1
|
Lan Y, Wang H, Jing L, Li R, Sun J, Meng X, Wu J. Jatrorrhizine alleviates cytokine storm secondary lung injury via regulating CD39-dominant purinergic braking and downstream NLRP3 inflammasome. Phytother Res 2025; 39:2374-2392. [PMID: 40192171 DOI: 10.1002/ptr.8062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 05/21/2025]
Abstract
Cytokine storm secondary lung injury (CSSLI) is a form of acute lung injury (ALI) comparable to that caused by sepsis for which there are no effective therapeutic strategies. Coptis chinensis Franch. and Scutellaria baicalensis Georgi. are two botanical medicines that exhibit anti-inflammatory properties. This study aimed to investigate the underlying therapeutic mechanism of the combination (CCSB) treatment in mice with ALI. A high dosage of lipopolysaccharide (LPS) was administered intraperitoneally to C57BL/6 mice to establish an ALI model. The AMP-Glo™ assay was applied to screen for the component with the most potent CD39-promoting enzyme activity from CCSB constituents migrating to the bloodstream. The PMA-differentiated THP-1 and RAW264.7 macrophage cell lines were stimulated with LPS and adenosine triphosphate, followed by treatment with Jatrorrhizine (JH). The administration of CCSB demonstrated a notable improvement in lung injury through the modulation of the CD39-P2X7 purinergic pathway and subsequent regulation of the NLRP3 inflammasome. The restrained CD39 and A2b were reversed by JH, leading to the suppression of the P2X7-NLRP3 signaling pathway. In addition, the utilization of a CD39 inhibitor (POM-1) attenuated the inhibitory effect of JH on the NLRP3 signaling pathway. CCSB successfully rescued CSSLI, along with its small-molecule component JH, which demonstrated the ability to inhibit the NLRP3 signaling pathway and pyroptosis, at least partially through regulating the CD39 enzyme.
Collapse
Affiliation(s)
- Yuejia Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lijia Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Rui Li
- Chengdu University of Traditional Chinese Medicine-Affiliated Meishan Hospital/Meishan Hospital of Traditional Chinese Medicine, Meishan, People's Republic of China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jiasi Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
2
|
Zhang L, Wang W, Liu X, Yan K, Li Q, Li M, Li C, Li Y, Chen L. Traditional Chinese medicine compounds modulate signaling pathways to improve cardiac-related pathology. Front Pharmacol 2025; 16:1499060. [PMID: 40242436 PMCID: PMC12000890 DOI: 10.3389/fphar.2025.1499060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease poses a significant risk to human health and remains the leading cause of illness and death globally, with its incidence continuing to rise. The intricate pathophysiological mechanisms of CVDs include inflammation, oxidative stress, autophagy, and myocardial fibrosis. In light of these underlying mechanisms, traditional Chinese medicine (TCM) and its constituents have demonstrated distinct advantages in managing CVDs. By exerting synergistic effects across multiple components and targets, traditional Chinese medicine can modulate the inflammatory response, mitigate oxidative stress, regulate excessive autophagy, and enhance myocardial fibrosis repair. This article reviews the latest advancements in understanding how TCM compounds regulate signaling pathways involved in the treatment of CVDs.
