1
|
Li Y, Zhou L, Sun K, Guo R, Li Z, Wen Q, Fu G, Yang S. Integrated network pharmacology, proteomics, molecular docking, and experiments in vivo and in vitro to explore the efficacy and potential mechanism of bufalin against hepatocellular carcinoma angiogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119589. [PMID: 40057142 DOI: 10.1016/j.jep.2025.119589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/16/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bufalin is a potent bioactive compound extracted from the venom of toads such as Bufo gargarizans. It has rich pharmacological effects, and its traditional applications mainly include anti-cancer, anti-inflammatory and analgesic, especially in cancer treatment, which has been a hot topic of research. Prior research has suggested that bufalin may have anti-tumor angiogenic effects. However, the efficacy and mechanism of bufalin inhibiting hepatocellular carcinoma (HCC) angiogenesis have yet to be further investigated. AIM OF THE STUDY An extensive detailed strategy via network pharmacology, proteomics, histopathological analysis, molecular docking, in vitro experiments, and in vivo magnetic resonance imaging (MRI) examinations were adopted to investigate the efficacy and mechanisms of bufalin against HCC angiogenesis. MATERIALS AND METHODS Micro-vessel density (MVD) and intravoxel incoherent motion (IVIM) perfusion-related parameters based on magnetic resonance diffusion-weighted imaging were used to identify the effect of bufalin against HCC angiogenesis. Potential bufalin and HCC targets were gathered from appropriate databases. The STRING database was used to construct the target protein interaction networks. The "clusterprofiler" package (version 4.2.2) in R was applied to conduct the target-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis. Network pharmacology and proteomics were integrated to identify key targets and pathways related to bufalin against HCC angiogenesis. Molecular docking and Western Blot were utilized to validate the findings. RESULTS Analysis through IVIM and MVD showed that bufalin could inhibit HCC angiogenesis in nude mice models. A total of 159 common targets of bufalin and HCC were identified by network pharmacology. GO analysis revealed that these targets focused on multiple angiogenesis-related biological processes, including endothelial cell proliferation and migration, sprouting angiogenesis, and regulation of angiogenesis. The KEGG enrichment results suggested that bufalin could regulate multiple signaling pathways to inhibit HCC angiogenesis, including VEGF, MAPK, PI3K-Akt, mTOR, and HIF-1 signaling pathways. MAPK1, MAPK14, PRKCA, EIF4E, and APEX1 might be critical targets in regulating the above pathways. The molecular docking and Western blot analysis verified the effects of bufalin on target proteins. CONCLUSION This study demonstrated that bufalin might inhibit HCC angiogenesis by regulating multiple targets and pathways. These findings offer theoretical insights and experimental foundations for the clinical application and commercial development of bufalin in the treatment of HCC.
Collapse
Affiliation(s)
- Yuanchao Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Lingwei Zhou
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Kang Sun
- Department of Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Ran Guo
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Zehua Li
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China
| | - Qingqing Wen
- GE Healthcare, MR Research, Beijing, PK, People's Republic of China
| | - Guifeng Fu
- GE Healthcare, MR Research, Beijing, PK, People's Republic of China
| | - Shuohui Yang
- Department of Radiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Middle Zhi-Jiang Road, Shanghai, 200071, People's Republic of China.
| |
Collapse
|
2
|
Yuan M, Wu Y, Zhou X, Cai Y, Li H, Xia A, Wang X, Wen J, Duan Q, Xu C, Cao H, Miao C. Clematichinenoside AR alleviates rheumatoid arthritis by inhibiting synovial angiogenesis through the HIF-1α/VEGFA/ANG2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156552. [PMID: 40020629 DOI: 10.1016/j.phymed.2025.156552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Clematichinenoside AR (CAR) is an effective monomer component of Clematis chinensis Osbeck, which has therapeutic effects on rheumatoid arthritis (RA), but its specific mechanism is still not fully elucidated. PURPOSE This study elucidated whether CAR alleviated RA by inhibiting synovial angiogenesis and revealed its molecular mechanism. METHODS Arthritis indicators and H&E staining were used to evaluate the therapeutic effects of CAR on collagen-induced arthritis (CIA) rats, and the IHC, IF, EdU-Hoechst, tunel, flow cytometry, wound healing and transwell assay were used to investigate the effects of CAR on synovial angiogenesis. The co-culture model of RA fibroblast-like synoviocytes (FLSs) and human umbilical vein endothelial cells (HUVECs) was established. Tube formation, western blot, RT-qPCR and other related methods were used to evaluate the specific mechanism of CAR. RESULTS CAR alleviated arthritis pathology and inhibited angiogenesis in CIA rats. CAR inhibited the proliferation, migration and invasion of RA FLSs, and promoted their apoptosis. Importantly, overexpression of HIF-1α inversed the inhibitory impact of CAR on the expression of HIF-1α, VEGFA, VEGFR2, and ANG2, as well as the inhibitory effects of CAR on the expression of CD31/34 and the HUVEC tube formation. Molecular docking, molecular dynamics, and experimental verification confirmed that CAR has a strong binding affinity with HIF-1α, further indicating that HIF-1α was a target of CAR for anti-angiogenesis. CONCLUSION CAR had a good inhibitory effect on RA, and its mechanism was inhibition of synovial angiogenesis through the HIF-1α/VEGF/ANG2 axis.
Collapse
Affiliation(s)
- Meiling Yuan
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Xinyue Zhou
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Yikang Cai
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Hui Li
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Aixin Xia
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Xiao Wang
- Department of Clinical Nursing, School of Nursing, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Jianting Wen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei 230031, Anhui Province, China
| | - Qiangjun Duan
- Department of Experimental Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Chenhao Xu
- Department of Experimental Teaching Center, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China
| | - Huibo Cao
- Department of Endocrinology, Chuzhou Integrated Traditional Chinese and Western Medicine Hospital, Anhui University of Chinese Medicine, 788 Huifeng East Road, Chuzhou 239000, Anhui Province, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; Institute of Prevention and Treatment of Rheumatoid Arthritis, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei 230012, Anhui Province, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China.
