1
|
Ma CS, Han B, Meng SC, Bai M, Yi WJ, Zhang LY, Duan MY, Wang YJ, He MT. Lycium barbarum glycopeptide attenuates intracerebral hemorrhage-induced inflammation and oxidative stress via activation of the Sirt3 signaling pathway. Int Immunopharmacol 2025; 154:114518. [PMID: 40157082 DOI: 10.1016/j.intimp.2025.114518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe neurological condition characterized by high morbidity and mortality rates, with no effective treatment currently available. Lycium barbarum glycopeptide (LbGP), derived from the further purification of Lycium barbarum polysaccharides (LBP), has demonstrated anti-inflammatory effects, suggesting its potential as a therapeutic agent for ICH. However, the role and mechanisms of LbGP in ICH remain unclear. This study aimed to investigate the effects of LbGP on ICH and its underlying mechanisms. METHODS A collagenase injection-induced mouse model of ICH was used to evaluate the therapeutic effects of LbGP. Mice were treated with varying doses of LbGP, and outcomes were assessed based on hemorrhage volume, neurological function, inflammation, and oxidative stress markers. Apoptosis was analyzed using TUNEL staining. Mechanistic studies focused on mitochondrial acetylation homeostasis and the expression of Sirt3, a mitochondrial deacetylase. Statistical analyses were performed using one-way ANOVA with Tukey's post hoc tests. RESULTS LbGP administration reduced hemorrhage volume and improved neurological function in a dose-dependent manner. It significantly decreased pro-inflammatory cytokines (IL-18, TNF-α, IL-1β) and oxidative stress markers (malondialdehyde and reactive oxygen species) while increasing superoxide dismutase activity and total antioxidant capacity. LbGP treatment also mitigated apoptosis and promoted mitochondrial acetylation homeostasis. Mechanistically, LbGP upregulated mitochondrial Sirt3 expression, and blocking Sirt3 disrupted mitochondrial acetylation homeostasis, resulting in increased inflammation and oxidative stress. CONCLUSIONS LbGP alleviates inflammation and oxidative stress in hemorrhagic brain injury by activating Sirt3 and maintaining mitochondrial acetylation homeostasis. These findings highlight the therapeutic potential of LbGP in treating ICH, providing a foundation for further clinical applications.
Collapse
Affiliation(s)
- Chang-Sheng Ma
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Department of Anesthesiology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Bo Han
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Shu-Chen Meng
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Min Bai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Wen-Jing Yi
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Li-Ying Zhang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Meng-Yuan Duan
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Yi-Jun Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China
| | - Mao-Tao He
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261053, China; Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong 261053, China.
| |
Collapse
|
2
|
Gao Y, Chen X, Duan JA, Xiao P. A review of pharmacological mechanisms, challenges and prospects of macromolecular glycopeptides. Int J Biol Macromol 2025; 300:140294. [PMID: 39863220 DOI: 10.1016/j.ijbiomac.2025.140294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Macromolecular glycopeptides are natural products derived from various sources, distinguished by their structural diversity, multifaceted biological activities, and low toxicity. These compounds exhibit a wide range of biological functions, such as immunomodulation, antitumor effects, anti-inflammatory properties, antioxidant activity, and more. However, limited understanding of natural glycopeptides has hindered their development and practical application. To promote their advancement and utilization, it is crucial to thoroughly investigate the pharmacological mechanisms of glycopeptides and address the challenges in natural glycopeptide research. This review uniquely focuses on the primary biological activities and potential molecular mechanisms of glycopeptides as reported in recent literature. Moreover, we emphasize the current challenges in glycopeptide research, including extraction and isolation difficulties, purification challenges, structural analysis complexities, elucidation of structure-activity relationships, characterization of biosynthetic pathways, and ensuring bioavailability and stability. The future prospects for glycopeptide research are also explored. We argue that ongoing research into glycopeptides will significantly contribute to drug development and provide more effective therapeutic options and disease treatment alternatives for human health.
