1
|
Liu Y, Wang Y, Zhao ZD, Xie G, Zhang C, Chen R, Zhang Y. A subset of dopamine receptor-expressing neurons in the nucleus accumbens controls feeding and energy homeostasis. Nat Metab 2024; 6:1616-1631. [PMID: 39147933 PMCID: PMC11349581 DOI: 10.1038/s42255-024-01100-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Orchestrating complex behaviors, such as approaching and consuming food, is critical for survival. In addition to hypothalamus neuronal circuits, the nucleus accumbens (NAc) also controls appetite and satiety. However, specific neuronal subtypes of the NAc that are involved and how the humoral and neuronal signals coordinate to regulate feeding remain incompletely understood. Here we decipher the spatial diversity of neuron subtypes of the NAc shell (NAcSh) and define a dopamine receptor D1-expressing and Serpinb2-expressing subtype controlling food consumption in male mice. Chemogenetics and optogenetics-mediated regulation of Serpinb2+ neurons bidirectionally regulate food seeking and consumption specifically. Circuitry stimulation reveals that the NAcShSerpinb2→LHLepR projection controls refeeding and can overcome leptin-mediated feeding suppression. Furthermore, NAcSh Serpinb2+ neuron ablation reduces food intake and upregulates energy expenditure, resulting in reduced bodyweight gain. Our study reveals a neural circuit consisting of a molecularly distinct neuronal subtype that bidirectionally regulates energy homeostasis, providing a potential therapeutic target for eating disorders.
Collapse
Affiliation(s)
- Yiqiong Liu
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ying Wang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Zheng-Dong Zhao
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Guoguang Xie
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Chao Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Renchao Chen
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Division of Hematology/Oncology, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
2
|
Domjan M, Fanselow MS. Pavlovian or associative sensitization and its biological significance. Neurosci Biobehav Rev 2024; 163:105790. [PMID: 38960076 DOI: 10.1016/j.neubiorev.2024.105790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Pavlovian conditioning is typically distinguished from sensitization but a Pavlovian conditional stimulus (CS) also results in sensitization. A Pavlovian CS can sensitize responding to a probe stimulus that is related to the unconditional stimulus (US) or to the US itself. Pavlovian sensitization has been studied in the defensive, sexual, and feeding systems. In Pavlovian sensitization, the focus is not on a conditional response (CR) directly elicited by the CS but on the response mode that is activated by the CS. Activation of a response mode increases the probability of particular responses and also increases reactivity to various stimuli. Pavlovian sensitization reflects this increased stimulus reactivity. Pavlovian sensitization helps uncover successful learning in situations where a conventional CR does not occur. Pavlovian sensitization also encourages broadening our conceptions of Pavlovian conditioning to include changes in afferent processes. Implications for biological fitness and for basic and translational research are discussed.
Collapse
|
3
|
Li J, Temizer R, Chen YW, Aoki C. Ketamine ameliorates activity-based anorexia of adolescent female mice through changes in GluN2B-containing NMDA receptors at postsynaptic cytoplasmic locations of pyramidal neurons and interneurons of medial prefrontal cortex. Brain Struct Funct 2024; 229:323-348. [PMID: 38170266 DOI: 10.1007/s00429-023-02740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Anorexia nervosa (AN) is a mental illness with high rates of mortality and relapse, and no approved pharmacotherapy. Using the activity-based anorexia (ABA) model of AN, we previously showed that a single sub-anesthetic intraperitoneal injection of ketamine (30 mg/kg-KET, but not 3 mg/kg-KET), has an immediate and long-lasting effect of reducing anorexia-like behavior among adolescent female mice. We also showed previously that excitatory outflow from medial prefrontal cortex (mPFC) engages hunger-evoked hyperactivity, leading to the ABA condition of severe weight loss. Ketamine is known to target GluN2B-containing NMDARs (NR2B). Might synaptic plasticity involving NR2B in mPFC contribute to ketamine's ameliorative effects? We addressed this question through electron microscopic immunocytochemical quantification of GluN2B at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (IN) in mPFC layer 1 of animals that underwent recovery from a second ABA induction (ABA2), 22 days after ketamine injection during the first ABA induction. The 30 mg/kg-KET evoked synaptic plasticity that differed for PN and IN, with changes revolving the cytoplasmic reserve pool of NR2B more than the postsynaptic membrane pool. Those individuals that suppressed hunger-evoked wheel running the most and increased food consumption during recovery from ABA2 the most showed the greatest increase of NR2B at PN and IN excitatory synapses. We hypothesize that 30 mg/kg-KET promotes long-lasting changes in the reserve cytoplasmic pool of NR2B that enables activity-dependent rapid strengthening of mPFC circuits underlying the more adaptive behavior of suppressed running and enhanced food consumption, in turn supporting better weight restoration.