| |
Collapse
|
3
|
Wang F, Liu J. The dual anti-inflammatory and anticoagulant effects of Jianpi Huashi Tongluo prescription on Rheumatoid Arthritis through inhibiting the activation of the PI3K/AKT signaling pathway. Front Pharmacol 2025; 16:1541314. [PMID: 40012623 PMCID: PMC11860884 DOI: 10.3389/fphar.2025.1541314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is often accompanied by abnormal changes in inflammatory responses and coagulation-fibrinolysis indicators. Jianpi Huashi Tongluo Prescription - Xinfeng Capsule (XFC), a traditional Chinese medicine formulation comprising multiple herbal ingredients, is widely used clinically for the treatment of RA. It exhibits dual anti-inflammatory and anticoagulant effects. However, the specific mechanisms underlying its actions remain to be further investigated. Objective This study aims to elucidate the anti-inflammatory and anticoagulant mechanisms of XFC in the treatment of RA. Methods A multidimensional methodological framework was employed. Firstly, through retrospective clinical data mining, combined with the Apriori algorithm and random walk models, an in-depth analysis was conducted to explore the potential associations between XFC treatment and improvements in clinical inflammatory and coagulation markers among RA patients. Secondly, an adjuvant-induced arthritis rat model was established to directly observe the anti-inflammatory and anticoagulant effects of XFC in vivo. Furthermore, bioinformatics and network pharmacology techniques were applied to decipher the major active components and their targets of XFC. Lastly, a co-culture system of RA patient-derived peripheral blood mononuclear cells (RA-PBMCs) and vascular endothelial cells (VECs) was established to mimic the in vivo microenvironment, and the anti-inflammatory and anticoagulant mechanisms of XFC were validated in vitro. Results Data mining analysis revealed abnormally elevated levels of inflammatory and coagulation markers such as fibrinogen (FBG), erythrocyte sedimentation rate (ESR), high-sensitivity C-reactive protein (Hs-CRP), and rheumatoid factor (RF) in RA patients (p < 0.001), and emphasized the close correlation between XFC treatment and the improvement of these markers including Hs-CRP, ESR, and RF (confidence >60% and lift >1). Animal experimental data indicated that XFC effectively reduced the levels of inflammatory and coagulant markers (IL-6, D-D, FBG, PAF, VEGF, and TF) in adjuvant-induced arthritis (AA) rats while enhancing the expression of anti-inflammatory factors (IL-10) (p < 0.05). Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) results suggested that the pharmacodynamic mechanism of XFC may be closely related to the regulation of the PI3K/AKT signaling pathway. Additionally, network pharmacology and molecular docking results show that the main active components of XFC, namely, calycosin-7-O-beta-D-glucoside, calycosin, and formononetin, exhibit excellent docking with the core targets HIF1A, PTGS2, and MMP9. In vitro co-culture model showed that XFC inhibited RA-related inflammatory responses and hypercoagulable states by suppressing the activation of the PI3K/AKT signaling pathway. Conclusion This study demonstrates that XFC exerts its dual anti-inflammatory and anticoagulant effects, at least in part, by inhibiting the activation of the PI3K/AKT signaling pathway, providing potential insights into targeted therapy for RA.
Collapse
Affiliation(s)
- Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, First Clinical Medical College, Hefei, Anhui, China
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jian Liu
- Department of Rheumatism Immunity, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
4
|
Liu M, Zhao W, Shi R, Wang Z, Li X, Wang D. Analysis of the potential biological mechanisms of geniposide on renal fibrosis by network pharmacology and experimental verification. BMC Pharmacol Toxicol 2025; 26:17. [PMID: 39871379 PMCID: PMC11770925 DOI: 10.1186/s40360-025-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/22/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Renal fibrosis is crucial in the progression of chronic kidney disease (CKD) to end-stage renal failure. Geniposide, an iridoid glycoside, has shown therapeutic potential in acute kidney injury, diabetic nephropathy, and atherosclerosis. The aim of this study was to investigate the role of geniposide in renal fibrosis and its underlying mechanisms. METHODS The network pharmacology and molecular docking methods were used to identify potential targets and pathways of geniposide for treating renal fibrosis. In vivo, the unilateral ureteral obstruction (UUO) mouse model was treated with geniposide. In vitro, TGF-β1-stimulated human renal tubular epithelial (HK-2) cells were applied for validation. HE, PAS, Masson, and immunohistochemistry staining were performed to evaluate its effects on the kidneys of UUO mice. RT-qPCR and western blotting were used to detect the expression of hub genes and signaling pathways. RESULTS 101 overlapping genes were identified, with the top 10 including AKT1, MMP9, GAPDH, BCL2, TNF, CASP3, SRC, EGFR, IL-1β, and STAT1. GO analysis suggested that these key targets were mainly involved in cell proliferation and apoptosis. KEGG analysis revealed that the PI3K/AKT, MAPK, and Rap1 signaling pathways were associated with geniposide against renal fibrosis. Molecular docking suggested a strong binding affinity of geniposide to the hub genes. In vivo experiments showed that geniposide ameliorated kidney injury and fibrosis, and inhibited the mRNA levels of AKT1, MMP9, BCL2, and TNF. In addition, geniposide inhibited the activation of the PI3K/AKT signaling pathway, thereby suppressing renal fibrosis in UUO mice and TGF-β1-induced HK-2 cells. CONCLUSIONS Geniposide can attenuate renal fibrosis by inhibiting the PI3K/AKT pathway, suggesting its potential as a therapeutic agent for renal fibrosis.
Collapse
Affiliation(s)
- Mengqian Liu
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenman Zhao
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Rui Shi
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhijuan Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xunliang Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Deguang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China.
- Institute of Kidney Disease, Inflammation & Immunity Mediated Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Xu J, Zhu Y, Wei Y, Gan P, Xia S, Li Y, Jiang X, Wang Y, Wu H. Analyzing How Zhizi Baipi Decoction Regulates VEGF to Suppress RA Angiogenesis Using Network Pharmacology and Experimental Validation. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39810401 DOI: 10.1002/pca.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily manifests with symptoms such as heat and toxin. However, the key components and molecular mechanisms of Zhizi Baipi decoction (ZBD) in the treatment of RA are still unclear. OBJECTIVES The study aimed to explore the mechanism of action of ZBD for treating RA through ingredient analysis, network pharmacology, and experimental validation. MATERIAL AND METHODS The chemical constituents of ZBD were identified by ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MSE). Additionally, the active ingredients of ZBD treating RA were screened by network pharmacology and using molecular docking to verify the binding energy of the active ingredients and ZBD's targets. Then we elucidated ZBD's mechanism of action on collagen-induced arthritis (CIA) model rats. Subsequently, experimental validations were used to validate the findings of network pharmacology. RESULTS A total of 84 chemical constituents was identified by UPLC-Q-TOF-MSE. The results of network pharmacology indicated that ZBD could exert its therapeutic effect on RA through the vascular endothelial growth factor (VEGF) pathway. Molecular docking revealed a strong binding capacity between the target KDR and the active ingredients. Additionally, we quantified the five active ingredients of ZBD. In vivo experiments demonstrated that ZBD inhibited synovial angiogenesis and alleviated the occurrence and progression of RA. CONCLUSION Overall, ZBD has a significant therapeutic effect on RA. The results of qualitative analysis, network pharmacology, molecular docking, and in vivo experiments indicated that the main active components of ZBD could modulate the VEGF pathway to treat RA.