Collapse
Affiliation(s)
- Ye Gao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Xiaoyi Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Jiang C, Yan Y, Long T, Xu J, Chang C, Kang M, Wang X, Chen Y, Qiu J. Ferroptosis: a potential therapeutic target in cardio-cerebrovascular diseases. Mol Cell Biochem 2025:10.1007/s11010-025-05262-7. [PMID: 40148662 DOI: 10.1007/s11010-025-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Cardio-cerebrovascular diseases (CCVDs) are the leading cause of global mortality, yet effective treatment options remain limited. Ferroptosis, a novel form of regulated cell death, has emerged as a critical player in various CCVDs, including atherosclerosis, myocardial infarction, ischemia-reperfusion injury, cardiomyopathy, and ischemic/hemorrhagic strokes. This review highlights the core mechanisms of ferroptosis, its pathological implications in CCVDs, and the therapeutic potential of targeting this process. Additionally, it explores the role of Chinese herbal medicines (CHMs) in mitigating ferroptosis, offering novel therapeutic strategies for CCVDs management. Ferroptosis is regulated by several key pathways. The GPX4-GSH-System Xc- axis is central to ferroptosis execution, involving GPX4 using GSH to neutralize lipid peroxides, with system Xc- being crucial for GSH synthesis. The NAD(P)H/FSP1/CoQ10 axis involves FSP1 regenerating CoQ10 via NAD(P)H, inhibiting lipid peroxidation independently of GPX4. Lipid peroxidation, driven by PUFAs and enzymes like ACSL4 and LPCAT3, and iron metabolism, regulated by proteins like TfR1 and ferritin, are also crucial for ferroptosis. Inhibiting ferroptosis shows promise in managing CCVDs. In atherosclerosis, ferroptosis inhibitors reduce iron accumulation and lipid peroxidation. In myocardial infarction, inhibitors protect cardiomyocytes by preserving GPX4 and SLC7A11 levels. In ischemia-reperfusion injury, targeting ferroptosis reduces myocardial and cerebral damage. In diabetic cardiomyopathy, Nrf2 activators alleviate oxidative stress and iron metabolism irregularities. CHMs offer natural compounds that mitigate ferroptosis. They possess antioxidant properties, chelate iron, and modulate signaling pathways like Nrf2 and AMPK. For example, Salvia miltiorrhiza and Astragalus membranaceus reduce oxidative stress, while some CHMs chelate iron, reducing its availability for ferroptosis. In conclusion, ferroptosis plays a pivotal role in CCVDs, and targeting it offers novel therapeutic avenues. CHMs show promise in reducing ferroptosis and improving patient outcomes. Future research should explore combination therapies and further elucidate the molecular interactions in ferroptosis.
Collapse
Affiliation(s)
- Chenlong Jiang
- School of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Yang Yan
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Tianlin Long
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Jiawei Xu
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Cuicui Chang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
- Department of Cardiology, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China
| | - Meili Kang
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China
| | - Xuanqi Wang
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| | - Yuhua Chen
- Department of Medical Science Research Center, Xi'an Peihua University, No. 888 Changning Road, Xi'an, 710125, Shaanxi, China.
- Department of Neurosurgery, Bijie Traditional Chinese Medicine Hospital, Bijie, 551700, China.
- School of Life and Health Science, Hainan University, No. 58 People's Avenue, Haikou, 570100, Hainan, China.
| | - Junlin Qiu
- Department of Cardiology, First Hospital of Northwestern University, Northwest University, No. 512 Xianning East Road, Xi'an, 710043, Shaanxi, China.
| |
Collapse
|
4
|
Feng X, Zhang W, Liu X, Wang Q, Dang X, Han J, Zhang X. Ferroptosis-associated signaling pathways and therapeutic approaches in depression. Front Neurosci 2025; 19:1559597. [PMID: 40177374 PMCID: PMC11961976 DOI: 10.3389/fnins.2025.1559597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Ferroptosis, a newly identified form of cell death, is characterized by excessive iron accumulation and lipid peroxidation. Studies indicate a strong association between ferroptosis and depression; however, the precise signaling pathways and underlying molecular mechanisms remain unclear. This review summarizes the role of ferroptosis in depression and its associated signaling pathways. Additionally, therapeutic approaches for depression based on ferroptosis theory are reviewed, providing novel targets for the prevention and treatment of depression and laying a foundation for future research on the relationship between ferroptosis and depression.
Collapse
Affiliation(s)
- Xuyang Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxi Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Qiuxuan Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Dang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jingxian Han
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xuezhu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
5
|
Liang J, Peng T, Hu J, So KF, Zhang H, Chen G, Zhang YW. Lycium barbarum Glycopeptide Promotes Testosterone Synthesis and Glucose Metabolism in Leydig Cells of the Testis. Biomolecules 2025; 15:425. [PMID: 40149961 PMCID: PMC11940756 DOI: 10.3390/biom15030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Lycium barbarum extracts have been shown to be effective in male reproductive protection and male infertility. However, its role in enhancing testicular function, such as testosterone synthesis, and the potential mechanism remain to be understood. To elucidate the effects of Lycium barbarum glycopeptide (LbGp) on testosterone synthesis, we isolated primary Leydig cells (LCs) from testes and performed RNA sequencing (RNA seq) on LCs treated with LbGp. In this study, we demonstrated that LbGp promoted testosterone synthesis in LCs both in vivo and in vitro. We also demonstrated that LbGp elevated adenosine 5'-triphosphate (ATP) synthesis and cell proliferation by enhancing glucose metabolism. Mechanistically, LbGp upregulated testosterone synthesis by suppressing TGF-β pathway and enhancing the expression of steroidogenic genes: Cyp11a1, Hsd3b1, Hsd17b3, Star, and Sf-1. These findings indicate that LbGp plays an important role in enhancing testicular function and promoting testosterone synthesis.
Collapse
Affiliation(s)
- Jinlian Liang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| | - Tianchan Peng
- Department of Neurology, Affiliated Hospital of Jinan University, Guangzhou 510632, China; (T.P.); (J.H.)
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Jinrong Hu
- Department of Neurology, Affiliated Hospital of Jinan University, Guangzhou 510632, China; (T.P.); (J.H.)