Collapse
Affiliation(s)
- Jennifer Li
- Center for Neural Science, New York University, New York, NY, USA
| | - Rose Temizer
- Center for Neural Science, New York University, New York, NY, USA
| | - Yi-Wen Chen
- Center for Neural Science, New York University, New York, NY, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
4
|
Boyle CA, Kola PK, Oraegbuna CS, Lei S. Leptin excites basolateral amygdala principal neurons and reduces food intake by LepRb-JAK2-PI3K-dependent depression of GIRK channels. J Cell Physiol 2024; 239:e31117. [PMID: 37683049 PMCID: PMC10920395 DOI: 10.1002/jcp.31117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
Leptin is an adipocyte-derived hormone that modulates food intake, energy balance, neuroendocrine status, thermogenesis, and cognition. Whereas a high density of leptin receptors has been detected in the basolateral amygdala (BLA) neurons, the physiological functions of leptin in the BLA have not been determined yet. We found that application of leptin excited BLA principal neurons by activation of the long form leptin receptor, LepRb. The LepRb-elicited excitation of BLA neurons was mediated by depression of the G protein-activated inwardly rectifying potassium (GIRK) channels. Janus Kinase 2 (JAK2) and phosphoinositide 3-kinase (PI3K) were required for leptin-induced excitation of BLA neurons and depression of GIRK channels. Microinjection of leptin into the BLA reduced food intake via activation of LepRb, JAK2, and PI3K. Our results may provide a cellular and molecular mechanism to explain the physiological roles of leptin in vivo.
Collapse
Affiliation(s)
- Cody A. Boyle
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Phani K. Kola
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Chidiebele S. Oraegbuna
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND58203, USA
| |
Collapse
|
5
|
Fetterly TL, Catalfio AM, Ferrario CR. Effects of junk-food on food-motivated behavior and nucleus accumbens glutamate plasticity; insights into the mechanism of calcium-permeable AMPA receptor recruitment. Neuropharmacology 2024; 242:109772. [PMID: 37898332 PMCID: PMC10883075 DOI: 10.1016/j.neuropharm.2023.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
In rats, eating obesogenic diets increases calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly, these diet-induced alterations in NAc transmission are pronounced and sustained in obesity-prone (OP) male rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying this NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Together results show that diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work helps elucidate how diet interacts with obesity susceptibility to influence food-motivated behavior and extends our fundamental understanding of NAc CP-AMPAR recruitment.