Collapse
Affiliation(s)
- Jing Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yulong Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peirong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shilin Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ya Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoman Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Wei Y, Li Y, Shu Y, Gan PR, Zhu YL, Xu J, Jiang XM, Xia SL, Wang Y, Wu H. The new anti-angiogenesis perspective of rheumatoid arthritis with geniposide: Reducing the extracellular release of HSP70 in HUVECs. Int Immunopharmacol 2025; 144:113645. [PMID: 39571270 DOI: 10.1016/j.intimp.2024.113645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/17/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Angiogenesis is essential for pannus formation and maintenance in rheumatoid arthritis (RA). Heat shock protein 70 kDa (HSP70) can induce angiogenesis by being released extracellularly through exosomes. Geniposide (GE) is the primary pharmacological component of the fruit of Gardenia jasminoides Ellis (GJ). In vivo, we have found that GE is able to reduce HSP70 levels in the synovium and serum of CIA-S and has anti-angiogenic effects. However, the mechanism by which GE inhibits HSP70 to improve angiogenesis is still unclear. This study aims to explore how GE inhibits the extracellular release of HSP70 and its impact on angiogenesis in human umbilical vein endothelial cells (HUVECs). METHODS HUVECs' exosomes were extracted using ultracentrifugation and characterized through transmission electron microscope, nanoparticle tracer technology, nano-flow cytometry and Western blotting. The proliferative ability of HUVECs was assessed by EdU and CCK8 assay. Transwell and wound healing assays were used to measure the migration ability of HUVECs, while tube formation assay was employed to evaluate their tube-forming ability. The TNF-α-induced HSP70 release model in HUVECs was established, with extracellular HSP70 levels serving as an evaluation index. Immunofluorescence and co-immunoprecipitation assay were used to analyze the interaction between HSP70 and the lipid raft marker Caveolin-1 (Cav-1). Western blotting was employed to investigate the expression of SphK1/S1P/S1PRs/Gαi pathway-related proteins, and ELISA was utilized to detect extracellular S1P and HSP70 levels. RESULTS The exosomes of HUVECs contained HSP70. HUVECs were stimulated by extracellular HSP70, which enhanced their proliferation, migration, and tube-forming abilities. TNF-α (10 ng/mL) significantly increased the release of HSP70, which was inhibited by GE (25 µM-100 µM) in a concentration-dependent manner. GE reduced HSP70 in lipid rafts without affecting Cav-1. GE (100 µM) inhibited proteins in the SphK1/S1P/S1PRs/Gαi pathway, preventing HSP70 release and improving HUVECs' functions compared to the K6PC-5 (SphK1-specific agonist) and TNF-α groups. CONCLUSION This study found that GE inhibited the extracellular release of HSP70 by suppressing the SphK1/S1P/S1PRs/Gαi pathway, thereby producing anti-angiogenic effects in vitro. This provides a novel direction and strategy for anti-angiogenesis therapy for RA.
Collapse
Affiliation(s)
- Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Ya Li
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Pei-Rong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Yu-Long Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Jing Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Xiao-Man Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Shi-Lin Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China
| | - Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei 230012, China.
| |
Collapse
|
7
|
Shi Y, Guan S, Liu X, Zhai H, Zhang Y, Liu J, Yang W, Wang Z. Genetic Commonalities Between Metabolic Syndrome and Rheumatic Diseases Through Disease Interactome Modules. J Cell Mol Med 2025; 29:e70329. [PMID: 39789419 PMCID: PMC11717667 DOI: 10.1111/jcmm.70329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
This study aims to elucidate the potential genetic commonalities between metabolic syndrome (MetS) and rheumatic diseases through a disease interactome network, according to publicly available large-scale genome-wide association studies (GWAS). The analysis included linkage disequilibrium score regression analysis, cross trait meta-analysis and colocalisation analysis to identify common genetic overlap. Using modular partitioning, the network-based association between the two disease proteins in the protein-protein interaction set was divided and quantified. Clinical samples from public databases were used to confirm the mapped genes. Mendelian randomisation analyses were conducted using genetic instrumental variables for causal inference. MetS and rheumatoid arthritis (RA), ankylosing spondylitis (AS), systemic lupus erythematosus (SLE), Sjogren's syndrome (SS) and their primary module networks shared topological overlap and genetic correlation. Functional analysis highlighted the significance of these shared targets in processes such as a diverse array of metabolic pathways involving glucose, lipids, energy, protein transport, inflammatory response, autophagy and cytokine regulation, elucidating the pathways through which MetS intersects with rheumatic diseases. Causal associations were determined between MetS phenotypes and rheumatic diseases. The persistence of MetS effects on rheumatic diseases remained evident even after adjusting for alcohol consumption and smoking. We have highlighted specific genetic associations between MetS and rheumatic diseases. Several genes (e.g., PRRC2A, PSMB8, BAG6, GPSM3, PBX2, etc.) have been identified with molecular commonalities in MetS and RA, AS, SLE and SS, which may serve as potential targets for shared treatments.
Collapse
Affiliation(s)
- Yinli Shi
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Shuang Guan
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Xi Liu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
| | - Hongjun Zhai
- Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengduChina
- Institute of Network and Communication EngineeringJinling Institute of TechnologyNanjingChina
| | - Yingying Zhang
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Jun Liu
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
- Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengduChina
| | - Weibin Yang
- Graduate School of China Academy of Chinese Medical SciencesBeijingChina
| | - Zhong Wang
- Institute of Basic Research in Clinical MedicineChina Academy of Chinese Medical SciencesBeijingChina
- Chengdu University of Traditional Chinese Medicine Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest ChinaChengduChina
| |
Collapse
|
8
|
Zhao XH, Ma J, Guo JS, Liu KL, Qin YX, Li LT, Zhang JF, Yang YY, Zhang SC, Meng FH, Liu L, Yang YH, Li XY. Novel deoxyhypusine synthase (DHPS) inhibitors target hypusination-induced vasculogenic mimicry (VM) against malignant melanoma. Pharmacol Res 2024; 209:107453. [PMID: 39393437 DOI: 10.1016/j.phrs.2024.107453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Vasculogenic mimicry (VM) contributes factor to the poor prognosis of malignant melanoma. Developing deoxyhypusine synthase (DHPS) inhibitors against melanoma VM is clinically essential. In this study, we optimized and synthesized a series of compounds based on the candidate structure, and the hit compound 7k was identified through enzyme assay and cell viability inhibition screening. Both inside and outside the cell, 7k's ability to target DHPS and its high affinity were demonstrated. Molecular dynamics and point mutation indicated that mutations of K329 or V129 in DHPS abolish 7k's inhibitory activity. Using PCR arrays, solid-state antibody microarrays, and angiogenesis assays investigated 7k's impact on melanoma cells to reveal that DHPS regulates melanoma VM by promoting FGFR2 and c-KIT expression. Surprisingly, 7k was discovered to inhibit MC1R-mediated melanin synthesis in the zebrafish. Pharmacokinetic evaluations demonstrated 7k's favorable properties, and xenograft models evidenced its notable anti-melanoma efficacy, achieving a TGI of 73 %. These results highlighted DHPS as key in melanoma VM formation and confirmed 7k's potential as a novel anti-melanoma agent.