Collapse
Affiliation(s)
- Luwen Zhang
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Wei Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Henan Province Traditional Chinese Medicine Epidemic Diseases Engineering Research Center, Zhengzhou, Henan, China
| | - Xincan Liu
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Kuipo Yan
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Qiang Li
- The First Affiliated Hospital of Hena University of Chinese Medicine, Henan Key Laboratory of Viral Diseases Prevention and Treatment of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Ming Li
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Chunying Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Yanxin Li
- The First Clinical Medical College of Henan University of Chinese Medicine, Zhengzhou, Henan, China
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| | - Lei Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Heart Center/National Regional (Traditional Chinese Medicine) Cardiovascular Diagnosis and Treatment Center, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Zhang W, Guo S, Dou J, Zhang X, Shi F, Zhang C, Zhang H, Lan X, Su Y. Berberine and its derivatives: mechanisms of action in myocardial vascular endothelial injury - a review. Front Pharmacol 2025; 16:1543697. [PMID: 40103596 PMCID: PMC11914797 DOI: 10.3389/fphar.2025.1543697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Myocardial vascular endothelial injury serves as a crucial inducer of cardiovascular diseases. Mechanisms such as endoplasmic reticulum stress, apoptosis, inflammation, oxidative stress, autophagy, platelet dysfunction, and gut microbiota imbalance are intimately linked to this condition. Berberine and its derivatives have demonstrated potential in modulating these mechanisms. This article reviews the pathogenesis of endothelial injury in myocardial vessels, the pharmacological effects of berberine and its derivatives, particularly their interactions with targets implicated in vascular endothelial injury. Furthermore, it discusses clinical applications, methods to enhance bioavailability, and toxicity concerns, aiming to lay a foundation for the development of BBR as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhui Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Siyi Guo
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chun Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Huxiao Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaodong Lan
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yi Su
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Yu J, Ma Y, Zhang X, Wang S, Zhou L, Liu X, Li L, Liu L, Song H, Luo Y, Wen S, Li W, Niu X. β-Cyclodextrin and Hyaluronic Acid-Modified Targeted Nanodelivery System for Atherosclerosis Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35421-35437. [PMID: 38940349 DOI: 10.1021/acsami.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural products have been widely recognized in clinical treatment because of their low toxicity and high activity. It is worth paying attention to modifying the biopolymer into nanostructures to give natural active ingredients additional targeting effects. In this study, based on the multifunctional modification of β-cyclodextrin (β-CD), a nanoplatform encapsulating the unstable drug (-)-epicatechin gallate (ECG) was designed to deliver to atherosclerotic plaques. Acetalization cyclodextrin (PH-CD), which responds to low-pH environments, and hyaluronic acid cyclodextrin, which targets the CD44 receptor on macrophage membranes, were synthesized from β-CD and hyaluronic acid using acetalization and transesterification, respectively. The resulting dual-carrier nanoparticles (Double-NPs) loaded with ECG were prepared using a solvent evaporation method. The Double-NPs effectively scavenged reactive oxygen species, promoted macrophage migration, inhibited macrophage apoptosis, and suppressed abnormal proliferation and migration of vascular smooth muscle cells. Furthermore, the Double-NPs actively accumulated in atherosclerotic plaques in ApoE-/- mice fed with a high-fat diet, leading to a reduced plaque area, inflammatory infiltration, and plaque instability. Our findings demonstrate that the newly developed ECG nanopreparation represents an effective and safe nanotherapy for diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Yajing Ma
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lingli Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Lingyi Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Yuzhi Luo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Sha Wen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710000. China
| |
Collapse
|
5
|
Xia K, Hei Z, Li S, Song H, Huang R, Ji X, Zhang F, Shen J, Zhang S, Peng S, Wu J. Berberine inhibits intracellular Ca 2+ signals in mouse pancreatic acinar cells through M 3 muscarinic receptors: Novel target, mechanism, and implication. Biochem Pharmacol 2024; 225:116279. [PMID: 38740221 DOI: 10.1016/j.bcp.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Berberine, a natural isoquinoline alkaloid, exhibits a variety of pharmacological effects, but the pharmacological targets and mechanisms remain elusive. Here, we report a novel finding that berberine inhibits acetylcholine (ACh)-induced intracellular Ca2+ oscillations, mediated through an inhibition of the muscarinic subtype 3 (M3) receptor. Patch-clamp recordings and confocal Ca2+ imaging were applied to acute dissociated pancreatic acinar cells prepared from CD1 mice to examine the effects of berberine on ACh-induced Ca2+ oscillations. Whole-cell patch-clamp recordings showed that berberine (from 0.1 to 10 µM) reduced ACh-induced Ca2+ oscillations in a concentration-dependent manner, and this inhibition also depended on ACh concentrations. The inhibitory effect of berberine neither occurred in intracellular targets nor extracellular cholecystokinin (CCK) receptors, chloride (Cl-) channels, and store-operated Ca2+ channels. Together, the results demonstrate that berberine directly inhibits the muscarinic M3 receptors, further confirmed by evidence of the interaction between berberine and M3 receptors in pancreatic acinar cells.