Collapse
Affiliation(s)
- Tracy L Fetterly
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda M Catalfio
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA; Psychology Department (Biopsychology) University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Fetterly TL, Catalfio AM, Ferrario CR. Effects of junk-food on food-motivated behavior and NAc glutamate plasticity; insights into the mechanism of NAc calcium-permeable AMPA receptor recruitment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540977. [PMID: 37292760 PMCID: PMC10245687 DOI: 10.1101/2023.05.16.540977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In rats, eating obesogenic diets increase calcium-permeable AMPA receptor (CP-AMPAR) transmission in the nucleus accumbens (NAc) core, and enhances food-motivated behavior. Interestingly these diet-induced alterations in NAc transmission are pronounced in obesity-prone (OP) rats and absent in obesity-resistant (OR) populations. However, effects of diet manipulation on food motivation, and the mechanisms underlying NAc plasticity in OPs is unknown. Using male selectively-bred OP and OR rats, we assessed food-motivated behavior following ad lib access to chow (CH), junk-food (JF), or 10d of JF followed by a return to chow diet (JF-Dep). Behavioral tests included conditioned reinforcement, instrumental responding, and free consumption. Additionally, optogenetic, chemogenetic, and pharmacological approaches were used to examine NAc CP-AMPAR recruitment following diet manipulation and ex vivo treatment of brain slices. Motivation for food was greater in OP than OR rats, as expected. However, JF-Dep only produced enhancements in food-seeking in OP groups, while continuous JF access reduced food-seeking in both OPs and ORs. Reducing excitatory transmission in the NAc was sufficient to recruit CP-AMPARs to synapses in OPs, but not ORs. In OPs, JF-induced increases in CP-AMPARs occurred in mPFC-, but not BLA-to-NAc inputs. Diet differentially affects behavioral and neural plasticity in obesity susceptible populations. We also identify conditions for acute recruitment of NAc CP-AMPARs; these results suggest that synaptic scaling mechanisms contribute to NAc CP-AMPAR recruitment. Overall, this work improves our understanding of how sugary, fatty food consumption interacts with obesity susceptibility to influence food-motivated behavior. It also extends our fundamental understanding of NAc CP-AMPAR recruitment; this has important implications for motivation in the context of obesity as well as drug addiction.
Collapse
Affiliation(s)
- Tracy L. Fetterly
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Amanda M. Catalfio
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carrie R. Ferrario
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Brown RM, James MH. Binge eating, overeating and food addiction: Approaches for examining food overconsumption in laboratory rodents. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110717. [PMID: 36623582 PMCID: PMC10162020 DOI: 10.1016/j.pnpbp.2023.110717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Overeating ranges in severity from casual overindulgence to an overwhelming drive to consume certain foods. At its most extreme, overeating can manifest as clinical diagnoses such as binge eating disorder or bulimia nervosa, yet subclinical forms of overeating such as emotional eating or uncontrolled eating can still have a profoundly negative impact on health and wellbeing. Although rodent models cannot possibly capture the full spectrum of disordered overeating, studies in laboratory rodents have substantially progressed our understanding of the neurobiology of overconsumption. These experimental approaches range from simple food-exposure protocols that promote binge-like eating and the development of obesity, to more complex operant procedures designed to examine distinct 'addiction-like' endophenotypes for food. This review provides an overview of these experimental approaches, with the view to providing a comprehensive resource for preclinical investigators seeking to utilize behavioural models for studying the neural systems involved in food overconsumption.
Collapse
Affiliation(s)
- Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, NJ, USA; Brain Health Institute, Rutgers University, NJ, USA.
| |
Collapse
|
8
|
Celeghin A, Palermo S, Giampaolo R, Di Fini G, Gandino G, Civilotti C. Brain Correlates of Eating Disorders in Response to Food Visual Stimuli: A Systematic Narrative Review of FMRI Studies. Brain Sci 2023; 13:465. [PMID: 36979275 PMCID: PMC10046850 DOI: 10.3390/brainsci13030465] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
This article summarizes the results of studies in which functional magnetic resonance imaging (fMRI) was performed to investigate the neurofunctional activations involved in processing visual stimuli from food in individuals with anorexia nervosa (AN), bulimia nervosa (BN) and binge eating disorder (BED). A systematic review approach based on the PRISMA guidelines was used. Three databases-Scopus, PubMed and Web of Science (WoS)-were searched for brain correlates of each eating disorder. From an original pool of 688 articles, 30 articles were included and discussed. The selected studies did not always overlap in terms of research design and observed outcomes, but it was possible to identify some regularities that characterized each eating disorder. As if there were two complementary regulatory strategies, AN seems to be associated with general hyperactivity in brain regions involved in top-down control and emotional areas, such as the amygdala, insula and hypothalamus. The insula and striatum are hyperactive in BN patients and likely involved in abnormalities of impulsivity and emotion regulation. Finally, the temporal cortex and striatum appear to be involved in the neural correlates of BED, linking this condition to use of dissociative strategies and addictive aspects. Although further studies are needed, this review shows that there are specific activation pathways. Therefore, it is necessary to pay special attention to triggers, targets and maintenance processes in order to plan effective therapeutic interventions. Clinical implications are discussed.