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Kwok Fai So
- Institute of Clinical Research for Mental Health, The First Affiliated Hospital Jinan University, Guangzhou 510632, China;
- Center for Brain Science and Brain-Inspired Intelligence Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China
- State Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR 999077, China
| | - Hongyi Zhang
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Guobin Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China;
| | - Yuan-Wei Zhang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China;
| |
Collapse
|
6
|
Duarte-Silva E, Maes M, Alves Peixoto C. Iron metabolism dysfunction in neuropsychiatric disorders: Implications for therapeutic intervention. Behav Brain Res 2025; 479:115343. [PMID: 39557130 DOI: 10.1016/j.bbr.2024.115343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Iron is a trace metal that takes part in the maintenance of body homeostasis by, for instance, aiding in energy production and immunity. A body of evidence now demonstrates that dysfunction in iron metabolism can have detrimental effects and is intricately associated with the development of neuropsychiatric disorders, including Major Depressive Disorder (MDD), anxiety, and schizophrenia. For instance, changes in serum and central nervous system (CNS) levels of iron and in proteins mediating iron metabolism have been documented in patients grappling with the aforementioned diseases. By contrast, targeting iron metabolism by using iron chelators, for instance, has proven to be effective in alleviating disease burden. Therefore, here we review the state-of-the-art regarding the role of iron metabolism and its dysfunction in the context of neuropsychiatric disorders. Furthermore, we discuss how targeting iron metabolism can be an effective therapeutic option to tackle this class of diseases. Finally, we discuss the mechanisms linking this dysfunction to behavioral changes in these disorders. Harnessing the knowledge of iron metabolism is not only key to the characterization of novel molecular targets and disease biomarkers but also crucial to drug repurposing and drug design.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Center for Research in Inflammatory Diseases (CRID), Ribeirão Preto Medical School, Department of Pharmacology, University of São Paulo, São Paulo, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Ribeirão Preto, SP, Brazil.
| | - Michael Maes
- Mental Health Center, University of Electronic Science and Technology of China, Chengdu 611731, China; Deakin University, IMPACT, the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, VIC, Australia; Research Institute, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Department of Psychiatry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Han X, Zhang M, Liu Y, Huang Y, Yang X, Wang R, Sun WY, So KF, Chiu K, He RR, Xu Y. Lycium barbarum extract improves brain and visual functions in mice models of Alzheimer's disease through activating WNT pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156523. [PMID: 40007341 DOI: 10.1016/j.phymed.2025.156523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is the leading cause of dementia in the elderly, characterized by visual deficits and cognitive impairment. However, current therapies have limited efficacy. PURPOSE This study aims to investigate whether Lycium barbarum extract (LBE) can mitigate the decline in brain and visual function in mouse models of AD during the middle and late stages. METHODS The chemical constituents of LBE were identified using Liquid Chromatography-Mass Spectrometry. LBE was administered daily to 5xFAD mice for one month and to 3xTG mice for two months, via the intragastric route, until the middle and late stages of AD. Visual and brain functions were assessed through behavioral tests and electrophysiological recordings. The structure of the hippocampal region and retina was evaluated using immunostaining. RNA sequencing and western blotting were performed to explore potential mechanisms. RESULTS Sixteen compounds were identified in LBE, with lycibarbarspermidines and rutin being the major components. Functionally, LBE significantly improved memory and light responses of retinal ganglion cells in both 5xFAD and 3xTG mice. It also enhanced long-term potentiation in the hippocampus of 5xFAD mice and cortical visual function in 3xTG mice. Structurally, LBE reduced hippocampal Aβ deposits in 5xFAD mice and Tau phosphorylation in 3xTG mice. In the retinas of 3xTG mice, LBE increased ganglion cell survival and inhibited inflammation and oxidative stress. Mechanistically, LBE restored the expression of WNT5a/b and KRAS, and inhibited GSK3β activation in the retinas of 3xTG mice. CONCLUSION Our findings suggest that LBE can alleviate visual and brain function deterioration in various AD mouse models, even at the middle or late stages, possibly through the activation of the WNT pathway leading to the inhibition of Tau phosphorylation. This study reveals a novel mechanism of LBE action and proposes a promising strategy for treating AD patients using natural plant extracts, even at advanced stages.
Collapse
Affiliation(s)
- Xiu Han
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Mengrong Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Yajing Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Yongxia Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Rong Wang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products, Jinan University, Guangzhou 510632, China
| | - Kwok-Fai So
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Psychology, The University of Hong Kong, Hong Kong SAR, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| | - Kin Chiu
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China; Department of Ophthalmology, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Psychology, The University of Hong Kong, Hong Kong SAR, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products, Jinan University, Guangzhou 510632, China.