Collapse
Affiliation(s)
- Xi-He Zhao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jing-Si Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Kai-Li Liu
- School of Pharmaceutical Engineering, Jining Medical College, University Park, No.16 Haichuan Road, Gaoxin District, Jining City, Shandong Province, China
| | - Yu-Xi Qin
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Long-Tian Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ji-Fang Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yue-Ying Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shi-Chen Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Lei Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue-Hui Yang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Xin-Yang Li
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
9
|
Zhou T, Zhang C, Wang X, Lin J, Yu J, Liang Y, Guo H, Yang M, Shen X, Li J, Shi R, Wang Y, Yang J, Shu Z. Research on traditional Chinese medicine as an effective drug for promoting wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118358. [PMID: 38763370 DOI: 10.1016/j.jep.2024.118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of skin trauma is high and the repair process is complex, often leading to poor healing and other issues, which can result in significant economic and social burdens. Traditional Chinese medicine (TCM) is a valuable resource with proven effectiveness and safety in wound repair, widely utilized in clinical practice. A systematic analysis of wound healing with a focus on TCM research progress holds both academic and clinical importance. AIM OF THE REVIEW This article reviews the research progress of TCM in promoting wound healing, and provides basic data for the development of innovative drugs that promote wound healing. MATERIALS AND METHODS This article provides a review of the literature from the past decade and conducts a thorough analysis of various databases that contain reports on the use of TCM for wound repair. The data for this systematic research was gathered from electronic databases including CNKI, SciFinder, and PubMed. The study explores and summarizes the research findings and patterns by creating relevant charts. RESULTS This study reviewed the mechanism of wound healing, experimental TCM methods to promote wound healing, the theory and mode of action of TCM to promote wound healing, the active ingredients of TCM that promote wound healing, the efficacy of TCM formulae to promote wound healing, and the potential toxicity of TCM and its antidotes. This study enriched the theory of TCM in promoting wound healing. CONCLUSION Skin wound healing is a complex process that can be influenced by various internal and external factors. This article offers a theoretical foundation for exploring and utilizing TCM resources that enhance wound repair. By analyzing a range of TCM that promote wound healing, the article highlights the clinical importance and future potential of these medicines in promoting wound healing.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chongyang Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xiao Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiazi Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiamin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yefang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Huilin Guo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Mengru Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xuejuan Shen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jianhua Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Ruixiang Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zunpeng Shu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China.
| |
Collapse
|
10
|
Xing Y, Li Y, He Y, Zhao W, Li W. Urinary bladder matrix scaffold improves the impact of adipose-mesenchymal stem cells on the function and structure of transplanted rat ovaries. Heliyon 2024; 10:e37573. [PMID: 39315156 PMCID: PMC11417262 DOI: 10.1016/j.heliyon.2024.e37573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Ovarian transplantation presents significant advantages for the preservation of female fertility. Nonetheless, a substantial number of follicles are apoptosis during the process of ovarian tissue transplantation as a result of ischemic conditions. This study aimed to assess whether adipose-derived mesenchymal stem cells combined with urinary bladder matrix (ADSC/UBM) confer a greater therapeutic benefit compared to ADSCs alone. To achieve this, ADSC/UBM was applied during the autotransplantation of rat ovaries. Thirty rats were divided into five sets of six: the untreated control group (Normal), the oophorectomy group, the autograft group, the autograft + ADSCs group (ADSC), and the autograft + ADSC/UBM group (ADSC/UBM). After transplantation, the number of follicles in the ADSC/UBM group was significantly higher than that in the autograft group. Angiogenesis was enhanced following ADSC/UBM transplantation. Follicle-stimulating hormone (FSH) levels were significantly lower, and Anti-Müllerian hormone (AMH) levels were significantly higher in rats in the ADSC/UBM group than in the Autograft group. The apoptosis rate in the ADSC/UBM group decreased. The estrous cycle in the ADSC/UBM group recovered more quickly than the ADSC group. The data indicate that UBM improves ADSC retention in graft ovaries and aids in permanently restoring ovarian function, making ADSC/UBM a promising option for ovarian transplantation.
Collapse
Affiliation(s)
- Yanyan Xing
- Department of Obstetrics and Gynecology, Jinshan Hospital Affiliated to Fudan University, Jinshan, 201508, Shanghai, China
| | - Yuqi Li
- Department of Obstetrics and Gynecology, Jinshan Hospital Affiliated to Fudan University, Jinshan, 201508, Shanghai, China
| | - Yuxin He
- Department of Obstetrics and Gynecology, Jinshan Hospital Affiliated to Fudan University, Jinshan, 201508, Shanghai, China
| | - Wei Zhao
- Reproductive Medicine Center, Second Military Medical University, Changzheng Hospital, 200003, Shanghai, China
| | - Wen Li
- Department of Reproductive Center, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China
| |
Collapse
|
11
|
Hu S, Lin Y, Tang Y, Zhang J, He Y, Li G, Li L, Cai X. Targeting dysregulated intracellular immunometabolism within synovial microenvironment in rheumatoid arthritis with natural products. Front Pharmacol 2024; 15:1403823. [PMID: 39104392 PMCID: PMC11298361 DOI: 10.3389/fphar.2024.1403823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Immunometabolism has been an emerging hotspot in the fields of tumors, obesity, and atherosclerosis in recent decades, yet few studies have investigated its connection with rheumatoid arthritis (RA). In principle, intracellular metabolic pathways upstream regulated by nutrients and growth factors control the effector functions of immune cells. Dynamic communication and hypermetabolic lesions of immune cells within the inflammatory synovial microenvironment contributes to the development and progression of RA. Hence, targeting metabolic pathways within immune subpopulations and pathological cells may represent novel therapeutic strategies for RA. Natural products constitute a great potential treasury for the research and development of novel drugs targeting RA. Here, we aimed to delineate an atlas of glycolysis, lipid metabolism, amino acid biosynthesis, and nucleotide metabolism in the synovial microenvironment of RA that affect the pathological processes of synovial cells. Meanwhile, therapeutic potentials and pharmacological mechanisms of natural products that are demonstrated to inhibit related key enzymes in the metabolic pathways or reverse the metabolic microenvironment and communication signals were discussed and highlighted.
Collapse
Affiliation(s)
- Shengtao Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yuanyuan Tang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junlan Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| |
Collapse
|
12
|
Gao C, Song XD, Chen FH, Wei GL, Guo CY. The protective effect of natural medicines in rheumatoid arthritis via inhibit angiogenesis. Front Pharmacol 2024; 15:1380098. [PMID: 38881875 PMCID: PMC11176484 DOI: 10.3389/fphar.2024.1380098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Rheumatoid arthritis is a chronic immunological disease leading to the progressive bone and joint destruction. Angiogenesis, accompanied by synovial hyperplasia and inflammation underlies joint destruction. Delaying or even blocking synovial angiogenesis has emerged as an important target of RA treatment. Natural medicines has a long history of treating RA, and numerous reports have suggested that natural medicines have a strong inhibitory activity on synovial angiogenesis, thereby improving the progression of RA. Natural medicines could regulate the following signaling pathways: HIF/VEGF/ANG, PI3K/Akt pathway, MAPKs pathway, NF-κB pathway, PPARγ pathway, JAK2/STAT3 pathway, etc., thereby inhibiting angiogenesis. Tripterygium wilfordii Hook. f. (TwHF), sinomenine, and total glucoside of Paeonia lactiflora Pall. Are currently the most representative of all natural products worthy of development and utilization. In this paper, the main factors affecting angiogenesis were discussed and different types of natural medicines that inhibit angiogenesis were systematically summarized. Their specific anti-angiogenesis mechanisms are also reviewed which aiming to provide new perspective and options for the management of RA by targeting angiogenesis.