Collapse
Affiliation(s)
- Alessia Celeghin
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Sara Palermo
- Department of Psychology, University of Turin, 10124 Turin, Italy
- Neuroradiology Unit, Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | | | - Giulia Di Fini
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | | | - Cristina Civilotti
- Department of Psychology, University of Turin, 10124 Turin, Italy
- Faculty of Educational Science, Salesian University Institute (IUSTO), 10155 Turin, Italy
| |
Collapse
|
9
|
Li J, Chen YW, Aoki C. Ketamine ameliorates activity-based anorexia of adolescent female mice through changes in the prevalence of NR2B-containing NMDA receptors at excitatory synapses that are in opposite directions for of pyramidal neurons versus GABA interneurons In medial prefrontal cortex. RESEARCH SQUARE 2023:rs.3.rs-2514157. [PMID: 36778429 PMCID: PMC9915778 DOI: 10.21203/rs.3.rs-2514157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A previous study showed that a single sub-anesthetic dose of ketamine (30 mg/kg-KET, IP) has an immediate and long-lasting (>20 days) effect of reducing maladaptive behaviors associated with activity-based anorexia (ABA) among adolescent female mice. This study sought to determine whether synaptic plasticity involving NR2B-containing NMDA receptors (NR2B) at excitatory synapses in the prelimbic region of medial prefrontal cortex (mPFC) contributes to this ameliorative effect. To this end, quantitative electron microscopic analyses of NR2B-subunit immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) were conducted upon layer 1 of mPFC of the above-described mice that received a single efficacious 30 mg/kg-KET (N=8) versus an inefficacious 3 mg/kg-KET (N=8) dose during the food-restricted day of the first ABA induction (ABA1). Brain tissue was collected after these animals underwent recovery from ABA1, then of recovery from a second ABA induction (ABA2), 22 days after the ketamine injection. For all three parameters used to quantify ABA resilience (increased food consumption, reduced wheel running, body weight gain), 30 mg/kg-KET evoked synaptic plasticity in opposite directions for PN and GABA-IN, with changes at excitatory synapses on GABA-IN dominating the adaptive behaviors more than on PN. The synaptic changes were in directions consistent with changes in the excitatory outflow from mPFC that weaken food consumption-suppression, strengthen wheel running suppression and enhance food consumption. We hypothesize that 30 mg/kg-KET promotes these long-lasting changes in the excitatory outflow from mPFC after acutely blocking the hunger and wheel-access activated synaptic circuits underlying maladaptive behaviors during ABA.