| | - Ying Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs(Jinan University) / Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University / Key Laboratory of CNS Regeneration (Jinan University) Ministry of Education / Guangdong Key Laboratory of Non-human Primate Research, Guangzhou 510632, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
8
|
Zhai T, Wang B, Shi C, Zhang C, Shen J, Feng X, Gao F, Yang Y, Jia K, Zhao L. The Interplay Between Endoplasmic Reticulum Stress and Ferroptosis in Neurological Diseases. Neurochem Res 2025; 50:99. [PMID: 39928173 DOI: 10.1007/s11064-025-04348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/19/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Many studies in the open literature have highlighted the critical roles of endoplasmic reticulum stress and ferroptosis in neurological diseases such as neurodegenerative diseases, brain injuries, and depression, indicating that they are involved in the onset and progression of these diseases. Therefore, it is essential to explore the regulatory mechanisms and potential interventions targeting endoplasmic reticulum stress and ferroptosis in neurological diseases. However, most existing research has primarily focused on the unidirectional mechanisms of endoplasmic reticulum stress and ferroptosis within the nervous system, with a lack of in-depth investigations into their interactions. In this paper, we first present an overview of the pathogenesis of endoplasmic reticulum stress and ferroptosis, along with their roles in neurological diseases. We then summarize the latest findings on the interaction mechanism between endoplasmic reticulum stress and ferroptosis from the perspectives of calcium iron homeostasis, reactive oxygen species, microenvironment, and related factors. Finally, we explore the potential molecular mechanisms and targeted interventions associated with endoplasmic reticulum stress and ferroptosis in neurological diseases.
Collapse
Affiliation(s)
- Tianyu Zhai
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Bingbing Wang
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Caizhen Shi
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Can Zhang
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Juan Shen
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Xixuan Feng
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Feng Gao
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Yanling Yang
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Kunpeng Jia
- Yan'an University Affiliated Hospital, Yan'an, 716000, Shaanxi, China.
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an, 716000, Shaanxi, China.
| |
Collapse
|
9
|
Peng T, Xiang J, Tian Y, Tang X, Wang L, Gao L, Luo OJ, Huang L, Chen G. Lycium barbarum glycopeptide ameliorates aging phenotypes and enhances cardiac metabolism by activating the PINK1/Parkin-mediated mitophagy pathway in D-galactose-induced mice. Exp Gerontol 2025; 200:112686. [PMID: 39827719 DOI: 10.1016/j.exger.2025.112686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Aging is a complex biological process that disrupts tissue structure and impairs physiological function, which contributes to the development of age-related diseases such as cardiovascular disorders. However, effective treatment strategies are lacking. OBJECTIVE To investigate the geroprotective effects of Lycium barbarum glycopeptide (LbGp) and its potential mechanisms in a D-galactose-induced accelerated aging mouse model. METHODS Mice were subcutaneously injected with D-galactose (500 mg/kg/day) for 12 weeks to induce aging, while LbGp was orally administered (100 mg/kg/day) throughout the study. The geroprotective effects of LbGp were assessed by behavioral tests, cardiac echocardiography, pathohistological and transcriptomic analyses. Transmission electron microscopy was used to observe the ultrastructure of mitochondria. Mitochondrial stress assays and JC-1 fluorescent probe were conducted to evaluate mitochondrial function. Flow cytometer and western blot were performed to assess mitophagy flux. RESULTS LbGp treatment improved the aging phenotypes of D-galactose-induced mice, with a pronounced enhancement in cardiac function compared to neurocognitive and skeletal muscle functions. Transcriptome analysis indicated that LbGp ameliorated energy metabolism in the heart. Mitochondrial assays revealed LbGp improved mitochondrial function and preserved structural integrity of the mitochondrial inner membrane. LbGp attenuated mitochondrial fission and restored impaired PINK1/Parkin-mediated mitophagy pathway caused by D-galactose in cardiomyocytes. CONCLUSION LbGp can ameliorate aging phenotypes and enhance cardiac metabolism by activating the PINK1/Parkin-mediated mitophagy pathway in D-galactose-induced mice. These findings underscore its potential as a therapeutic agent for aging and aging-related cardiovascular diseases.
Collapse
Affiliation(s)
- Tianchan Peng
- Department of Neurology, Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Jian Xiang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yun Tian
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Xiaogen Tang
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lina Wang
- Department of Neurology, Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Lijuan Gao
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Zhuhai Institute of Jinan University, Zhuhai 519070, China
| | - Oscar Junhong Luo
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Zhuhai Institute of Jinan University, Zhuhai 519070, China
| | - Li'an Huang
- Department of Neurology, Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Zhuhai Institute of Jinan University, Zhuhai 519070, China.
| |
Collapse
|
10
|
Cui Z, Li X, Ou Y, Sun X, Gu J, Ding C, Yu Z, Guo Y, Liang Y, Mao S, Ma JH, Chan HF, Tang S, Chen J. Novel full-thickness biomimetic corneal model for studying pathogenesis and treatment of diabetic keratopathy. Mater Today Bio 2025; 30:101409. [PMID: 39807180 PMCID: PMC11729032 DOI: 10.1016/j.mtbio.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Diabetic keratopathy (DK), a significant complication of diabetes, often leads to corneal damage and vision impairment. Effective models are essential for studying DK pathogenesis and evaluating potential therapeutic interventions. This study developed a novel biomimetic full-thickness corneal model for the first time, incorporating corneal epithelial cells, stromal cells, endothelial cells, and nerves to simulate DK conditions in vitro. By exposing the model to a high-glucose (HG) environment, the pathological characteristics of DK, including nerve bundle disintegration, compromised barrier integrity, increased inflammation, and oxidative stress, were successfully replicated. Transcriptomic analysis revealed that HG downregulated genes associated with axon and synapse formation while upregulating immune response and oxidative stress pathways, with C-C Motif Chemokine Ligand 5 (CCL5) identified as a key hub gene in DK pathogenesis. The therapeutic effects of Lycium barbarum glycopeptide (LBGP) were evaluated using this model and validated in db/db diabetic mice. LBGP promoted nerve regeneration, alleviated inflammation and oxidative stress in both in vitro and in vivo models. Notably, LBGP suppressed the expression of CCL5, highlighting its potential mechanism of action. This study establishes a robust biomimetic platform for investigating DK and other corneal diseases, and identifies LBGP as a promising therapeutic candidate for DK. These findings provide valuable insights into corneal disease mechanisms and pave the way for future translational research and clinical applications.