Collapse
Affiliation(s)
- Chang Gao
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Xiao-Di Song
- Gannan Medical University, Jiangxi, Ganzhou, China
| | - Fang-Hui Chen
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Gui-Lin Wei
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| | - Chun-Yu Guo
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Jiangxi, Ganzhou, China
| |
Collapse
|
13
|
Chen J, Liu Y, Yin N, Zhao M, Sun X, Zhang Y, Wang Z. Geniposide alleviates imiquimod-induced psoriasis-like skin lesions in mice via inhibition of angiogenesis. Int Immunopharmacol 2024; 132:111923. [PMID: 38565041 DOI: 10.1016/j.intimp.2024.111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
In this study, we aimed to evaluate the protective effect of geniposide (GEN) on imiquimod (IMQ)-induced psoriasis-like skin lesions in mice. Firstly, visual changes of psoriatic skin lesions were observed and the severity was recorded using psoriasis area and severity index (PASI) score. Histological changes were assessed by HE staining for epidermal thickness and Masson's staining for collagen fibers. Then, photographs of microvascular inside the skin were taken for macroscopic observation, and microscopic changes associated with angiogenesis were evaluated. Furthermore, expression of angiogenic factors were analyzed by ELISA, immunohistochemistry and immunofluorescence, separately. Lastly, the expression of VEGFR signaling-related proteins was detected by WB. Compared with control, IMQ drove a significant increment of epidermal thicknesses with higher PASI scores and more dermal collagen deposition. IMQ treatment led to abnormal keratinocyte proliferation, increased microvascular inside skin, growing production of angiogenesis-related factors, up-regulated expression of VEGFR1 and VEGFR2, and enhanced phosphorylation of p38. However, GEN significantly ameliorated the psoriatic skin lesions, the epidermal thickness, the formation of collagen fibers, and abnormal keratinocyte proliferation. Importantly, GEN inhibited angiogenesis, the production of angiogenic factors (VEGF-A, Ang-2, TNF-α, and IL-17A), and the proliferation of vascular endothelial cells. Simultaneously, GEN curbed the expression of VEGFR1, VEGFR2, p38, and P-p38 proteins involved in VEGFR signaling. Of note, the suppressive effect of GEN was reversed in the HUVECs with over-expressed VEGFR1 or VEGFR2 related to the cells without transfection. These findings suggest that VEGFR1 and VEGFR2 participate in the anti-angiogenesis of GEN in IMQ-induced psoriasis-like skin lesions in mice.
Collapse
Affiliation(s)
- Jiaojiao Chen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuan Liu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xuan Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yanhong Zhang
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
14
|
Kong H, Han JJ, Dmitrii G, Zhang XA. Phytochemicals against Osteoarthritis by Inhibiting Apoptosis. Molecules 2024; 29:1487. [PMID: 38611766 PMCID: PMC11013217 DOI: 10.3390/molecules29071487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease that causes pathological changes in articular cartilage, synovial membrane, or subchondral bone. Conventional treatments for OA include surgical and non-surgical methods. Surgical treatment is suitable for patients in the terminal stage of OA. It is often the last choice because of the associated risks and high cost. Medication of OA mainly includes non-steroidal anti-inflammatory drugs, analgesics, hyaluronic acid, and cortico-steroid anti-inflammatory drugs. However, these drugs often have severe side effects and cannot meet the needs of patients. Therefore, safe and clinically appropriate long-term treatments for OA are urgently needed. Apoptosis is programmed cell death, which is a kind of physiologic cell suicide determined by heredity and conserved by evolution. Inhibition of apoptosis-related pathways has been found to prevent and treat a variety of diseases. Excessive apoptosis can destroy cartilage homeostasis and aggravate the pathological process of OA. Therefore, inhibition of apoptosis-related factors or signaling pathways has become an effective means to treat OA. Phytochemicals are active ingredients from plants, and it has been found that phytochemicals can play an important role in the prevention and treatment of OA by inhibiting apoptosis. We summarize preclinical and clinical studies of phytochemicals for the treatment of OA by inhibiting apoptosis. The results show that phytochemicals can treat OA by targeting apoptosis-related pathways. On the basis of improving some phytochemicals with low bioavailability, poor water solubility, and high toxicity by nanotechnology-based drug delivery systems, and at the same time undergoing strict clinical and pharmacological tests, phytochemicals can be used as a potential therapeutic drug for OA and may be applied in clinical settings.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| | - Gorbachev Dmitrii
- General Hygiene Department, Samara State Medical University, Samara 443000, Russia;
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110102, China; (H.K.); (J.-J.H.)
| |
Collapse
|
15
|
Gan P, Wu H, Zhu Y, Shu Y, Wei Y. A new look at angiogenesis inhibition of geniposide in experimental arthritis by blocking angiopoietin-2 exocytosis. Phytother Res 2024; 38:1245-1261. [PMID: 38185885 DOI: 10.1002/ptr.8094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Angiogenesis is a key player in the pathogenesis of rheumatoid arthritis. Exocytosis from Weibel-Palade bodies is a prerequisite for angiopoietin-2 (Ang-2) to activate endothelial cells and initiate angiogenesis. Geniposide (GE) was previously reported to exert anti-angiogenic effects. The aim of this study was to shed light on whether and how GE regulates Ang-2 exocytosis. A rat model of adjuvant arthritis (AA) was established to evaluate the therapeutic effect of GE (60 and 120 mg/kg) especially in synovial angiogenesis. In addition, the Matrigel plug assay was used to detect the effect of GE (120 and 240 mg/kg) on angiogenesis in AA mice. In vitro, sphingosine-1-phosphate (S1P)-stimulated human umbilical vein endothelial cells (HUVECs) were used to investigate the effect and mechanism of GE on Ang-2 exocytosis. It was found that GE improved the symptoms of AA rats and inhibited angiogenesis in AA, which may be related to the down-regulation of S1P receptors 1, 3 (S1PR1, S1PR3), phospholipase Cβ3 (PLCβ3), inositol 1,4,5-trisphosphate receptor (IP3 R) and Ang-2 expression. The results of in vitro experiments showed that S1P induced rapid release of Ang-2 from HUVECs with multigranular exocytosis. Suppression of the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis by the S1PR1/3 inhibitor VPC23019 and the IP3 R inhibitor 2-APB blocked Ang-2 exocytosis, accompanied by diminished angiogenesis in vitro. GE dose-dependently weakened S1P/S1PR1/3/PLCβ3/Ca2+ signal axis activation, Ang-2 exocytosis and angiogenesis in HUVECs (p < 0.05, p < 0.01). Overall, these findings revealed that angiogenesis inhibition of GE was partly attributed to the intervention of Ang-2 exocytosis through negatively modulating the S1P/S1PR1/3/PLCβ3/Ca2+ signal axis, providing a novel strategy for rheumatoid arthritis anti-angiogenic therapy.