Collapse
|
10
|
Niedringhaus M, West EA. Prelimbic cortex neural encoding dynamically tracks expected outcome value. Physiol Behav 2022; 256:113938. [PMID: 35944659 PMCID: PMC11247951 DOI: 10.1016/j.physbeh.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Animals must modify their behavior based on updated expected outcomes in a changing environment. Prelimbic cortex (PrL) neural encoding during learning predicts, and is necessary for, appropriately altering behavior based on a new expected outcome value following devaluation. We aimed to determine how PrL neural activity encodes reward predictive cues after the expected outcome value of those cues is decreased following conditioned taste aversion. In one post-devaluation session, rats were tested under extinction to determine their ability to alter their behavior to the expected outcome values (i.e., extinction test). In a second post-devaluation session, rats were tested with the newly devalued outcome delivered so that the rats experienced the updated outcome value within the session (i.e., re-exposure test). We found that PrL neural encoding of the cue associated with the devalued reward predicted the ability of rats to suppress behavior in the extinction test session, but not in the re-exposure test session. While all rats were able to successfully devalue the outcome during conditioned taste aversion, a subset of rats continued to consume the devalued outcome in the re-exposure test session. We found differential patterns of PrL neural encoding in the population of rats that did not avoid the devalued outcome during the re-exposure test compared to the rats that successfully avoided the devalued outcome. Our findings suggest that PrL neural encoding dynamically tracks expected outcome values, and differential neural encoding in the PrL to reward predictive cues following expected outcome value changes may contribute to distinct behavioral phenotypes.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084
| | - Elizabeth A West
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084; Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084.
| |
Collapse
|
11
|
Keefer SE, Petrovich GD. Necessity and recruitment of cue-specific neuronal ensembles within the basolateral amygdala during appetitive reversal learning. Neurobiol Learn Mem 2022; 194:107663. [PMID: 35870716 PMCID: PMC10326893 DOI: 10.1016/j.nlm.2022.107663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
Abstract
Through Pavlovian appetitive conditioning, environmental cues can become predictors of food availability. Over time, however, the food, and thus the value of the associated cues, can change based on environmental variations. This change in outcome necessitates updating of the value of the cue to appropriately alter behavioral responses to these cues. The basolateral amygdala (BLA) is critical in updating the outcomes of learned cues. However, it is unknown if the same BLA neuronal ensembles that are recruited in the initial associative memory are required when the new cue-outcome association is formed during reversal learning. The current study used the Daun02 inactivation method that enables selective targeting and disruption of activated neuronal ensembles in Fos-lacZ transgenic rats. Rats were implanted with bilateral cannulas that target the BLA and underwent appetitive discriminative conditioning in which rats had to discriminate between two auditory stimuli. One stimulus (CS+) co-terminated with food delivery, and the other stimulus was unrewarded (CS-; counterbalanced). Rats were then tested for CS+ or CS- memory retrieval and infused with either Daun02 or a vehicle solution into the BLA to inactivate either CS+ or CS- neuronal ensembles that were activated during that test. To assess if the same neuronal ensembles are necessary to update the value of the new association when the outcomes are changed, rats underwent reversal learning: the CS+ was no longer followed by food (reversal CS-, rCS-), and the CS- was now followed by food (reversal CS+; rCS+). The group that received Daun02 following CS+ session showed a decrease in conditioned responding and increased latency to the rCS- (previously CS+) during the first session of reversal learning, specifically during the first trial. This indicates that the neuronal ensemble that was activated during the recall of the CS+ memory was the same neuronal ensemble needed for learning the new outcome of the same CS, now rCS-. Additionally, the group that received Daun02 following CS- session was slower to respond to the rCS+ (previously CS-) during reversal learning. This indicates that the neuronal ensemble that was activated during the recall of the CS- memory was the same neuronal ensemble needed for learning the new outcome of the same CS. These results demonstrate that different neuronal ensembles within the BLA mediate memory recall of CS+ and CS- cues and reactivation of each cue-specific neuronal ensemble is necessary to update the value of that specific cue to respond appropriately during reversal learning. These results also indicate substantial plasticity within the BLA for behavioral flexibility as both groups eventually showed similar terminal levels of reversal learning.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA.