Collapse
Affiliation(s)
- Zekai Cui
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Xiaoxue Li
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Yiwen Ou
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Xihao Sun
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Jianing Gu
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Chengcheng Ding
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Zhexiong Yu
- Tianren Goji Biotechnology Co., Ltd, Ningxia, China
| | - Yonglong Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yuqin Liang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Shengru Mao
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
| | - Jacey Hongjie Ma
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shibo Tang
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| | - Jiansu Chen
- Aier Academy of Ophthalmology, Central South University, Changsha, Hunan, China
- Changsha Aier Eye Hospital, Changsha, Hunan, China
| |
Collapse
|
11
|
Xu G, Yu Z, Zhao W. The synergistic immunomodulatory activity of Lycium barbarum glycopeptide and isochlorogenic acid A on RAW264.7 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1961-1969. [PMID: 39435522 DOI: 10.1002/jsfa.13972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
BACKGROUND Regulation of the immune system to maintain homeostasis in the organism has become a focus of research, and the synergistic effect of multi-component complexes will effectively improve the immunomodulatory activity. The present study aimed to investigate the interaction and synergistic immunomodulatory activity of isochlorogenic acid A (IAA) and Lycium barbarum glycopeptide (LbGp). RESULTS The results obtained indicated that non-covalent intermolecular interactions were employed to form the LbGp-IAA complex, with a binding ratio of 135.15 mg g-1. The formation of LbGp-IAA complex altered the conformation of LbGp, and IAA was mainly bound to LbGp by van der Waals forces and hydrogen bonds. In addition, LbGp-IAA promoted the proliferation of RAW264.7 cells. The IAA and LbGp interaction had a synergistic effect on the promotion of phagocytosis and the expression of nitric oxide, tumor necrosis faction-α and interleukin-1β, which improved the immunomodulatory effect of LbGp. Furthermore, the combination of LbGp and IAA synergistically inhibited lipopolysaccharide-induced inflammatory response. CONCLUSION In summary, the binding of IAA enhanced the immunomodulatory activity of LbGp and coordinated the immune response, and did not trigger an inflammatory response, which was potentially attributed to the alteration of spatial structure of LbGp through the binding of IAA. The results provide new perspectives for the study of glycopeptide-polyphenol interactions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ge Xu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Zhipeng Yu
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
12
|
Tu M, Cai G, Ma L, Yan L, Wang T, Shi Z, Wang C, Chen Z. Effects of Different Levels of Lycium barbarum Flavonoids on Growth Performance, Immunity, Intestinal Barrier and Antioxidant Capacity of Meat Ducks. Antioxidants (Basel) 2025; 14:67. [PMID: 39857401 PMCID: PMC11761579 DOI: 10.3390/antiox14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: In vitro findings on the biological functions of Lycium barbarum flavonoids (LBFs) as feed additives are limited. This study aimed to explore the effects of different concentrations of LBFs on the growth performance, immune function, intestinal barrier, and antioxidant capacity of meat ducks. A total of 240 one-day-old male meat ducks were randomly allocated to four groups, each receiving a basal diet supplemented with 0 (control), 250, 500, or 1000 mg/kg of LBFs for 42 d. Results: The results showed that dietary supplementation with 500 mg/kg of LBFs resulted in a significant increase in average daily feed intake, body weight, average daily gain, and feed conversion ratio. Dietary supplementation with 500 or 1000 mg/kg of LBFs resulted in significant decreases in serum levels of D-lactic acid and lipopolysaccharide. Dietary supplementation with 500 mg/kg LBFs significantly decreased diamine oxidase activity and enhanced the activities of catalase, total antioxidant capacity, and glutathione peroxidase in the jejunal mucosa, as well as the activity of total superoxide dismutase and the content of glutathione in the ileal mucosa, while significantly lowering the content of malondialdehyde in the ileal mucosa. Dietary supplementation with 500 mg/kg LBFs significantly up-regulated the mRNA expression of genes associated with intestinal barrier function and antioxidant capacity in the jejunal and ileal mucosa, as well as the protein expression of these antioxidant genes, and led to a significant reduction in the mRNA expression of pro-apoptotic and inflammatory-related genes. Conclusions: The addition of LBFs to the diet improved the growth performance, intestinal barrier function, immune response, and antioxidant capacity of the ducks, which may be closely associated with the activation of the Nrf2 signaling pathway and the inhibition of the NF-κB signaling pathway. The optimal dietary inclusion level of LBFs in ducks was 500 mg/kg.
