgesic and sedative, and is already a clinical drug for the treatment of rheumatoid arthritis in China. Our previous studies show SIN inhibits inflammation by regulating ɑ7nAChR, a key receptor of cholinergic anti-inflammatory pathway (CAP), which plays an important role in regulating peripheral and central nervous system inflammation. Growing evidence supports the cholinergic dysregulation and inflammatory responses play the key role in the pathogenesis of AD. The intervention effects of SIN on AD by regulating CAP and homeostasis in brain and gut were analyzed for the first time in the present study using scopolamine-induced AD model mice. Behavioral tests were used to assess the cognitive performance. The neurons loss, cholinergic function, inflammation responses, biological barrier function in the mouse brain and intestinal tissues were evaluated through a variety of techniques, and the gut microbiota was detected using 16SrRNA sequencing. The results showed that SIN significantly inhibited the cognitive decline, dysregulation of cholinergic system, peripheral and central inflammation, biological barrier damage as well as intestinal flora disturbance caused by SCOP in mice. More importantly, SIN effectively regulated CAP to suppress the activation of TLR4/NF-κB and protect the homeostasis in brain and gut to alleviate cognitive impairment.
Collapse
Affiliation(s)
- Haojie Ni
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Muqiu Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Mindie Cao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lingyu Zhang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yijing Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Lang Yi
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yanwu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Peixun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Qun Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
8
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
9
|
Li JM, Deng HS, Yao YD, Wang WT, Hu JQ, Dong Y, Wang PX, Liu L, Liu ZQ, Xie Y, Lu LL, Zhou H. Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways. Acta Pharmacol Sin 2023; 44:2504-2524. [PMID: 37482570 PMCID: PMC10692212 DOI: 10.1038/s41401-023-01124-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023]
Abstract
Sinomenine (SIN) is an isoquinoline alkaloid isolated from Sinomenii Caulis, a traditional Chinese medicine used to treat rheumatoid arthritis (RA). Clinical trials have shown that SIN has comparable efficacy to methotrexate in treating patients with RA but with fewer adverse effects. In this study, we explored the anti-inflammatory effects and therapeutic targets of SIN in LPS-induced RAW264.7 cells and in collagen-induced arthritis (CIA) mice. LPS-induced RAW264.7 cells were pretreated with SIN (160, 320, 640 µM); and CIA mice were administered SIN (25, 50 and 100 mg·kg-1·d-1, i.p.) for 30 days. We first conducted a solvent-induced protein precipitation (SIP) assay in LPS-stimulated RAW264.7 cells and found positive evidence for the direct binding of SIN to guanylate-binding protein 5 (GBP5), which was supported by molecular simulation docking, proteomics, and binding affinity assays (KD = 3.486 µM). More importantly, SIN treatment markedly decreased the expression levels of proteins involved in the GBP5/P2X7R-NLRP3 pathways in both LPS-induced RAW264.7 cells and the paw tissue of CIA mice. Moreover, the levels of IL-1β, IL-18, IL-6, and TNF-α in both the supernatant of inflammatory cells and the serum of CIA mice were significantly reduced. This study illustrates a novel anti-inflammatory mechanism of SIN; SIN suppresses the activity of NLRP3-related pathways by competitively binding GBP5 and downregulating P2X7R protein expression, which ultimately contributes to the reduction of IL-1β and IL-18 production. The binding specificity of SIN to GBP5 and its inhibitory effect on GBP5 activity suggest that SIN has great potential as a specific GBP5 antagonist.
Collapse
Affiliation(s)
- Juan-Min Li
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hai-Shan Deng
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yun-da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wei-Ting Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jia-Qin Hu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pei-Xun Wang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Liang Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Hua Zhou
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Gouda NA, Alshammari SO, Abourehab MAS, Alshammari QA, Elkamhawy A. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology 2023; 31:2857-2883. [PMID: 37950803 DOI: 10.1007/s10787-023-01366-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.
Collapse
Affiliation(s)
- Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea.