| | - Gorica D Petrovich
- Department of Psychology and Neuroscience, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467, USA
| |
Collapse
|
12
|
Yeomans MR, Ridley-Siegert T, Vi C, Crombag HS. Visual cues associated with sweet taste increase short-term eating and grab attention in healthy volunteers. Physiol Behav 2021; 241:113600. [PMID: 34547318 DOI: 10.1016/j.physbeh.2021.113600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Most studies that examine responses to food cues use images of actual foods as stimuli. Since foods are rewarding in multiple ways, it then becomes difficult to try and partial out the role of the importance of different aspects of food reward. Here we aimed to evaluate the impact of novel visual cues specifically associated with the immediate sensory reward from a liked sweet taste. In the training phase, one visual cue (CSsweet) was associated with the experience of sweet taste (10%sucrose) and a second, control cue (CSneutral) with a neutral taste (artificial saliva) using a disguised training procedure. In Experiment 1, participants (n = 45) were given an ad libitum snack intake test 30 min post-training, either labelled with CSsweet or CSneutral. Total caloric consumption was significantly higher in the CSsweet (650 ± 47 kcal) than CSneutral (477 ± 45 kcal) condition, but ratings of liking for the snacks did not differ significantly between conditions. In Experiment 2, participants (n = 80) exhibited an overall attentional bias (22.1 ± 9.9 ms) for the CSsweet relative to CSneutral cue (assessed using a dot-probe task), however rated liking for the CSsweet did not change significantly after cue-sweet training. Likewise, measures of expected satiety for drinks labelled with CSsweet did not differ significantly from CSneutral. Overall these two experiments provide evidence that associations between neutral visual cues and the experience of a liked sweet taste leads to cue-potentiated eating in the presence of the CSsweet cue. With no evidence that cue-sweet training altered rated liking for the visual cues, and in keeping with extant literature on the dissociation of hedonic and rewarding properties of food rewards, we propose this potentiation effect to reflect increased incentive salience.
Collapse
Affiliation(s)
- Martin R Yeomans
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton BN1 9QH, United Kingdom.
| | - Thomas Ridley-Siegert
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Chi Vi
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton BN1 9QH, United Kingdom
| | - Hans S Crombag
- School of Psychology and Sussex Neuroscience, University of Sussex, Brighton BN1 9QH, United Kingdom
| |
Collapse
|
13
|
Peris-Sampedro F, Stoltenborg I, Le May MV, Sole-Navais P, Adan RAH, Dickson SL. The Orexigenic Force of Olfactory Palatable Food Cues in Rats. Nutrients 2021; 13:nu13093101. [PMID: 34578979 PMCID: PMC8471864 DOI: 10.3390/nu13093101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/05/2023] Open
Abstract
Environmental cues recalling palatable foods motivate eating beyond metabolic need, yet the timing of this response and whether it can develop towards a less palatable but readily available food remain elusive. Increasing evidence indicates that external stimuli in the olfactory modality communicate with the major hub in the feeding neurocircuitry, namely the hypothalamic arcuate nucleus (Arc), but the neural substrates involved have been only partially uncovered. By means of a home-cage hidden palatable food paradigm, aiming to mimic ubiquitous exposure to olfactory food cues in Western societies, we investigated whether the latter could drive the overeating of plain chow in non-food-deprived male rats and explored the neural mechanisms involved, including the possible engagement of the orexigenic ghrelin system. The olfactory detection of a familiar, palatable food impacted upon meal patterns, by increasing meal frequency, to cause the persistent overconsumption of chow. In line with the orexigenic response observed, sensing the palatable food in the environment stimulated food-seeking and risk-taking behavior, which are intrinsic components of food acquisition, and caused active ghrelin release. Our results suggest that olfactory food cues recruited intermingled populations of cells embedded within the feeding circuitry within the Arc, including, notably, those containing the ghrelin receptor. These data demonstrate the leverage of ubiquitous food cues, not only for palatable food searching, but also to powerfully drive food consumption in ways that resonate with heightened hunger, for which the orexigenic ghrelin system is implicated.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
- Correspondence: (F.P.-S.); (S.L.D.); Tel.: +46-31-786-35-35 (F.P.-S.); +46-31-786-35-68 (S.L.D.)