Collapse
Affiliation(s)
- Minhang Tu
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Gentan Cai
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Longfei Ma
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Leyan Yan
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Tian Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhendan Shi
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Chao Wang
- College of Animal Sciences and Technology, Nanjing Agricultural University, Nanjing 210095, China; (M.T.); (G.C.); (L.M.); (T.W.)
| | - Zhe Chen
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (L.Y.); (Z.S.)
- Integrated Crop-Livestock Systems Key Laboratory, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
13
|
Lin XM, Wang M, Xiao X, Shi YL, Zheng YS, Huang ZH, Cheng YT, Huang RT, Huang F, Li K, Sun J, Sun WY, Kurihara H, Li YF, Duan WJ, He RR. Wolfberry (Lycium barbarum) glycopeptide attenuates dopaminergic neurons loss by inhibiting lipid peroxidation in Parkinson's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156275. [PMID: 39644762 DOI: 10.1016/j.phymed.2024.156275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder characterized clinically by motor dysfunction due to gradual loss of dopaminergic neurons in the nigrostriatal system. Currently, medications such as levodopa preparations, offer only temporary symptomatic relief without preventing neuronal loss or halting disease progression. In traditional Chinese medicine (TCM), a particular type of wolfberry or goji berry, the fruit of Lycium barbarum L., has been historically regarded for its neuroprotective properties, potentially offering therapeutic benefits for PD. However, scientific validation of these effects remains limited. PURPOSE This study aims to investigate the neuroprotective effects of wolfberry glycopeptide (WGP) on PD progression in various animal models, and to elucidate the underlying mechanisms responsible for its therapeutic action. STUDY DESIGN Diverse canonical animal models, including 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice, 6-hydroxydopamine (6-OHDA)-treated rats, and α-synuclein overexpressed hSNCAA53T mice, were used to evaluate WGP's anti-PD efficacy. Behavioral deficits and pathological damage to dopaminergic neurons were assessed to determine WGP's neuroprotective potential. METHODS After establishing the animal models and administering WGP treatment, PD-like behaviors were assessed using pole test, rotarod test and gait analysis. Dopaminergic neurons loss in the midbrain and striatum was detected by means of immunohistochemistry, immunofluorescence and Western blot analysis. Inflammatory markers in these brain regions were measured by ELISA. RESULTS WGP treatment significantly alleviated motor deficits as well as progressive dopaminergic neurons loss. Mechanistically, WGP exerted its neuroprotective effects by regulating iron homeostasis, specifically through the modulation of key proteins such as TFRC, FTH1, and FPN. This function contributed to reducing the accumulation of lipid peroxidation in nigrostriatal system, thereby mitigating neuroinflammation and neuronal degeneration. CONCLUSION Our findings underscore the innovative potential of WGP as a neuroprotective agent in PD, with a unique mechanism of action targeting iron homeostasis and lipid peroxidation-driven neurodegeneration. This study advances the understanding of TCM's therapeutic contributions to neurodegeneration and positions WGP as a strong candidate for further clinical development in PD treatment.
Collapse
Affiliation(s)
- Xiao-Min Lin
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Meng Wang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Xin Xiao
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ya-Li Shi
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Ya-Si Zheng
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Zi-Han Huang
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Ya-Ting Cheng
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Rui-Ting Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Kun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Jie Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine &Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Engineering Research Center of Traditional Chinese Medicine & Health Products/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment/The Sixth Affiliated Hospital, Jinan University, Guangzhou 510632, China; School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
14
|
Sun Z, Liu J, Chen Z, So K, Hu Y, Chiu K. Lycium barbarum Extract Enhanced Neuroplasticity and Functional Recovery in 5xFAD Mice via Modulating Microglial Status of the Central Nervous System. CNS Neurosci Ther 2024; 30:e70123. [PMID: 39564756 PMCID: PMC11576918 DOI: 10.1111/cns.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most prevalent neurodegenerative disease with limited treatment options. This study aimed to investigate the effects of Lycium barbarum extract (LBE), a Chinese herb, on the central nervous system (CNS)-including the retina, brain, and spinal cord-in 5xFAD transgenic mice after the onset of AD. METHODS Starting at 6 months of age, 5xFAD mice received daily intragastric gavage of LBE (2 g/kg) for 2 months. At 8 months, behavioral tests were conducted to assess cognition, motor function, and visual function. These included the Morris water maze, novel object recognition, and Y-maze tests for cognition; the beam walking balance and clasping tests for motor function; and electroretinogram (ERG) for visual function. Immunohistochemistry, western blotting, and ELISA were used to evaluate Aβ deposition, microglial morphology, neuroinflammation, and