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
11
|
Li JM, Yao YD, Luo JF, Liu JX, Lu LL, Liu ZQ, Dong Y, Xie Y, Zhou H. Pharmacological mechanisms of sinomenine in anti-inflammatory immunity and osteoprotection in rheumatoid arthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155114. [PMID: 37816287 DOI: 10.1016/j.phymed.2023.155114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Sinomenine (SIN) is the main pharmacologically active component of Sinomenii Caulis and protects against rheumatoid arthritis (RA). In recent years, many studies have been conducted to elucidate the pharmacological mechanisms of SIN in the treatment of RA. However, the molecular mechanism of SIN in RA has not been fully elucidated. PURPOSE To summarize the pharmacological effects and molecular mechanisms of SIN in RA and clarify the most valuable regulatory mechanisms of SIN to provide clues and a basis for basic research and clinical applications. METHODS We systematically searched SciFinder, Web of Science, PubMed, China National Knowledge Internet (CNKI), the Wanfang Databases, and the Chinese Scientific Journal Database (VIP). We organized our work based on the PRISMA statement and selected studies for review based on predefined selection criteria. OUTCOME After screening, we identified 201 relevant studies, including 88 clinical trials and 113 in vivo and in vitro studies on molecular mechanisms. Among these studies, we selected key results for reporting and analysis. CONCLUSIONS We found that most of the known pharmacological mechanisms of SIN are indirect effects on certain signaling pathways or proteins. SIN was manifested to reduce the release of inflammatory cytokines such as Tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and IL-1β, thereby reducing the inflammatory response, and apparently blocking the destruction of bone and cartilage. The regulatory effects on inflammation and bone destruction make SIN a promising drug to treat RA. More notably, we believe that the modulation of α7nAChR and the regulation of methylation levels at specific GCG sites in the mPGES-1 promoter by SIN, and its mechanism of directly targeting GBP5, certainly enriches the possibilities and the underlying rationale for SIN in the treatment of inflammatory immune-related diseases.
Collapse
Affiliation(s)
- Juan-Min Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yun-Da Yao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Jin-Fang Luo
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guian District, Guiyang, Guizhou, China
| | - Jian-Xin Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Lin-Lin Lu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhong-Qiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yan Dong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510405, China.
| | - Ying Xie
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Hua Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510006, China; International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
12
|
Zhao Q, Li H, Li H, Xie F, Zhang J. Research progress of neuroinflammation-related cells in traumatic brain injury: A review. Medicine (Baltimore) 2023; 102:e34009. [PMID: 37352020 PMCID: PMC10289497 DOI: 10.1097/md.0000000000034009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023] Open
Abstract
Neuroinflammation after traumatic brain injury (TBI) is related to chronic neurodegenerative diseases and is one of the causes of acute secondary injury after TBI. Therefore, it is particularly important to clarify the role of cellular mechanisms in the neuroinflammatory response after TBI. The objective of this article is to understand the involvement of cells during the TBI inflammatory response (for instance, astrocytes, microglia, and oligodendrocytes) and shed light on the recent progress in the stimulation and interaction of granulocytes and lymphocytes, to provide a novel approach for clinical research. We searched articles in PubMed published between 1950 and 2023, using the following keywords: TBI, neuroinflammation, inflammatory cells, neuroprotection, clinical. Articles for inclusion in this paper were finalized based on their novelty, representativeness, and relevance to the main arguments of this review. We found that the neuroinflammatory response after TBI includes the activation of glial cells, the release of inflammatory mediators in the brain, and the recruitment of peripheral immune cells. These inflammatory responses not only induce secondary brain damage, but also have a role in repairing the nervous system to some extent. However, not all of the mechanisms of cell-to-cell interactions have been well studied. After TBI, clinical treatment cannot simply suppress the inflammatory response, and the inflammatory phenotype of patients' needs to be defined according to their specific conditions after injury. Clinical trials of personalized inflammation regulation therapy for specific patients should be carried out in order to improve the prognosis of patients.
Collapse
Affiliation(s)
- Qinghui Zhao
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Huige Li
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| | - Hongru Li
- Zhumadian Central Hospital, Zhumadian, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jianhua Zhang
- Institute of Physical Culture, Huanghuai University, Zhumadian, China
| |
Collapse
|
13
|
Wang S, Zhang L, Zhou Y, Huang J, Zhou Z, Liu Z. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects. Int Immunopharmacol 2023; 119:110227. [PMID: 37119677 DOI: 10.1016/j.intimp.2023.110227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Autoimmune diseases (ADs), with significant effects on morbidity and mortality, are a broad spectrum of disorders featured by body's immune responses being directed against its own tissues, resulting in chronic inflammation and tissue damage. Sinomenine (SIN) is an alkaloid isolated from the root and stem of Sinomenium acutum which is mainly used to treat pain, inflammation and immune disorders for centuries in China. Its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications have been reported widely, suggesting an inspiring application prospect of SIN. In this review, the pharmacokinetics, drug delivery systems, pharmacological mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of SIN, and the possibility of SIN as adjuvant to disease-modifying anti-rheumatic drugs (DMARDs) therapy were summarized and evaluated. This paper aims to reveal the potential prospects and limitations of SIN in the treatment of inflammatory and immune diseases, and to provide ideas for compensating its limitations and reducing the side effects, and thus to make SIN better translate to the clinic.