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
| | - Marie V. Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
| | - Pol Sole-Navais
- Department of Obstetrics and Gynaecology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Roger A. H. Adan
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
- Brain Center Rudolf Magnus, Department of Translational Neuroscience, University Medical Center Utrecht, Utrecht University, 3584 Utrecht, The Netherlands
| | - Suzanne L. Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden; (I.S.); (M.V.L.M.); (R.A.H.A.)
- Correspondence: (F.P.-S.); (S.L.D.); Tel.: +46-31-786-35-35 (F.P.-S.); +46-31-786-35-68 (S.L.D.)
| |
Collapse
|
14
|
A neural circuit for excessive feeding driven by environmental context in mice. Nat Neurosci 2021; 24:1132-1141. [PMID: 34168339 DOI: 10.1038/s41593-021-00875-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/13/2021] [Indexed: 02/05/2023]
Abstract
Despite notable genetic influences, obesity mainly results from the overconsumption of food, which arises from the interplay of physiological, cognitive and environmental factors. In patients with obesity, eating is determined more by external cues than by internal physiological needs. However, how environmental context drives non-homeostatic feeding is elusive. Here, we identify a population of somatostatin (TNSST) neurons in the mouse hypothalamic tuberal nucleus that are preferentially activated by palatable food. Activation of TNSST neurons enabled a context to drive non-homeostatic feeding in sated mice and required inputs from the subiculum. Pairing a context with palatable food greatly potentiated synaptic transmission between the subiculum and TNSST neurons and drove non-homeostatic feeding that could be selectively suppressed by inhibiting TNSST neurons or the subiculum but not other major orexigenic neurons. These results reveal how palatable food, through a specific hypothalamic circuit, empowers environmental context to drive non-homeostatic feeding.
Collapse
|
15
|
Stern SA, Azevedo EP, Pomeranz LE, Doerig KR, Ivan VJ, Friedman JM. Top-down control of conditioned overconsumption is mediated by insular cortex Nos1 neurons. Cell Metab 2021; 33:1418-1432.e6. [PMID: 33761312 PMCID: PMC8628615 DOI: 10.1016/j.cmet.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/29/2020] [Accepted: 02/26/2021] [Indexed: 12/17/2022]
Abstract
Associative learning allows animals to adapt their behavior in response to environmental cues. For example, sensory cues associated with food availability can trigger overconsumption even in sated animals. However, the neural mechanisms mediating cue-driven non-homeostatic feeding are poorly understood. To study this, we recently developed a behavioral task in which contextual cues increase feeding even in sated mice. Here, we show that an insular cortex to central amygdala circuit is necessary for conditioned overconsumption, but not for homeostatic feeding. This projection is marked by a population of glutamatergic nitric oxide synthase-1 (Nos1)-expressing neurons, which are specifically active during feeding bouts. Finally, we show that activation of insular cortex Nos1 neurons suppresses satiety signals in the central amygdala. The data, thus, indicate that the insular cortex provides top-down control of homeostatic circuits to promote overconsumption in response to learned cues.
Collapse
Affiliation(s)
- Sarah A Stern
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA.
| | - Estefania P Azevedo
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Lisa E Pomeranz
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Katherine R Doerig
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Violet J Ivan
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey M Friedman
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, New York, NY 10065, USA.