Collapse
Affiliation(s)
- Kunkun Xia
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Colorectal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhijun Hei
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Department of Colorectal Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuangtao Li
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Huimin Song
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Rongni Huang
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Fenni Zhang
- Center for Bioelectronics and Biosensors, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jianxin Shen
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Shuang Peng
- School of Sport and Health Sciences, Guangzhou Sport University, Guangzhou 510000, China
| | - Jie Wu
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China; Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Neurobiology, Barrow Neurological Institute, Phoenix 85013, USA
| |
Collapse
|
6
|
Sun J, Zeng Q, Wu Z, Huang L, Sun T, Ling C, Zhang B, Chen C, Wang H. Berberine inhibits NLRP3 inflammasome activation and proinflammatory macrophage M1 polarization to accelerate peripheral nerve regeneration. Neurotherapeutics 2024; 21:e00347. [PMID: 38570276 PMCID: PMC11067341 DOI: 10.1016/j.neurot.2024.e00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Berberine (BBR) has demonstrated potent anti-inflammatory effects by modulating macrophage polarization. Nevertheless, the precise mechanisms through which berberine regulates post-injury inflammation within the peripheral nerve system remain elusive. This study seeks to elucidate the role of BBR and its underlying mechanisms in inflammation following peripheral nerve injury (PNI). Adult male C57BL/6J mice subjected to PNI were administered daily doses of berberine (0, 60, 120, 180, 240 mg/kg) via gavage from day 1 through day 28. Evaluation of the sciatic function index (SFI) and paw withdrawal threshold revealed that BBR dose-dependently enhanced both motor and sensory functions. Immunofluorescent staining for anti-myelin basic protein (anti-MBP) and anti-neurofilament-200 (anti-NF-200), along with histological staining comprising hematoxylin-eosin (HE), luxol fast blue (LFB), and Masson staining, demonstrated that BBR dose-dependently promoted structural regeneration. Molecular analyses including qRT-PCR, Western blotting, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence confirmed that inactivation of the NLRP3 inflammasome by MCC950 shifted macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype, while also impeding macrophage infiltration. Furthermore, BBR significantly downregulated the expression of the NLRP3 inflammasome and its associated molecules in macrophages, thereby mitigating NLRP3 inflammasome activation-induced macrophage M1 polarization and inflammation. In summary, BBR's neuroprotective effects were concomitant with the suppression of inflammation after PNI, achieved through the inhibition of NLRP3 inflammasome activation-induced macrophage M1 polarization.
Collapse
Affiliation(s)
- Jun Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Qiuhua Zeng
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, PR China
| | - Zhimin Wu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Lixin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Tao Sun
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Cong Ling
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Baoyu Zhang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China
| | - Chuan Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| | - Hui Wang
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630, Guangdong, PR China.
| |
Collapse
|
7
|
Zhu L, Yang YM, Huang Y, Xie HK, Luo Y, Li C, Wang W, Chen Y. Shexiang Tongxin dropping pills protect against ischemic stroke-induced cerebral microvascular dysfunction via suppressing TXNIP/NLRP3 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117567. [PMID: 38122909 DOI: 10.1016/j.jep.2023.117567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Patients with ischemic stroke (IS) often continue to exhibit cerebral microcirculatory dysfunction even after receiving thrombolytic therapy. Enhancing the function of cerebral microvascular endothelia represents a pivotal advancement in the therapeutic strategy for ischemic microcirculatory disturbances. A traditional Chinese medicinal formulation named Shexiang Tongxin Dropping Pills (STDP), has been clinically employed to ameliorate microcirculatory abnormalities. Existing literature attests to the beneficial role of STDP on endothelial cells (ECs). Nevertheless, specific impacts and underlying mechanisms of STDP in rectifying IS-induced cerebral microvascular dysfunction warrant further exploration. AIM OF THE STUDY This investigation seeks to delineate the effects of STDP on cerebral microvascular endothelial damage induced by ischemic stroke and to elucidate the underlying mechanism involved. MATERIALS AND METHODS Middle cerebral artery occlusion and reperfusion (MCAO/R) technique was employed to established ischemic stroke model in mice. The therapeutic efficacy of STDP on cerebral microvascular function was assessed through laser speckle contrast imaging, behavioral assays, and histological evaluations. Biochemical markers in the brain tissue, including GSH, SOD, MDA, and ROS, were quantified using specific assay kits. In vitro study, oxygen-glucose deprivation and reperfusion (OGD/R) was performed in bEnd.3 cells. The cytoprotective potential of STDP was then evaluated by measuring cell viability, LDH activity, endothelial permeability, and oxidative stress parameters. Important targets in critical pathway were verified by immunoblotting and immunofluorescence both in mice brain slices and bEnd.3 cells. RESULTS STDP decrease brain infarct size, repaired microvascular cerebral blood flow and attenuated neurological deficiency in MCAO/R mice. Moreover, STDP abolished MCAO/R-induced oxidative stress which was reflected by rescuing GSH content, restoration of SOD activity and T-AOC, reduction of MDA and ROS. Ex vivo, STDP increased cerebral microvascular endothelial cells viability, abolished oxidative stress and decreased their permeability after ODG/R. Mechanistically, STDP significantly suppressed endothelial ROS-TXNIP mediated the activation of NLRP3 inflammasome in vivo and in vitro. CONCLUSION STDP improves ischemic stroke-induced cerebral microcirculatory deficits by regulating cerebral microvascular endothelial ROS/TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Li Zhu
- NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China; Institute of Formula and Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China
| | - Yi-Ming Yang
- NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China
| | - Yi Huang
- Department of Stomatology, The First Affiliated Hospital, The School of Dental Medicine, Jinan University, Guangzhou, 510632, China
| | - Hong-Kai Xie
- NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China
| | - Yong Luo
- NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Wang
- NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China.