Collapse
Affiliation(s)
- Peirong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yulong Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yin Shu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Science and Technology Department of Anhui Province, Hefei, China
| |
Collapse
|
16
|
Fang X, Yin Y, Lun H, Liu Y, Zhu S. Assessment of the Effects of Sphingosine Kinase 1/Sphingosine-1-Phosphate on Microangiogenesis at Rat Myofascial Trigger Points Using Contrast-Enhanced Ultrasonography. J Pain Res 2024; 17:609-621. [PMID: 38371480 PMCID: PMC10871147 DOI: 10.2147/jpr.s437111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/28/2024] [Indexed: 02/20/2024] Open
Abstract
Purpose Few studies have assessed the effects of sphingosine kinase 1/sphingosine-1-phosphate (SPHK1/S1P) on microangiogenesis at rat myofascial trigger points (MTrPs) using contrast-enhanced ultrasonography (CEUS). This study aimed to address these deficiencies. Here, we investigated the effects of SPHK1/S1P on MTrP microangiogenesis and the value of CEUS in evaluating these effects. Methods Forty Sprague‒Dawley rats were subdivided into two groups: control and MTrP groups. MTrPs were established by 8 weeks of the strike procedure combined with eccentric motion and 4 weeks of recovery. All rats were euthanized after having undergone CEUS with an overdose of pentobarbital sodium. MTrP and control tissue samples were removed for haematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM) imaging. The tissue was dehydrated, cleared, and embedded before sectioning. The sections were then incubated overnight at 4°C, and immunohistochemistry was carried out with primary antibodies including rabbit anti-CD31, rabbit anti-SPHK1and rabbit anti-S1PR1. Results MTrP rats exhibited spontaneous electrical activity (SEA) and a local twitch response (LTR) during electromyography (EMG) examination. The CEUS time-intensity curves (TICs) showed that the perfusion intensity in the MTrPs and surrounding tissue area was increased, with faster perfusion than in normal sites, while the TICs in the control group slowly increased and then slowly decreased. The correlation coefficient between the microvessel density (MVD) and sphingosine 1-phosphate receptor 1 (S1PR1) was 0.716 (p <0.01). Spearman correlation analysis revealed that Spearman's rho (ρ) values between the MVD and peak intensity (PI), between the MVD and area under the curve (AUC), and between the MVD and SPHK1 were > 0.5 (p <0.05), > 0.7 (p <0.01), and > 0.7 (p <0.01), respectively. Conclusion CEUS is valuable for detecting microangiogenesis within MTrPs, and SPHK1/S1P plays an important role in promoting MTrP tissue microangiogenesis.
Collapse
Affiliation(s)
- Xin Fang
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yalong Yin
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Haimei Lun
- Department of Ultrasound, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, People’s Republic of China
| | - Yaoli Liu
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Shangyong Zhu
- Department of Medical Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| |
Collapse
|
17
|
Zhang N, Zheng N, Luo D, Lin J, Lin D, Lu Y, Lai W, Bian Y, Wang H, Ye J, Yang J, Liu J, Que W, Chen X. A novel single domain bispecific antibody targeting VEGF and TNF-α ameliorates rheumatoid arthritis. Int Immunopharmacol 2024; 126:111240. [PMID: 37992444 DOI: 10.1016/j.intimp.2023.111240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Anti-TNF-α therapy fails in 30% of patients, where TNF-α may not be the key causative factor in these patients. We developed a bispecific single-domain antibody block TNF-α and VEGF (V5-3).The experiments showed that V5-3 effectively activated proliferation and migration of RA-FLS and HUVEC, tube-forming role of HUVEC, and expression of inflammatory factors in vitro. Besides, the experiments indicated that the anti-RA activity of V5-3 was superior to Anbainuo in vivo. Application of V5-3 reduced the expression of inflammatory factors, extent of synovial inflammation and angiogenesis and attenuated the severity of autoimmune arthritis in collagen-induced arthritis (CIA) mice. Mechanistically, V5-3 suppressed p65, AKT and VEGFR2 phosphorylation, as well as production of TNF-α and VEGF in joint tissues. These results demonstrated that V5-3 displayed a superior effect of anti-RA, may be a new therapy to overcome the limitations of anti-TNF-α monoclonal antibody.
Collapse
Affiliation(s)
- Nanwen Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China
| | - Ningning Zheng
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Putian Lanhai Nuclear Medicine Research Center, Putian 351100, Fujian,China
| | - Dunxiong Luo
- The Department of Physical Education, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Juan Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Duoduo Lin
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yongkang Lu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Weipeng Lai
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yize Bian
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - He Wang
- The School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Jian Ye
- The Department of Orthopedics, Nanping First Hospital Affiliated with Fujian Medical University, Fujian Medical University, Nanping 353000, Fujian, China; Third Clinical Medical College, Fujian Medical University, Fuzhou 350122, Fujian, China
| | - Juhua Yang
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China.
| | - Jiaan Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| | - Wenzhong Que
- Department of Rheumatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350009, Fujian, China.
| | - Xiaole Chen
- The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou 350122, Fujian, China.
