1
|
Olfactory Evaluation in Alzheimer’s Disease Model Mice. Brain Sci 2022; 12:brainsci12050607. [PMID: 35624994 PMCID: PMC9139301 DOI: 10.3390/brainsci12050607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Olfactory dysfunction is considered a pre-cognitive biomarker of Alzheimer’s disease (AD). Because the olfactory system is highly conserved across species, mouse models corresponding to various AD etiologies have been bred and used in numerous studies on olfactory disorders. The olfactory behavior test is a method required for early olfactory dysfunction detection in AD model mice. Here, we review the olfactory evaluation of AD model mice, focusing on traditional olfactory detection methods, olfactory behavior involving the olfactory cortex, and the results of olfactory behavior in AD model mice, aiming to provide some inspiration for further development of olfactory detection methods in AD model mice.
Collapse
|
2
|
Amygdala Corticofugal Input Shapes Mitral Cell Responses in the Accessory Olfactory Bulb. eNeuro 2018; 5:eN-NWR-0175-18. [PMID: 29911171 PMCID: PMC6001136 DOI: 10.1523/eneuro.0175-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/11/2023] Open
Abstract
Interconnections between the olfactory bulb and the amygdala are a major pathway for triggering strong behavioral responses to a variety of odorants. However, while this broad mapping has been established, the patterns of amygdala feedback connectivity and the influence on olfactory circuitry remain unknown. Here, using a combination of neuronal tracing approaches, we dissect the connectivity of a cortical amygdala [posteromedial cortical nucleus (PmCo)] feedback circuit innervating the mouse accessory olfactory bulb. Optogenetic activation of PmCo feedback mainly results in feedforward mitral cell (MC) inhibition through direct excitation of GABAergic granule cells. In addition, LED-driven activity of corticofugal afferents increases the gain of MC responses to olfactory nerve stimulation. Thus, through corticofugal pathways, the PmCo likely regulates primary olfactory and social odor processing.
Collapse
|
3
|
Firing properties of entorhinal cortex neurons and early alterations in an Alzheimer's disease transgenic model. Pflugers Arch 2013; 466:1437-50. [PMID: 24132829 DOI: 10.1007/s00424-013-1368-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/20/2013] [Accepted: 09/23/2013] [Indexed: 01/06/2023]
Abstract
The entorhinal cortex (EC) is divided into medial (MEC) and lateral (LEC) anatomical areas, and layer II neurons of these two regions project to granule cells of the dentate gyrus through the medial and lateral perforant pathways (MPP and LPP), respectively. Stellate cells (SCs) represent the main neurons constituting the MPP inputs, while fan cells (FCs) represent the main LPP inputs. Here, we first characterized the excitability properties of SCs and FCs in adult wild-type (WT) mouse brain. Our data indicate that, during sustained depolarization, action potentials (APs) generated by SCs exhibit increased fast afterhyperpolarization and overshoot, making them able to fire at higher frequencies and to exhibit higher spike frequency adaptation (SFA) than FCs. Since the EC is one of the earliest brain regions affected during Alzheimer's disease (AD) progression, we compared SCs and FCs firing in 4-month-old WT and transgenic Tg2576 mice, a well-established AD mouse model. Tg2576-SCs displayed a slight increase in firing frequency during mild depolarization but otherwise normal excitability properties during higher stimulations. On the contrary, Tg2576-FCs exhibited a decreased firing frequency during mild and higher depolarizations, as well as an increased SFA. Our data identify the FCs as a neuronal population particularly sensitive to early pathological effects of chronic accumulation of APP-derived peptides, as it occurs in Tg2576 mice. As FCs represent the major input of sensory information to the hippocampus during memory acquisition, early alterations in their excitability profile could significantly contribute to the onset of cognitive decline in AD.
Collapse
|
4
|
Xu W, Wilson DA. Odor-evoked activity in the mouse lateral entorhinal cortex. Neuroscience 2012; 223:12-20. [PMID: 22871522 PMCID: PMC3455128 DOI: 10.1016/j.neuroscience.2012.07.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 10/28/2022]
Abstract
The entorhinal cortex is a brain area with multiple reciprocal connections to the hippocampus, amygdala, perirhinal cortex, olfactory bulb and piriform cortex. As such, it is thought to play a large role in the olfactory memory process. The present study is the first to compare lateral entorhinal and anterior piriform cortex odor-evoked single-unit and local field potential activity in mouse. Recordings were made in urethane-anesthetized mice that were administered a range of three pure odors and three overlapping odor mixtures. Results show that spontaneous as well as odor-evoked unit activity was lower in lateral entorhinal versus piriform cortex. In addition, units in lateral entorhinal cortex were responsive to a more restricted set of odors compared to piriform. Conversely, odor-evoked power change in local field potential activity was greater in the lateral entorhinal cortex in the theta band than in piriform. The highly odor-specific and restricted firing in lateral entorhinal cortex suggests that it may play a role in modulating odor-specific, experience- and state-dependent olfactory coding.