| | - Yang Chen
- NMPA Key Laboratory for Research of Traditional Chinese Medicine Syndrome, School of Pharmaceutics, Guangzhou University of Chinese Medicine, Guangzhou, 51006, Guangdong, China.
| |
Collapse
|
8
|
Montero-Jodra A, de la Fuente MÁ, Gobelli D, Martín-Fernández M, Villar J, Tamayo E, Simarro M. The mitochondrial signature of cultured endothelial cells in sepsis: Identifying potential targets for treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166946. [PMID: 37939908 DOI: 10.1016/j.bbadis.2023.166946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Sepsis is the most common cause of death from infection in the world. Unfortunately, there is no specific treatment for patients with sepsis, and management relies on infection control and support of organ function. A better understanding of the underlying pathophysiology of this syndrome will help to develop innovative therapies. In this regard, it has been widely reported that endothelial cell activation and dysfunction are major contributors to the development of sepsis. This review aims to provide a comprehensive overview of emerging findings highlighting the prominent role of mitochondria in the endothelial response in in vitro experimental models of sepsis. Additionally, we discuss potential mitochondrial targets that have demonstrated protective effects in preclinical investigations against sepsis. These promising findings hold the potential to pave the way for future clinical trials in the field.
Collapse
Affiliation(s)
- Alba Montero-Jodra
- Department of Surgery, University of Valladolid, Valladolid, Spain; Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain
| | - Miguel Ángel de la Fuente
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Dino Gobelli
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| | - Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain; Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran Canaria, Spain; Li Ka Shing Knowledge Institute at St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eduardo Tamayo
- Department of Surgery, University of Valladolid, Valladolid, Spain; BioCritic, Group for Biomedical Research in Critical Care Medicine, Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Department of Anaesthesiology & Critical Care, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - María Simarro
- Unit of Excellence, Institute of Biomedicine and Molecular Genetics (IBGM), University of Valladolid and Spanish National Research Council (CSIC), Valladolid, Spain; Department of Cell Biology, Genetics, Histology and Pharmacology, University of Valladolid, Valladolid, Spain
| |
Collapse
|
9
|
Molavinia S, Nikravesh M, Pashmforoosh M, Vardanjani HR, Khodayar MJ. Zingerone Alleviates Morphine Tolerance and Dependence in Mice by Reducing Oxidative Stress-Mediated NLRP3 Inflammasome Activation. Neurochem Res 2024; 49:415-426. [PMID: 37864024 DOI: 10.1007/s11064-023-04043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/22/2023]
Abstract
Morphine (MPH) is widely used for pain management; however, long-term MPH therapy results in antinociceptive tolerance and physical dependence, limiting its clinical use. Zingerone (ZIN) is a natural phenolic compound with neuroprotective effects. We investigated the effects of single and repeated doses of ZIN on MPH-induced tolerance, dependence, and underlying biochemical mechanisms. After a dose-response experiment, tolerance was developed to MPH (10 mg/kg, i.p.) for seven days. In the single-dose study, ZIN was administered on day seven. In the repeated-dose study, ZIN was administered for seven days. Naloxone (5 mg/kg, i.p., 120 min after MPH) was injected to assess withdrawal signs on day seven. The levels of thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), total thiol (TT), and glutathione peroxidase (GPx) were measured in the prefrontal cortex. The protein levels of interleukin-1 beta (IL-1β) and NLRP3-ASC-Caspase-1 axis were assessed by ELISA and Western blotting, respectively. Results showed that ZIN (100 mg/kg) had no antinociceptive activity, and subsequent experiments were performed at this dose. Repeated ZIN reversed MPH antinociceptive tolerance, whereas single ZIN did not. Single and repeated ZIN attenuated naloxone-induced jumping. In addition, repeated ZIN significantly inhibited weight loss. Repeated ZIN suppressed the MPH-induced increase in TBARS, NO, IL-1β, NLRP3, ASC, and Caspase-1. It also inhibited MPH-induced TT and GPx reduction. In contrast, single ZIN had no effect. Findings suggest that ZIN reduces MPH-induced tolerance and dependence by suppressing oxidative stress and NLRP3 inflammasome activation. This study provides a novel therapeutic approach to reduce the side effects of MPH.