| |
Collapse
|
18
|
Chen S, Wang J, Wang J, Jia X, Xuan Z, Cheng Z, Meng X, Su W. Wnt/β-catenin signaling pathway promotes abnormal activation of fibroblast-like synoviocytes and angiogenesis in rheumatoid arthritis and the intervention of Er Miao San. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155064. [PMID: 37716035 DOI: 10.1016/j.phymed.2023.155064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Er Miao San (EMS) is an important herbal formula and a representative prescription for the treatment of the downwards flow of damp-heat syndrome. Clinical practice has proven that EMS can effectively treat rheumatoid arthritis (RA). Previous studies have demonstrated that EMS regulates the functions of T cells and dendritic cells and affects the polarization of macrophages. However, it is not clear whether the inhibitory effect of EMS on RA is related to the regulation of abnormal synovial activation and angiogenesis. PURPOSE The aim of this study was to elucidate the effect and potential mechanisms of EMS on the abnormal activation and angiogenesis of fibroblast-like synoviocytes (FLSs) in RA. METHODS The effect of EMS on rats with adjuvant arthritis (AA) and MH7A cells was examined by X-ray, haematoxylin-eosin (HE) staining, immunohistochemistry (IHC), ELISA and western blotting. Angiogenesis in AA rats was measured by a small animal ultrasound imaging system, immunofluorescence (IF) analysis and ELISA. An exchange between MH7A cells and HUVECs was induced using conditioned media that mimicked the microenvironment in vivo. CCK-8, western blotting, and scratch healing and Transwell migration assays were used to evaluate the effect of EMS on the Wnt/β-catenin signaling pathway and angiogenesis in the inflammatory microenvironment of RA. RESULTS Our results showed that EMS had a protective effect on AA rats. On the one hand, there was a decrease in paw swelling, the arthritis index, organ indices and proinflammatory factor levels, as well as relief of joint damage. On the other hand, blood flow, the number of immature blood vessels and proangiogenic factors were decreased. Furthermore, EMS reduced the expression of the Wnt/β-catenin signaling pathway in the synovial tissue of AA rats and MH7A cells. In the inflammatory microenvonrment of RA, the results were consistent. CONCLUSION This study demonstrated that EMS could protect against RA by inhibiting the abnormal activation and angiogenesis of FLSs, and the mechanism may be related to inhibiting the activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Simeng Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Jin Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Jiayu Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Xiaoyi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Zhiluo Cheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Xiangwen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| | - Wenrui Su
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
19
|
Li Z, Zhu JF, Ouyang H. Progress on traditional Chinese medicine in improving hepatic fibrosis through inhibiting oxidative stress. World J Hepatol 2023; 15:1091-1108. [PMID: 37970620 PMCID: PMC10642434 DOI: 10.4254/wjh.v15.i10.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatic fibrosis is a common pathological process that occurs in the development of various chronic liver diseases into cirrhosis and liver cancer, characterized by excessive deposition of the extracellular matrix. In the past, hepatic fibrosis was thought to be a static and irreversible pathological process. In recent years, with the rapid development of molecular biology and the continuous in-depth study of the liver at the microscopic level, more and more evidence has shown that hepatic fibrosis is a dynamic and reversible process. Therefore, it is particularly important to find an effective, simple, and inexpensive method for its prevention and treatment. Traditional Chinese medicine (TCM) occupies an important position in the treatment of hepatic fibrosis due to its advantages of low adverse reactions, low cost, and multi-target effectiveness. A large number of research results have shown that TCM monomers, single herbal extracts, and TCM formulas play important roles in the prevention and treatment of hepatic fibrosis. Oxidative stress (OS) is one of the key factors in the occurrence and development of hepatic fibrosis. Therefore, this article reviews the progress in the understanding of the mechanisms of TCM monomers, single herbal extracts, and TCM formulas in preventing and treating hepatic fibrosis by inhibiting OS in recent years, in order to provide a reference and basis for drug therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhen Li
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun-Feng Zhu
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Liver, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hao Ouyang
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
20
|
Chen X, Yang JB, Cao HH, Fang XC, Liu SH, Zou LF, Yu JH, Zuo JP, Zhao W, Lu ZB, Liu JS, Yu LZ. Liang-Ge-San inhibits dengue virus serotype 2 infection by reducing caveolin1-induced cytoplasmic heat shock protein 70 translocation into the plasma membrane. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154977. [PMID: 37506573 DOI: 10.1016/j.phymed.2023.154977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.
Collapse
Affiliation(s)
- Xi Chen
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jia-Bin Yang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Hui-Hui Cao
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Xiao-Chuan Fang
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Shan-Hong Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Li-Fang Zou
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Jian-Hai Yu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Zi-Bin Lu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China.
| | - Jun-Shan Liu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China, 510280, PR China.
| | - Lin-Zhong Yu
- Third Level Research Laboratory of State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
21
|
Xu Q, Kong H, Ren S, Meng F, Liu R, Jin H, Zhang J. Coix seed oil alleviates synovial angiogenesis through suppressing HIF-1α/VEGF-A signaling pathways via SIRT1 in collagen-induced arthritis rats. Chin Med 2023; 18:119. [PMID: 37715217 PMCID: PMC10504826 DOI: 10.1186/s13020-023-00833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder characterized by symmetric arthritis. Coix Seed Oil (CSO) has been shown to reduce inflammation in collagen induced arthritis (CIA) rats. However, the effect of CSO on synovial angiogenesis in RA is unknown. In this study, we aimed to explore whether CSO could inhibit RA synovial angiogenesis and elucidate the underlying mechanisms. METHODS CIA rat models were established and subjected to different doses of CSO treatments for four weeks in vivo. Arthritis index, paw swelling, and weight were recorded to assess clinical symptoms. Hematoxylin and Eosin staining, Safarnin O fast green staining, Micro-CT, Immunohistochemical, and Immunofluorescence (IF) staining were performed to examined changes in synovial and joint tissues. The serum HIF-1α and VEGF-A levels were evaluated through enzyme-linked immunosorbent assay. Fibroblast-like synoviocytes (FLS) of rats was stimulated with tumor necrosis factor-α (TNF-α) for developing inflammatory model in vitro. Optimal concentrations of CSO and TNF-α for stimulation were measured through Cell Counting Kit-8 test. Wound healing and Transwell migration experiments were employed to determine FLS migratory ability. IF staining was performed to assess HIF-1α nuclear translocation in FLS. Protein levels of SIRT1, HIF-1α, VEGF-A, and CD31 were assessed through Western blot. The isolated aortic rings were induced with recombinant rat VEGF-A 165 (VEGF-A165) to observe the CSO inhibitory impact on angiogenesis ex vivo. RESULTS CSO attenuated the progression of arthritis in CIA rats, mitigated histopathological deterioration in synovial and joint tissues, significantly inhibited immature vessels labeled with CD31+/αSMA-, and reduced the micro-vessels in VEGF-A165 induced aortic rings. Moreover, it upregulated SIRT1 protein levels in CIA rats and TNF-α induced FLS, but decreased HIF-1α and VEGF-A protein levels. Furthermore, CSO inhibited the migration ability and HIF-1α nuclear translocation of TNF-α induced FLS. Finally, suppressing SIRT1 levels in TNF-α induced FLS enhanced their migration ability, HIF-1α nuclear translocation, and the protein levels of HIF-1α, VEGF-A, and CD31, whereas the inhibitory effect of CSO on TNF-α induced FLS was severely constrained. CONCLUSIONS This study indicates that CSO can alleviate synovial angiogenesis through suppressing HIF-1α/VEGF-A signaling pathways via SIRT1 in CIA rats.