Collapse
Affiliation(s)
- W Xu
- Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research Orangeburg, NY 10962, USA.
| | | |
Collapse
|
5
|
|
6
|
A selective role for ARMS/Kidins220 scaffold protein in spatial memory and trophic support of entorhinal and frontal cortical neurons. Exp Neurol 2011; 229:409-20. [PMID: 21419124 DOI: 10.1016/j.expneurol.2011.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 11/21/2022]
Abstract
Progressive cortical pathology is common to several neurodegenerative and psychiatric disorders. The entorhinal cortex (EC) and frontal cortex (FC) are particularly vulnerable, and neurotrophins have been implicated because they appear to be protective. A downstream signal transducer of neurotrophins, the ankyrin repeat-rich membrane spanning scaffold protein/Kidins 220 (ARMS) is expressed in the cortex, where it could play an important role in trophic support. To test this hypothesis, we evaluated mice with a heterozygous deletion of ARMS (ARMS(+/-) mice). Remarkably, the EC and FC were the regions that demonstrated the greatest defects. Many EC and FC neurons became pyknotic in ARMS(+/-) mice, so that large areas of the EC and FC were affected by 12 months of age. Areas with pyknosis in the EC and FC of ARMS(+/-) mice were also characterized by a loss of immunoreactivity to a neuronal antigen, NeuN, which has been reported after insult or injury to cortical neurons. Electron microscopy showed that there were defects in mitochondria, myelination, and multilamellar bodies in the EC and FC of ARMS(+/-) mice. Although primarily restricted to the EC and FC, pathology appeared to be sufficient to cause functional impairments, because ARMS(+/-) mice performed worse than wild-type on the Morris water maze. Comparisons of males and females showed that female mice were the affected sex in all comparisons. Taken together, the results suggest that the expression of a prominent neurotrophin receptor substrate normally protects the EC and FC, and that ARMS may be particularly important in females.
Collapse
|
7
|
Caldwell HK, Dike OE, Stevenson EL, Storck K, Young WS. Social dominance in male vasopressin 1b receptor knockout mice. Horm Behav 2010; 58:257-63. [PMID: 20298692 PMCID: PMC2879445 DOI: 10.1016/j.yhbeh.2010.03.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 03/01/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
Abstract
We have previously reported that mice with a targeted disruption of their vasopressin 1b receptor gene, Avpr1b, have mild impairments in social recognition and reduced aggression. The reductions in aggression are limited to social forms of aggression, i.e., maternal and inter-male aggression, while predatory aggression remains unaffected. To further clarify the role of the Avpr1b in the regulation of social behavior we first examined anxiety-like and depression-like behaviors in Avpr1b knockout (Avpr1b -/-) mice. We then went on to test the ability of Avpr1b -/- mice to form dominance hierarchies. No major differences were found between Avpr1b -/- and wildtype mice in anxiety-like behaviors, as measured using an elevated plus maze and an open field test, or depression-like behaviors, as measured using a forced swim test. In the social dominance study we found that Avpr1b -/- mice are able to form dominance hierarchies, though in early hierarchy formation dominant Avpr1b -/- mice display significantly more mounting behavior on Day 1 of testing compared to wildtype controls. Further, non-socially dominant Avpr1b -/- mice spend less time engaged in attack behavior than wildtype controls. These findings suggest that while Avpr1b -/- mice may be able to form dominance hierarchies they appear to employ alternate strategies.
Collapse
Affiliation(s)
- Heather K Caldwell
- Department of Biological Sciences and the School of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
This selective review considers herpetological papers that feature the use of chemical cues, particularly pheromones involved in reproductive interactions between potential mates. Primary examples include garter snake females that attract males, lacertid lizards and the effects of their femoral gland secretions, aquatic male newts that chemically attract females, and terrestrial salamander males that chemically persuade a female to mate. Each case study spans a number of research approaches (molecular, biochemical, behavioral) and is related to sensory processing and the physiological effects of pheromone delivery. These and related studies show that natural pheromones can be identified, validated with behavioral tests, and incorporated in research on vomeronasal functional response.