Collapse
Affiliation(s)
- Shahrzad Molavinia
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehrad Nikravesh
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Hossein Rajabi Vardanjani
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Jin J, Fan Z, Long Y, Li Y, He Q, Yang Y, Zhong W, Lin D, Lian D, Wang X, Xiao J, Chen Y. Matrine induces ferroptosis in cervical cancer through activation of piezo1 channel. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155165. [PMID: 37922791 DOI: 10.1016/j.phymed.2023.155165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cervical cancer, which is a significant public health concern in women, currently lacks effective therapeutic drugs. Matrine, a constituent of the traditional Chinese herb Sophora flavescentis Radix, is known for its anti-cervical cancer properties and ability to induce programmed cell death. The induction of cancer cell ferroptosis, which is a novel cell death pattern, can become an effective clinical therapy for tumor in the future. However, the effect of matrine on ferroptosis in cervical cancer remains to be elucidated. PURPOSE In this study, we investigated whether matrine induces ferroptosis in cervical cancer and elucidated the underlying mechanisms. METHODS We established an SiHa-derived tumor-bearing mouse model using CB17 severe combined immunodeficient (SCID) mice and administered a group of matrine (25, 50, and 75 mg/kg) and cisplatin (2 mg/kg). We meticulously tracked alterations in body weight and tumor size and evaluated liver and kidney health using haematoxylin and eosin (H&E) staining. Using Gene Expression Omnibus (GEO) Dataset (GSE201309), we evaluated the relationship between the effects of matrine on malignant tumor cells and ferroptosis. In vitro, tetrazolium-based colorimetric (MTT), lactate dehydrogenase (LDH) and colony formation assays were used to study the effects of matrine on SiHa cell activity and cytotoxicity. We assessed ferroptosis-related protein abundance using western blotting and ferroptosis-related indices in cells using confocal immunofluorescence microscopy. The interaction of matrine with a protein linked to ferroptosis was studied using cellular thermal shift assay (CETSA). The effects of matrine on Piezo1 expression were investigated using calcium imaging. We also used Piezo1-specific siRNA to explore the role of Piezo1 in ferroptosis. RESULTS Matrine administration effectively inhibited tumor growth in a SiHa-derived tumor-bearing mouse model without inducing noticeable harm. The analysis results of GEO data set show matrine-induced effects in tumor cells were indeed involved in the process of ferroptosis. Treatment with matrine resulted in a significant reduction in GPX4 protein levels and a concurrent increase in lipid peroxide and Fe2+ content, suggesting matrine-induced modulation of ferroptosis. Matrine promoted SiHa cell death in vitro, as evidenced by the results of MTT and LDH assays. Cell death coincides with increases in intracellular Fe2+, reactive oxygen species (ROS), and lipid peroxides. Our study also revealed significant upregulation of Piezo1 expression through the action of matrine, whereas transferrin receptor (Tfr) and System Xc- (xCT) expression and interaction remained unaffected. We provided further evidence that matrine induces calcium influx through the Piezo1 channel, thereby potentially influencing ferroptosis. Transfection with Piezo1 siRNA reversed the effects of matrine in SiHa cell. CONCLUSIONS Our findings indicate that matrine exerts a protective effect against cervical cancer by inducing ferroptosis through the activation of Piezo1, but not xCT or Tfr.
