1
|
Gao K, Zhang W, Xu D, Zhao M, Tao X, Lu Y, Wang J. Chikusetsusaponin IVa targeted YAP as an inhibitor to attenuate liver fibrosis and hepatic stellate cell activation. Chin Med 2025; 20:36. [PMID: 40098188 PMCID: PMC11912722 DOI: 10.1186/s13020-025-01090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/01/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Liver fibrosis is a representative scarring response that can ultimately lead to liver cancer. However, relevant antifibrotic drugs for the effective treatment of liver fibrosis in humans have not yet been identified. Chikusetsusaponin IVa (CS-IVa) is derived from natural products and exhibits multiple biological activities; however, its efficacy and potential mechanism of action against liver fibrosis remains unclear. PURPOSE This study aimed to examine the antifibrotic properties and potential mechanisms of action of CS-IVa. METHODS We constructed two mature mouse models (CCl4 challenge and bile duct ligation) to evaluate the antifibrotic properties of CS-IVa in vivo. Proteomics analysis and transforming growth factor β1 (TGF-β1)-activated LX-2 cells were used to elucidate the potential effects and mechanisms. Molecular docking, surface plasmon resonance (SPR), and cellular thermal shift assay (CETSA) were used to detect the affinity and binding between CS-IVa and its target. RESULTS We found that CS-IVa significantly alleviated liver fibrosis and injury by downregulating yes-associated protein (YAP) and tafazzin (TAZ) expression. In an in vitro model, CS-IVa suppressed TGF-β1-induced hepatic stellate cell (HSC) activation, as well as the mRNA and protein expression of COL1A1, α-SMA, YAP, and TAZ. Moreover, specific knockdown or inhibition of YAP did not enhance the suppressive effect of CS-IVa on HSC activation or fibrosis-associated protein expression. Molecular docking, SPR, and CETSA showed that CS-IVa could directly bind to YAP. CONCLUSION These findings demonstrated that the administration of CS-IVa effectively alleviated liver fibrosis by suppressing the YAP/TAZ pathways. In addition, CS-IVa could directly bind to YAP and act as a YAP inhibitor.
Collapse
Affiliation(s)
- Kai Gao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Zhang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Xu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingru Tao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yunyang Lu
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
- Research Institution, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Ye B, Yue M, Chen H, Sun C, Shao Y, Jin Q, Zhang C, Yu G. YAP/TAZ as master regulators in liver regeneration and disease: insights into mechanisms and therapeutic targets. Mol Biol Rep 2024; 52:78. [PMID: 39718664 DOI: 10.1007/s11033-024-10177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad. While the activation of YAP/TAZ can promote the regeneration of damaged liver tissue, their mechanisms of action may differ under various LR conditions. Furthermore, excessive activation of YAP/TAZ may also lead to severe liver damage, manifesting as alcoholic hepatitis, liver fibrosis, and even liver cancer. Here, we review the role and mechanisms of YAP/TAZ in LR and liver disease, highlighting the potential for advancements in clinical diagnosis and treatment targeting YAP/TAZ in these contexts.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Meijuan Yue
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hu Chen
- Anyang Food and Drug Inspection and Testing Center, Anyang, 455000, China
| | - Caifang Sun
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yongle Shao
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qinpeng Jin
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
3
|
Sun T, Li S, Li X, Lei Y, Wang B, Liu X, Yu S, Li N. Apigenin intervenes in liver fibrosis by regulating PKM2-HIF-1α mediated oxidative stress. Biochem Biophys Res Commun 2024; 721:150130. [PMID: 38761750 DOI: 10.1016/j.bbrc.2024.150130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Apigenin (API) is a natural flavonoid compound with antioxidant, anti fibrotic, anti-inflammatory and other effects, but there is limited research on the effect of API on liver fibrosis. This study aims to explore the effect and potential mechanism of API on liver fibrosis induced by CCl4 in mice. The results indicate that API reduces oxidative stress levels, inhibits hepatic stellate cell (HSC) activation, and exerts anti liver fibrosis effects by regulating the PKM2-HIF-1α pathway. We observed