Collapse
Affiliation(s)
- Siwei Wang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Lvzhuo Zhang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yanhua Zhou
- Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Jiangrong Huang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Jingzhou Central Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.
| | - Zushan Zhou
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China.
| | - Zhenzhen Liu
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China.
| |
Collapse
|
14
|
Zhou Y, Chen S, Dai Y, Wu L, Jin M, Zhao J, Li Y, Tang L. Sinomenine attenuated dextran sulfate sodium-induced inflammatory responses by promoting 14-3-3θ protein and inhibiting NF-κB signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116037. [PMID: 36526094 DOI: 10.1016/j.jep.2022.116037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The rhizome of Chinese medical plant QingTeng (scientific name: Sinomenium acutum (Thunb.) Rehd. et Wils.) is widely used by traditional medical doctors for anti-inflammation and immunoregulatory in China and other Asian countries. AIM OF THE STUDY The purpose of this study was to evaluate the effects and possible mechanisms of sinomenine resistance against DSS-induced inflammation in vitro and in vivo. MATERIALS AND METHODS The UC model was induced by treating female mice with 3% DSS in vivo and human colonic epithelial cells (Hcoepic) with 0.8 mg/ml DSS in vitro. The mice and Hcoepic were then treated with sinomenine. Inflammatory factors were detected using ELISA and qRT-PCR. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 and 14-3-3θ were analyzed by bioinformatic analysis and verified by western blotting, immunofluorescent staining or immunohistochemistry. RESULTS DSS-induced Hcoepic underwent high inflammation and oxidative stress conditions, whereas sinomenine reduced the uncontrolled immune microenvironment by suppressing NF-κB signaling and targeting 14-3-3θ. Knockdown of 14-3-3θ decreased the protective effect of sinomenine against DSS-induced inflammation in vitro. Moreover, sinomenine promoted 14-3-3θ protein expression and inhibited NF-κB p65 signaling in DSS-induced mice. CONCLUSION These findings suggest that 14-3-3θ plays an important role in sinomenine against DSS treatment, and sinomenine could be considered a potential drug for the treatment of UC.
Collapse
Affiliation(s)
- Yan Zhou
- Central Laboratory, The Affliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China; Department of Gastrointestinal Surgery, The Affliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Shuai Chen
- Department of Gastrointestinal Surgery, The Affliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yi Dai
- Department of Gastrointestinal Surgery, The Affliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Liunan Wu
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ming Jin
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jie Zhao
- Central Laboratory, The Affliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China; Department of Gastrointestinal Surgery, The Affliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuan Li
- The Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Liming Tang
- Department of Gastrointestinal Surgery, The Affliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
15
|
Lai WD, Wang S, You WT, Chen SJ, Wen JJ, Yuan CR, Zheng MJ, Jin Y, Yu J, Wen CP. Sinomenine regulates immune cell subsets: Potential neuro-immune intervene for precise treatment of chronic pain. Front Cell Dev Biol 2022; 10:1041006. [PMID: 36619869 PMCID: PMC9813792 DOI: 10.3389/fcell.2022.1041006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic pain is a disease of long-lasting pain with unpleasant feelings mediated by central and (or) peripheral sensitization, its duration usually lasts more than 3 months or longer than the expected recovery time. The patients with chronic pain are manifested with enhanced sensitivity to noxious and non-noxious stimuli. Due to an incomplete understanding of the mechanisms, patients are commonly insensitive to the treatment of first line analgesic medicine in clinic. Thus, the exploration of non-opioid-dependent analgesia are needed. Recent studies have shown that "sinomenine," the main active ingredient in the natural plant "sinomenium acutum (Thunb.) Rehd. Et Wils," has a powerful inhibitory effect on chronic pain, but its underlying mechanism still needs to be further elucidated. A growing number of studies have shown that various immune cells such as T cells, B cells, macrophages, astrocytes and microglia, accompanied with the relative inflammatory factors and neuropeptides, are involved in the pathogenesis of chronic pain. Notably, the interaction of the immune system and sensory neurons is essential for the development of central and (or) peripheral sensitization, as well as the progression and maintenance of chronic pain. Based on the effects of sinomenine on immune cells and their subsets, this review mainly focused on describing the potential analgesic effects of sinomenine, with rationality of regulating the neuroimmune interaction.
Collapse
Affiliation(s)
- Wei-Dong Lai
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Song Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Ting You
- Department of Pharmacy, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Si-Jia Chen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Jun Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cun-Rui Yuan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng-Jia Zheng
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Jin
- Xinhua Hospital of Zhejiang Province, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Yu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| | - Cheng-Ping Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Jie Yu, ; Cheng-Ping Wen,
| |
Collapse
|
16
|
Zhang C, Zhang S, Liao J, Gong Z, Chai X, Lyu H. Towards Better Sinomenine-Type Drugs to Treat Rheumatoid Arthritis: Molecular Mechanisms and Structural Modification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248645. [PMID: 36557779 PMCID: PMC9781648 DOI: 10.3390/molecules27248645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
Sinomenine is the main component of the vine Sinomenium acutum. It was first isolated in the early 1920s and has since attracted special interest as a potential anti-rheumatoid arthritis (RA) agent, owing to its successful application in traditional Chinese medicine for the treatment of neuralgia and rheumatoid diseases. In the past few decades, significant advances have broadened our understanding of the molecular mechanisms through which sinomenine treats RA, as well as the structural modifications necessary for improved pharmacological activity. In this review, we summarize up-to-date reports on the pharmacological properties of sinomenine in RA treatment, document their underlying mechanisms, and provide an overview of promising sinomenine derivatives as potential RA drug therapies.