Collapse
Affiliation(s)
- Jiaqi Jin
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China; Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China
| | - Zhaofeng Fan
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China; The Second Clinical College of Guangzhou University of Chinese Medicine, No.232 Waihuan Dong Rd,Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Yonglin Long
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China; Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China
| | - Yinping Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Qian He
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Yiming Yang
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Weijian Zhong
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Disheng Lin
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China
| | - Dawei Lian
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Xiao Wang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China.
| | - Jing Xiao
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 111Da De Road, Guangzhou 510120, China.
| | - Yang Chen
- Department of Pharmacology, School of Pharmaceutical, Guangzhou University of Chinese Medicine, No. 232 Waihuan Dong Rd., Guangzhou University Town, Panyu District, Guangzhou 510000, China.
| |
Collapse
|
11
|
Yang L, Huang Y, Chen F, Wang Y, Su K, Zhao M, Tao W, Liu W. Berberine attenuates depression-like behavior by modulating the hippocampal NLRP3 ubiquitination signaling pathway through Trim65. Int Immunopharmacol 2023; 123:110808. [PMID: 37595491 DOI: 10.1016/j.intimp.2023.110808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Increasing evidence suggests that inflammation appears to play a role in the genesis of depression. Berberine has potent anti-inflammatory effects and potential antidepressant activity, although the mechanism by which it works is yet unclear. Our study aimed to investigate the molecular mechanisms through which berberine treats depression and reduces inflammation. METHODS The CUMS model and behavioral evaluation were utilized in this study to evaluate the efficacy of berberine in the treatment of depression. Berberine's effect on the inflammatory response in CUMS mice was evaluated via ELISA assays and western blotting. Nissl staining was used to observe hippocampal neuronal functional damage. Western blotting, ELISA, ubiquitination tests, and immunoprecipitation were utilized in conjunction with in vitro experiments to study the involvement of Trim65 in the antidepressant effects of berberine. RESULTS The results suggest that berberine effectively alleviates depressive symptoms, suppresses the expression of genes associated with the NLRP3 inflammasome (NLRP3, cleaved caspase-1, ASC, GSDMD-N, Pro-IL-1β, IL-1β, Pro-IL-18, and IL-18), and reduces hippocampal neuronal functional damage in CUMS mice. Further studies showed that knockdown of Trim65 reversed the effects of berberine and increased NLRP3 inflammasome activity. Finally, K285, an important site for Trim65 binding to NLRP3, was identified. CONCLUSION Our study describes the mechanism of berberine limiting NLRP3 inflammasome activity by promoting the conjugation of Trim65 to NLRP3 and NLRP3 ubiquitination, and suggests NLRP3 inflammasome activation as a prospective target for treating inflammation-associated disorders such as depression.
Collapse
Affiliation(s)
- Lu Yang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Yuzhen Huang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Fengxi Chen
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Kunhan Su
- Department of Gastroenterology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, 210014, China
| | - Ming Zhao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weiwei Tao
- Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wanli Liu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
12
|
Zhang M, Shi Z, Peng X, Cai D, Peng R, Lin Y, Dai L, Li J, Chen Y, Xiao J, Dong S, Wang W, Chen Y, He H. NLRP3 inflammasome-mediated Pyroptosis induce Notch signal activation in endometriosis angiogenesis. Mol Cell Endocrinol 2023:111952. [PMID: 37268099 DOI: 10.1016/j.mce.2023.111952] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/04/2023]
Abstract
Endometriosis is characterized by the presence of endometrial tissue outside the uterus that not only causes severe pelvic pain and infertility but also increased risk for ovarian carcinogenesis in women of reproductive age. Here, we found that angiogenesis was increased and accompanied with up-regulation of Notch1 in human endometriotic tissue sample, which is associated with pyroptosis induced by activation of endothelial NLRP3 inflammasome. Further, in endometriosis model induced in wild type and NLRP3-deficient (NLRP3-KO) mice, we found that deficiency of NLRP3 suppressing the development of endometriosis. In vitro, inhibiting the activation of NLRP3 inflammasome prevents LPS/ATP-induced tube formation in endothelial cells. Meanwhile, knockdown NLRP3 expression by gRNA disrupt the interaction between NICD and HIF-1α under the inflammatory microenvironment. This study demonstrates that activation of NLRP3 inflammasome-mediated pyroptosis affects angiogenesis in endometriosis via Notch1-dependent manner.