that API alleviated liver tissue pathological damage and collagen deposition in CCl4 induced mouse liver fibrosis model, promoting the recovery of liver function in mice with liver fibrosis. In addition, the API inhibits the transition of Pyruvate kinase isozyme type M2 (PKM2) from dimer to tetramer formation by regulating the EGFR-MEK1/2-ERK1/2 pathway, thereby preventing dimer from entering the nucleus and blocking PKM2-HIF-1α access. This change leads to a decrease in malondialdehyde (MDA) and Catalase (CAT) levels and an increase in glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX) levels, as well as total antioxidant capacity (T-AOC) in the liver of liver fibrosis mice. At the same time, API downregulated the expression of α-smooth muscle actin (α-SMA), Vimentin and Desmin in the liver tissue of mice with liver fibrosis, inhibited the activation of HSC, and reduced collagen deposition. These results indicate that API can inhibit HSC activation and alleviate CCl4 induced liver fibrosis by inhibiting the PKM2-HIF-1α pathway and reducing oxidative stress, laying an important foundation for the development and clinical application of API as a novel drug for treating liver fibrosis.
Collapse
Affiliation(s)
- Tao Sun
- Department of Internal Medicine, Henan Medical College, Zhengzhou, China
| | - Saifei Li
- Henan University of Chinese Medicine, School of Pharmacy, Zhengzhou, China
| | - Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, China
| | - Yanfei Lei
- Department of Internal Medicine, Henan Medical College, Zhengzhou, China
| | - Baoying Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xianghua Liu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, China.
| |
Collapse
|
4
|
Chen H, Zhou Y, Hao H, Xiong J. Emerging mechanisms of non-alcoholic steatohepatitis and novel drug therapies. Chin J Nat Med 2024; 22:724-745. [PMID: 39197963 DOI: 10.1016/s1875-5364(24)60690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 09/01/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver disease globally. It initiates with simple steatosis (NAFL) and can progress to the more severe condition of non-alcoholic steatohepatitis (NASH). NASH often advances to end-stage liver diseases such as liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Notably, the transition from NASH to end-stage liver diseases is irreversible, and the precise mechanisms driving this progression are not yet fully understood. Consequently, there is a critical need for the development of effective therapies to arrest or reverse this progression. This review provides a comprehensive overview of the pathogenesis of NASH, examines the current therapeutic targets and pharmacological treatments, and offers insights for future drug discovery and development strategies for NASH therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yang Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Xiong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Zhang R, Zhan Y, Lang Z, Li Y, Zhang W, Zheng J. LncRNA-SNHG5 mediates activation of hepatic stellate cells by regulating NF2 and Hippo pathway. Commun Biol 2024; 7:266. [PMID: 38438584 PMCID: PMC10912598 DOI: 10.1038/s42003-024-05971-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
Long noncoding RNA small nucleolar RNA host gene 5 (SNHG5) is an oncogene found in various human cancers. However, it is unclear what role SNHG5 plays in activating hepatic stellate cells (HSCs) and liver fibrosis. In this study, SNHG5 was found to be upregulated in activated HSCs in vitro and in primary HSCs isolated from fibrotic liver in vivo, and inhibition of SNHG5 suppressed HSC activation. Notably, Neurofibromin 2 (NF2), the main activator for Hippo signalling, was involved in the effects of SNHG5 on HSC activation. The interaction between SNHG5 and NF2 protein was further confirmed, and preventing the combination of the two could effectively block the effects of SNHG5 inhibition on EMT process and Hippo signaling. Additionally, higher SNHG5 was found in chronic hepatitis B patients and associated with the fibrosis stage. Altogether, we demonstrate that SNHG5 could serve as an activated HSCs regulator via regulating NF2 and Hippo pathway.
Collapse
Affiliation(s)
- Rongrong Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yating Zhan
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yifei Li
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhi Zhang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
6
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|