Collapse
Affiliation(s)
- Lynne D Houck
- Department of Zoology, Oregon State University, Corvallis, Oregon 97331, USA.
| |
Collapse
|
9
|
van Strien NM, Cappaert NLM, Witter MP. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci 2009; 10:272-82. [PMID: 19300446 DOI: 10.1038/nrn2614] [Citation(s) in RCA: 690] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Converging evidence suggests that each parahippocampal and hippocampal subregion contributes uniquely to the encoding, consolidation and retrieval of declarative memories, but their precise roles remain elusive. Current functional thinking does not fully incorporate the intricately connected networks that link these subregions, owing to their organizational complexity; however, such detailed anatomical knowledge is of pivotal importance for comprehending the unique functional contribution of each subregion. We have therefore developed an interactive diagram with the aim to display all of the currently known anatomical connections of the rat parahippocampal-hippocampal network. In this Review, we integrate the existing anatomical knowledge into a concise description of this network and discuss the functional implications of some relatively underexposed connections.
Collapse
Affiliation(s)
- N M van Strien
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
10
|
Ponseti J, Siebner HR, Klöppel S, Wolff S, Granert O, Jansen O, Mehdorn HM, Bosinski HA. Homosexual women have less grey matter in perirhinal cortex than heterosexual women. PLoS One 2007; 2:e762. [PMID: 17712410 PMCID: PMC1942120 DOI: 10.1371/journal.pone.0000762] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Accepted: 07/23/2007] [Indexed: 11/19/2022] Open
Abstract
Is sexual orientation associated with structural differences in the brain? To address this question, 80 homosexual and heterosexual men and women (16 homosexual men and 15 homosexual women) underwent structural MRI. We used voxel-based morphometry to test for differences in grey matter concentration associated with gender and sexual orientation. Compared with heterosexual women, homosexual women displayed less grey matter bilaterally in the temporo-basal cortex, ventral cerebellum, and left ventral premotor cortex. The relative decrease in grey matter was most prominent in the left perirhinal cortex. The left perirhinal area also showed less grey matter in heterosexual men than in heterosexual women. Thus, in homosexual women, the perirhinal cortex grey matter displayed a more male-like structural pattern. This is in accordance with previous research that revealed signs of sex-atypical prenatal androgenization in homosexual women, but not in homosexual men. The relevance of the perirhinal area for high order multimodal (olfactory and visual) object, social, and sexual processing is discussed.
Collapse
Affiliation(s)
- Jorge Ponseti
- Section of Sexual Medicine, Christian-Albrechts University, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Immunotoxic cholinergic lesions in the basal forebrain reverse the effects of entorhinal cortex lesions on conditioned odor aversion in the rat. Neurobiol Learn Mem 2007; 88:114-26. [DOI: 10.1016/j.nlm.2007.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/20/2022]
|
12
|
Lai WS, Ramiro LLR, Yu HA, Johnston RE. Recognition of familiar individuals in golden hamsters: a new method and functional neuroanatomy. J Neurosci 2006; 25:11239-47. [PMID: 16339019 PMCID: PMC4655972 DOI: 10.1523/jneurosci.2124-05.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ability to recognize individuals is essential for many aspects of social interaction and social organization, yet we know relatively little about the neural mechanisms underlying this ability. Most laboratory studies of individual recognition in rodents have studied differential responses to familiar versus unfamiliar individuals rather than differential responses to equally well known individuals having different significance for the subject. In experiment 1, we use a new method for studying true individual recognition in which male hamsters first had different experiences with two stimulus males (exposures to one male across a wire-mesh barrier and fights with another male). One day later, losers of fights were tested in a Y-maze for reactions to one of the two familiar males. Subjects tested with the familiar winner avoided this stimulus male, but subjects tested with the familiar, neutral male were attracted to him. Immunohistochemistry for c-Fos and Egr-1 implicate several areas of the brain in individual recognition, particularly the anterior piriform cortex, the CA1 and CA3 regions of anterior dorsal hippocampus, anterior and posterior dentate gyrus, and perirhinal cortex. In experiment 2, temporary inactivation of the CA1 region of anterior dorsal hippocampus by microinfusion of lidocaine eliminated the avoidance of the familiar winner, but a saline control injection had no effect. These results are the first to use a rodent model to characterize neural circuits involved in the recognition of equally well known individuals and the corresponding emotional responses to them.
Collapse
Affiliation(s)
- Wen-Sung Lai
- Department of Psychology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|