neuroprotective signaling pathways. Primary microglia and the IMG cell line were used to study LBE's effects on Aβ uptake and degradation in vitro. RESULTS After 2 months of LBE treatment, the decline in cognition, motor, and visual functions in 5xFAD mice was significantly slowed. Microglia in the brain, spinal cord, and retina exhibited a neuroprotective state, with reduced Aβ deposition, decreased inflammatory cytokine levels (e.g., TNF-α, IL-1β, IL-6), increased Arg-1/iNOS ratio, and enhanced phagocytic capacity. LBE also promoted Aβ uptake and degradation in primary microglia and the IMG cell line. Neuroprotective signals such as p-Akt, p-Erk1/2, and p-CREB were elevated. Additionally, LBE treatment restored synaptic protein expression and enhanced neuroplasticity. CONCLUSION The findings suggest that LBE treatment can enhance neuroplasticity, reduce systemic inflammation, and improve phagocyte clearance of Aβ deposition via inducing a neuroprotective microglial phenotype throughout CNS. As an upper-class Chinese medicine, appropriate intake of LBE may serve as a beneficial antiaging strategy for AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Innovation Research Institute, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jinfeng Liu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
| | - Zihang Chen
- Department of PsychologyThe University of Hong KongHong KongSARChina
- Department of Sports Medicine, the First Affiliated HospitalJinan UniversityChina
| | - Kwok‐Fai So
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Key Laboratory of CNS Regeneration, Guangdong‐Hongkong‐Macau CNS Regeneration Institute, Ministry of EducationJinan UniversityGuangzhouChina
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Orthopedics CenterThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of PsychologyThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
15
|
Xue C, He Z, Zeng M, Wang Z, Chen Q, Qin F, Chen M, Ye H, Chen J. The Protective Effects of Polygala tenuifolia and Tenuifolin on Corticosterone-Evoked Ferroptosis, Oxidative Stress, and Neuroinflammation: Insights from Molecular Dynamics Simulations and In Vitro Experiments. Foods 2024; 13:3358. [PMID: 39517142 PMCID: PMC11545101 DOI: 10.3390/foods13213358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Excessive stress is a well-established contributor to neurological damage, insomnia, and depression, imposing a significant burden on individuals and society. This underscores the urgent need for effective stress-relief strategies. The main purpose of this study was to explore the protective effects of Polygala tenuifolia (PT) and its bioactive compound, tenuifolin, against corticosterone-induced neurotoxicity, with a focus on ferroptosis, oxidative stress, and neuroinflammation. Both PT extracts and tenuifolin mitigated corticosterone-induced cellular damage. Tenuifolin reversed the corticosterone-induced dysregulation of ferroptosis-associated proteins, such as SLC7A11, GPX4, and Nrf2, leading to a marked reduction in ferroptosis levels. Molecular dynamics simulations revealed that corticosterone significantly altered the conformation and binding energy of the SLC7A11/SLC3A2 complex, critical for ferroptosis regulation. These changes were reversed by tenuifolin. Additionally, tenuifolin alleviated corticosterone-induced oxidative stress and neuroinflammation, both of which accelerated ferroptosis. In conclusion, these results indicate that tenuifolin attenuates corticosterone-induced neurotoxicity by modulating ferroptosis, oxidative stress, and neuroinflammation. This study provides a theoretical foundation for the application of PT and tenuifolin in stress-induced nerve damage.
Collapse
Affiliation(s)
- Chaoyi Xue
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingmin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore;
| | - Hui Ye
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore;
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (C.X.); (Z.H.); (M.Z.); (Z.W.); (Q.C.); (F.Q.)
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
16
|
Ni Y, Hu Y, Zhu L, Jiang X, Zhang H, Liu J, Zhao Y. Lycium Barbarum Polysaccharide-Derived Nanoparticles Protect Visual Function by Inhibiting RGC Ferroptosis and Microglial Activation in Retinal Ischemia‒Reperfusion Mice. Adv Healthc Mater 2024; 13:e2304285. [PMID: 38994661 DOI: 10.1002/adhm.202304285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Retinal ischemia‒reperfusion (IR) is a major contributor to vision impairment and irreversible vision loss due to retinal ganglion cell (RGC) injury or loss. Contemporary therapeutic approaches predominantly focus on the amelioration of symptoms rather than addressing the fundamental etiological factors. Oxidative stress is a notable feature and an important mediator of IR damage. Lycium barbarum polysaccharide (LBP), the main active ingredient of Lycium barbarum, has various pharmacological effects, including antioxidation, immunoregulation, and neuroprotective effects. In this study, the ROS-consumable moiety phenylboronic acid pinacol ester (PBA) is introduced to LBP molecules, which can self-assemble into nanoparticles in aqueous solution. This nanoparticle (termed PLBP) can reduce the cellular ROS levels and enhance the antioxidant capability of RGCs by activating the NRF2 pathway, thus protecting RGCs from ferroptosis and preserving visual function in response to IR injury. PLBP also reduces neuroinflammation by inhibiting the ability of microglia to phagocytose, migrate, secrete inflammatory cytokines, and activate the NF-κB pathway. In conclusion, this approach can be used as an inspiration for the future development of neuroprotective drugs.