Collapse
Affiliation(s)
- Qiangqiang Xu
- Department of Chinese Medicine, The First Hospital of China Medical University, Liaoning, 110001, China
| | - Hongxi Kong
- Department of Chinese Medicine, The First Hospital of China Medical University, Liaoning, 110001, China
| | - Shuang Ren
- Department of Chinese Medicine, The First Hospital of China Medical University, Liaoning, 110001, China
| | - Fanyan Meng
- Department of Chinese Medicine, The First Hospital of China Medical University, Liaoning, 110001, China
| | - Ruoshi Liu
- Department of Chinese Medicine, The First Hospital of China Medical University, Liaoning, 110001, China
| | - Hongxin Jin
- Guangzhou University of Traditional Chinese Medicine, Guangdong, 510006, China
| | - Jie Zhang
- Department of Chinese Medicine, The First Hospital of China Medical University, Liaoning, 110001, China.
| |
Collapse
|
22
|
Ran D, Yan W, Yanhong B, Hong W. Geniposide augments apoptosis in fibroblast-like synoviocytes by restoring hypoxia-enhanced JNK-BNIP3-mediated autophagy. Inflamm Res 2023; 72:1745-1760. [PMID: 37624402 DOI: 10.1007/s00011-023-01782-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND As the main effector cells of chronic inflammation and hyperplasia of synovium, fibroblast-like synoviocytes (FLSs) show abnormal proliferation and insufficient apoptosis in the hypoxic microenvironment, which is due to the increase of BNIP3-mediated autophagy. This study aimed to explore the mechanism of geniposide (GE) on hypoxia-induced hyper-proliferative FLSs with a focus on autophagy and the JNK-BNIP3 pathway. METHODS The dynamic changes of autophagy, apoptosis, and hypoxia-related proteins in adjuvant arthritis (AA) rats were detected by immunohistochemistry and Western blot. The proliferation, autophagy, apoptosis, and mitochondrial state of FLSs were detected by CCK-8, flow cytometry, immunofluorescence, and transmission electron microscopy, respectively. Western blot, qRT-PCR, and co-immunoprecipitation were used to detect the expression of the JNK-BNIP3 pathway. RESULTS The excessive accumulation of BNIP3 in the synovium of AA rats was accompanied by inhibition of apoptosis and an increase in autophagy. GE inhibited the expression of BNIP3, enhanced apoptosis, decreased autophagy, and improved chronic inflammation and hyperplasia of synovium. The amount of autophagy under different oxygen concentrations was the key to mediating the different survival rates of FLSs, and the inhibition of autophagy triggered apoptosis. GE suppressed the proliferation of FLSs and down-regulated autophagy, leading to the accumulation of ROS and the decrease of mitochondrial membrane potential, induced the increase of apoptosis, and suppressed the accumulation of BNIP3 and the hyperphosphorylation of JNK. CONCLUSION GE inhibited autophagy by restoring the hypoxia-induced activated JNK-BNIP3 pathway, inducing mitochondrial oxidative damage, augmented apoptosis, and decreased survival rate of FLSs.
Collapse
Affiliation(s)
- Deng Ran
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wang Yan
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Anhui Province Key Laboratory of Research &, Developmentof Chinese Medicine, Hefei, 230012, China
| | - Bu Yanhong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China
- Anhui Province Key Laboratory of Research &, Developmentof Chinese Medicine, Hefei, 230012, China
| | - Wu Hong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China.
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China.
- Anhui Province Key Laboratory of Research &, Developmentof Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
23
|
Traditional Chinese Medicine Compound Preparations Are Associated with Low Disease-Related Complication Rates in Patients with Rheumatoid Arthritis: A Retrospective Cohort Study of 11,074 Patients. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1019290. [PMID: 36874924 PMCID: PMC9981299 DOI: 10.1155/2023/1019290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Objective To evaluate whether traditional Chinese medicine compound preparations (TCMCPs) are associated with rheumatoid arthritis- (RA-) related complications (including readmission, Sjogren's syndrome, surgical treatment, and all-cause death) in patients with RA. Methods Clinical outcome data were retrospectively collected from patients with RA discharged from the Department of Rheumatology and Immunology of the First Affiliated Hospital of Anhui University of Chinese Medicine from January 2009 to June 2021. The propensity score matching method was used to match baseline data. Multivariate analysis was conducted to analyze sex, age, the incidence of hypertension, diabetes, and hyperlipidemia and identify the risk of readmission, Sjogren's syndrome, surgical treatment, and all-cause death. Users of TCMCP and nonusers of TCMCP were defined as the TCMCP and non-TCMCP groups, respectively. Results A total of 11,074 patients with RA were included in the study. The median follow-up time was 54.85 months. After propensity score matching, the baseline data of TCMCP users corresponded with those of non-TCMCP users, with 3517 cases in each group. Retrospective analysis revealed that TCMCP significantly reduced clinical, immune, and inflammatory indices in patients with RA, and these indices were highly correlated. Notably, the composite endpoint prognosis for treatment failure in TCMCP users was better than that in non-TCMCP users (HR = 0.75 (0.71-0.80)). The risk of RA-related complications in TCMCP users with high-exposure intensity (HR = 0.669 (0.650-0.751)) and medium-exposure intensity (HR = 0.796 (0.691-0.918)) was significantly lower than those in non-TCMCP users. An increase in exposure intensity was associated with a concomitant decrease in the risk of RA-related complications. Conclusion The use of TCMCPs, as well as long-term exposure to TCMCPs, may lower RA-related complications, including readmission, Sjogren's syndrome, surgical treatment, and all-cause death, in patients with RA.
Collapse
|
24
|
Gan PR, Wang RH, Deng R, Wu H, Bu YH, Chen FY, Dong XT, Ke JT. Geniposide inhibits SphK1 membrane targeting to restore macrophage polarization balance in collagen-induced arthritis mice. Eur J Pharmacol 2022; 933:175271. [PMID: 36108735 DOI: 10.1016/j.ejphar.2022.175271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
Imbalance of macrophage polarization plays a critical role in the progression of rheumatoid arthritis (RA). Geniposide (GE) has been shown to exert anti-inflammatory effects. However, the effect of GE on macrophage polarization remains unclear. Here, we investigated the regulation of GE on the imbalance of macrophage polarization in RA and how it functions. We established a mouse model of collagen-induced arthritis (CIA) and isolated bone marrow-derived macrophages (BMDMs). The results confirmed that pro-inflammatory M1 macrophages were dominant in CIA mice, but the polarization imbalance of macrophages was restored to a certain extent after GE treatment. Furthermore, the membrane targeting of sphingosine kinase 1 (SphK1) was increased in BMDMs of CIA mice, as manifested by increased membrane and cytoplasmic expression of p-SphK1 and high secretion level of sphingosine-1-phosphate (S1P). RAW264.7 cells were stimulated with lipopolysaccharide (LPS)-interferon (IFN)-γ or interleukin (IL)-4 to induce M1 or M2 phenotype, respectively, to revalidate the results obtained in BMDMs. The results again observed SphK1 membrane targeting in LPS-IFN-γ-stimulated RAW264.7 cells. Selective inhibition of SphK1 by PF543 or inhibition of the S1P receptors by FTY720 both restored the proportion of M1 and M2 macrophages in LPS-IFN-γ-stimulated RAW264.7 cells, confirming that SphK1 membrane targeting mediated a proportional imbalance in M1 and M2 macrophage polarization. In addition, GE inhibited SphK1 membrane targeting and kinase activity. Taken together, results confirmed that the inhibition of SphK1 membrane targeting by GE was responsible for restoring the polarization balance of macrophages in CIA mice.
Collapse
Affiliation(s)
- Pei-Rong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Rong-Hui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China; School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China.
| | - Yan-Hong Bu
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Fang-Yuan Chen
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Xin-Tong Dong
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| | - Jiang-Tao Ke
- College of Pharmacy, Anhui University of Chinese Medicine, Qian Jiang Road 1, Hefei, 230012, China; Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230012, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|