Collapse
Affiliation(s)
- Minyi Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhimian Shi
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xianglan Peng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Dongpeng Cai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Rui Peng
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Yike Lin
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Linfeng Dai
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jieyi Li
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Yulin Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jing Xiao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong, China
| | - Su Dong
- Department of Pharmacy, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Wei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Hong He
- Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
13
|
Zhang M, Ding ZX, Huang W, Luo J, Ye S, Hu SL, Zhou P, Cai B. Chrysophanol exerts a protective effect against Aβ 25-35-induced Alzheimer's disease model through regulating the ROS/TXNIP/NLRP3 pathway. Inflammopharmacology 2023; 31:1511-1527. [PMID: 36976486 DOI: 10.1007/s10787-023-01201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND The primary pathogenic factors of Alzheimer's disease (AD) have been identified as oxidative stress, inflammatory damage, and apoptosis. Chrysophanol (CHR) has a good neuroprotective effect on AD, however, the potential mechanism of CHR remains unclear. PURPOSE In this study, we focused on the ROS/TXNIP/NLRP3 pathway to determine whether CHR regulates oxidative stress and neuroinflammation. METHODS D-galactose and Aβ25-35 combination were used to build an in vivo model of AD, and the Y-maze test was used to evaluate the learning and memory function of rats. Morphological changes of neurons in the rat hippocampus were observed using hematoxylin and eosin (HE) staining. AD cell model was established by Aβ25-35 in PC12 cells. The DCFH-DA test identified reactive oxygen species (ROS). The apoptosis rate was determined using Hoechst33258 and flow cytometry. In addition, the levels of MDA, LDH, T-SOD, CAT, and GSH in serum, cell, and cell culture supernatant were detected by colorimetric method. The protein and mRNA expressions of the targets were detected by Western blot and RT-PCR. Finally, molecular docking was used to further verify the in vivo and in vitro experimental results. RESULTS CHR could significantly improve learning and memory impairment, reduce hippocampal neuron damage, and reduce ROS production and apoptosis in AD rats. CHR could improve the survival rate, and reduce the oxidative stress and apoptosis in the AD cell model. Moreover, CHR significantly decreased the levels of MDA and LDH, and increased the activities of T-SOD, CAT, and GSH in the AD model. Mechanically, CHR significantly reduced the protein and mRNA expression of TXNIP, NLRP3, Caspase-1, IL-1β, and IL-18, and increase TRX. CONCLUSIONS CHR exerts neuroprotective effects on the Aβ25-35-induced AD model mainly by reducing oxidative stress and neuroinflammation, and the mechanism may be related to ROS/TXNIP/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Zhi-Xian Ding
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Jing Luo
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Shu Ye
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Sheng-Lin Hu
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Xin'an Medicine (Anhui University of Chinese Medicine), Ministry of Education, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
14
|
Kang L, Zhang H, Jia C, Zhang R, Shen C. Targeting Oxidative Stress and Inflammation in Intervertebral Disc Degeneration: Therapeutic Perspectives of Phytochemicals. Front Pharmacol 2022; 13:956355. [PMID: 35903342 PMCID: PMC9315394 DOI: 10.3389/fphar.2022.956355] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Low back pain is a major cause of disability worldwide that declines the quality of life; it poses a substantial economic burden for the patient and society. Intervertebral disc (IVD) degeneration (IDD) is the main cause of low back pain, and it is also the pathological basis of several spinal degenerative diseases, such as intervertebral disc herniation and spinal stenosis. The current clinical drug treatment of IDD focuses on the symptoms and not their pathogenesis, which results in frequent recurrence and gradual aggravation. Moreover, the side effects associated with the long-term use of these drugs further limit their use. The pathological mechanism of IDD is complex, and oxidative stress and inflammation play an important role in promoting IDD. They induce the destruction of the extracellular matrix in IVD and reduce the number of living cells and functional cells, thereby destroying the function of IVD and promoting the occurrence and development of IDD. Phytochemicals from fruits, vegetables, grains, and other herbs play a protective role in the treatment of IDD as they have anti-inflammatory and antioxidant properties. This article reviews the protective effects of phytochemicals on IDD and their regulatory effects on different molecular pathways related to the pathogenesis of IDD. Moreover, the therapeutic limitations and future prospects of IDD treatment have also been reviewed. Phytochemicals are promising candidates for further development and research on IDD treatment.
Collapse
|