Collapse
Affiliation(s)
- Yueqi Ni
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijia Zhu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xulin Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
17
|
Xu L, Yang L, Xu H, Li Y, Peng F, Qiu W, Tang C. Lycium barbarum glycopeptide ameliorates motor and visual deficits in autoimmune inflammatory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155610. [PMID: 38640861 DOI: 10.1016/j.phymed.2024.155610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/07/2024] [Accepted: 04/07/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Lycium barbarum glycopeptide (LbGp), extracted from the traditional Chinese medicine (TCM) of Lycium barbarum (LB), provides a neuroprotective effect against neurodegenerative and neuroimmune disorders contributing to its immunomodulatory and anti-inflammatory roles. Neuromyelitis optica spectrum disorders (NMOSD) is an autoimmune-mediated central nervous system (CNS) demyelinating disease, clinically manifested as transverse myelitis (TM) and optic neuritis. However, no drug has been demonstrated to be effective in relieving limb weakness and visual impairment of NMOSD patients. PURPOSE This study investigates the potential role of LbGp in ameliorating pathologic lesions and improving neurological dysfunction during NMOSD progression, and to elucidate the underlying mechanisms for the first time. STUDY DESIGN We administrate LbGp in experimental NMOSD models in ex vivo and in vivo to explore its effect on NMOSD. METHODS To evaluate motor function, both rotarod and gait tasks were performed in systemic NMOSD mice models. Furthermore, we assessed the severity of NMO-like lesions of astrocytes, organotypic cerebellar slices, as well as brain, spinal cord and optic nerve sections from NMOSD mouse models with LbGp treatment by immunofluorescent staining. In addition, demyelination levels in optic nerve were measured by G-ratio through Electro-microscopy (EM). And inflammation response was explored through detecting the protein levels of proinflammatory cytokines and NF-κB signaling in astrocytic culture medium and spinal cord homogenates respectively by Elisa and by Western blotting. RESULTS LbGp could significantly reduce astrocytes injury, demyelination, and microglial activation in NMOSD models. In addition, LbGp also improved locomotor and visual dysfunction through preventing neuron and retinal ganglion cells (RGCs) from inflammatory attack in a systemic mouse model. Mechanistically, LbGp inhibits proinflammatory factors release via inhibition of NF-κB signaling in NMOSD models. CONCLUSION This study provides evidence to develop LbGp as a functional TCM for the clinical treatment of NMOSD.
Collapse
Affiliation(s)
- Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Lu Yang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Yuhan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
18
|
Chen H, Wu J, Zhu X, Ma Y, Li Z, Lu L, Aschner M, Su P, Luo W. Manganese-induced miR-125b-2-3p promotes anxiety-like behavior via TFR1-mediated ferroptosis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123255. [PMID: 38159631 DOI: 10.1016/j.envpol.2023.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The toxic effects of excessive manganese (Mn) levels in the environment have led to a severe public health concern. Ferroptosis is a newly form of cell death relying on iron, inherent to pathophysiological processes of psychiatric disorders, such as anxiety and depression-like behaviors. Excessive Mn exposure causes various neurological effects, including neuronal death and mood disorders. Whether Mn exposure causes anxiety and depression-like behaviors, and the underlying mechanisms of Mn-induced ferroptosis have yet to be determined. Here, Mn-exposed mice showed anxiety-like behavior. We also confirmed the accumulation of ferrous ion (Fe2+), lipid peroxidation, and depletion of antioxidant defense system both in vitro and in vivo Mn-exposed models, suggesting that Mn exposure can induce ferroptosis. Furthermore, Mn exposure downregulated the expression of miR-125b-2-3p. In turn, overexpression of miR-125b-2-3p alleviated the Mn-induced ferroptosis by targeting Transferrin receptor protein 1 (TFR1). In summary, this novel study established the propensity of Mn to cause anxiety-like behavior, an effect that was regulated by miR-125b-2-3p and ensuing ferroptosis secondary to the targeting of TFR1. These results offer promising targets for the prevention and treatment of Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Honggang Chen
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinxia Wu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaozheng Zhu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Yan Ma
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Zeye Li
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Lu
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Peng Su
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenjing Luo
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
19
|
Zhang G, Lv S, Zhong X, Li X, Yi Y, Lu Y, Yan W, Li J, Teng J. Ferroptosis: a new antidepressant pharmacological mechanism. Front Pharmacol 2024; 14:1339057. [PMID: 38259274 PMCID: PMC10800430 DOI: 10.3389/fphar.2023.1339057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
The incidence rate of depression, a mental disorder, is steadily increasing and has the potential to become a major global disability factor. Given the complex pathological mechanisms involved in depression, the use of conventional antidepressants may lead to severe complications due to their side effects. Hence, there is a critical need to explore the development of novel antidepressants. Ferroptosis, a newly recognized form of cell death, has been found to be closely linked to the onset of depression. Several studies have indicated that certain active ingredients can ameliorate depression by modulating the ferroptosis signaling pathway. Notably, traditional Chinese medicine (TCM) active ingredients and TCM prescriptions have demonstrated promising antidepressant effects in previous investigations owing to their unique advantages in antidepressant therapy. Building upon these findings, our objective was to review recent relevant research and provide new insights and directions for the development and application of innovative antidepressant strategies.
Collapse
Affiliation(s)
- Guangheng Zhang
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shimeng Lv
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Zhong
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiangyu Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunhao Yi
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yitong Lu
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiamin Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jing Teng
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|