Collapse
Affiliation(s)
- Cuili Zhang
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Shujie Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingjing Liao
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, China
| | - Xin Chai
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| | - Haining Lyu
- School of Medicine, Huanghe Science and Technology College, Zhengzhou 450006, China
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (X.C.); (H.L.)
| |
Collapse
|
17
|
Park S, Lee JJ, Lee J, Lee JK, Byun J, Kim I, Ha JH. Lowering n-6/ n-3 Ratio as an Important Dietary Intervention to Prevent LPS-Inducible Dyslipidemia and Hepatic Abnormalities in ob/ob Mice. Int J Mol Sci 2022; 23:ijms23126384. [PMID: 35742829 PMCID: PMC9224551 DOI: 10.3390/ijms23126384] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity is closely associated with low-grade chronic and systemic inflammation and dyslipidemia, and the consumption of omega-3 polyunsaturated fatty acids (n-3 PUFAs) may modulate obesity-related disorders, such as inflammation and dyslipidemia. An emerging research question is to understand the dietary intervention strategy that is more important regarding n-3 PUFA consumption: (1) a lower ratio of n-6/n-3 PUFAs or (2) a higher amount of n-3 PUFAs consumption. To understand the desirable dietary intervention method of n-3 PUFAs consumption, we replaced lard from the experimental diets with either perilla oil (PO) or corn oil (CO) to have identical n-3 amounts in the experimental diets. PO had a lower n-6/n-3 ratio, whereas CO contained higher amounts of PUFAs; it inherently contained relatively lower n-3 but higher n-6 PUFAs than PO. After the 12-week dietary intervention in ob/ob mice, dyslipidemia was observed in the normal chow and CO-fed ob/ob mice; however, PO feeding increased the high density lipoprotein-cholesterol (HDL-C) level; further, not only did the HDL-C level increase, the low density lipoprotein-cholesterol (LDL-C) and triglyceride (TG) levels also decreased significantly after lipopolysaccharide (LPS) injection. Consequently, extra TG accumulated in the liver and white adipose tissue (WAT) of normal chow- or CO-fed ob/ob mice after LPS injection; however, PO consumption decreased serum TG accumulation in the liver and WAT. PUFAs replacement attenuated systemic inflammation induced by LPS injection by increasing anti-inflammatory cytokines but inhibiting pro-inflammatory cytokine production in the serum and WAT. PO further decreased hepatic inflammation and fibrosis in comparison with the ND and CO. Hepatic functional biomarkers (aspartate aminotransferase (AST) and alanine transaminase (ALT) levels) were also remarkably decreased in the PO group. In LPS-challenged ob/ob mice, PO and CO decreased adipocyte size and adipokine secretion, with a reduction in phosphorylation of MAPKs compared to the ND group. In addition, LPS-inducible endoplasmic reticulum (ER) and oxidative stress decreased with consumption of PUFAs. Taken together, PUFAs from PO and CO play a role in regulating obesity-related disorders. Moreover, PO, which possesses a lower ratio of n-6/n-3 PUFAs, remarkably alleviated metabolic dysfunction in LPS-induced ob/ob mice. Therefore, an interventional trial considering the ratio of n-6/n-3 PUFAs may be desirable for modulating metabolic complications, such as inflammatory responses and ER stress in the circulation, liver, and/or WAT.
Collapse
Affiliation(s)
- Seohyun Park
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea; (S.P.); (J.L.)
| | - Jae-Joon Lee
- Department of Food and Nutrition, Chosun University, Gwangju 61452, Korea;
| | - Jisu Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea; (S.P.); (J.L.)
| | - Jennifer K. Lee
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA;
| | - Jaemin Byun
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
| | - Inyong Kim
- Food and Nutrition Department, Sunchon University, Suncheon 57922, Korea
- Correspondence: (I.K.); (J.-H.H.)
| | - Jung-Heun Ha
- Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Korea; (S.P.); (J.L.)
- Research Center for Industrialization of Natural Neutralization, Dankook University, Yongin 16890, Korea
- Correspondence: (I.K.); (J.-H.H.)
| |
Collapse
|