| |
Collapse
|
16
|
Keefer SE, Petrovich GD. The basolateral amygdala-medial prefrontal cortex circuitry regulates behavioral flexibility during appetitive reversal learning. Behav Neurosci 2020; 134:34-44. [PMID: 31829643 PMCID: PMC6944768 DOI: 10.1037/bne0000349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Environmental cues can become predictors of food availability through Pavlovian conditioning. Two forebrain regions important in this associative learning are the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). Recent work showed the BLA-mPFC pathway is activated when a cue reliably signals food, suggesting the BLA informs the mPFC of the cue's value. The current study tested this hypothesis by altering the value of 2 food cues using reversal learning and illness-induced devaluation paradigms. Rats that received unilateral excitotoxic lesions of the BLA and mPFC contralaterally placed, along with ipsilateral and sham controls, underwent discriminative conditioning, followed by reversal learning and then devaluation. All groups successfully discriminated between 2 auditory stimuli that were followed by food delivery (conditional stimulus [CS] +) or not rewarded (CS-), demonstrating this learning does not require BLA-mPFC communication. When the outcomes of the stimuli were reversed, the rats with disconnected BLA-mPFC (contralateral condition) showed increased responding to the CSs, especially to the rCS + (original CS-) during the first session, suggesting impaired cue memory recall and behavioral inhibition compared to the other groups. For devaluation, all groups successfully learned conditioned taste aversion; however, there was no evidence of cue devaluation or differences between groups. Interestingly, at the end of testing, the nondevalued contralateral group was still responding more to the original CS + (rCS-) compared to the devalued contralateral group. These results suggest a potential role for BLA-mPFC communication in guiding appropriate responding during periods of behavioral flexibility when the outcomes, and thus the values, of learned cues are altered. (PsycINFO Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
- Sara E. Keefer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD 21201, USA
| | - Gorica D. Petrovich
- Department of Psychology, Boston College, 140 Commomwealth Avenue, Chestnut Hill, MA, 02467, USA
| |
Collapse
|
17
|
Meffre J, Sicre M, Diarra M, Marchessaux F, Paleressompoulle D, Ambroggi F. Orexin in the Posterior Paraventricular Thalamus Mediates Hunger-Related Signals in the Nucleus Accumbens Core. Curr Biol 2019; 29:3298-3306.e4. [DOI: 10.1016/j.cub.2019.07.069] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/23/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
18
|
Abstract
Occasion setting refers to the ability of 1 stimulus, an occasion setter, to modulate the efficacy of the association between another, conditioned stimulus (CS) and an unconditioned stimulus (US) or reinforcer. Occasion setters and simple CSs are readily distinguished. For example, occasion setters are relatively immune to extinction and counterconditioning, and their combination and transfer functions differ substantially from those of simple CSs. Similarly, the acquisition of occasion setting is favored when stimuli are separated by longer intervals, by empty trace intervals, and are of different modalities, whereas the opposite conditions typically favor the acquisition of simple associations. Furthermore, the simple conditioning and occasion setting properties of a single stimulus can be independent, for example, that stimulus may simultaneously predict the occurrence of a reinforcer and indicate that another stimulus will not be reinforced. Many behavioral phenomena that are intractable to simple associative analysis are better understood within an occasion setting framework. Besides capturing the distinction between direct and modulatory control common to many arenas in neuroscience, occasion setting provides a model for the hierarchical organization of memory for events and event relations, and for contextual control more broadly. Although early lesion studies further differentiated between occasion setting and simple conditioning functions, little is known about the neurobiology of occasion setting. Modern techniques for precise manipulation and monitoring of neuronal activity in multiple brain regions are ideally suited for disentangling contributions of simple conditioning and occasion setting in associative learning. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|
19
|
Schier LA, Hyde KM, Spector AC. Conditioned taste aversion versus avoidance: A re-examination of the separate processes hypothesis. PLoS One 2019; 14:e0217458. [PMID: 31216290 PMCID: PMC6583984 DOI: 10.1371/journal.pone.0217458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Rats not only avoid ingesting a substance associated with LiCl toxicosis, but they display rejection reflexes (e.g., gapes) to its taste; this latter response is thought to reflect disgust or taste aversion. Prior work has shown that rats also avoid consuming foods/fluids associated with other adverse gastrointestinal (GI) effects like lactose indigestion but without the concomitant change in oromotor responses (taste reactivity; TR) indicative of aversion. Because of interpretive limitations of the methods used in those studies, we revisited the taste aversion-avoidance distinction with a design that minimized non-treatment differences among groups. Effects on intake and preference (Experiments 1a, 1b, and 2), as well as consummatory (TR, Experiment 1a and 1b) and appetitive (Progressive Ratio, Experiment 2) behaviors to the taste stimulus were assessed after training. In both experiments, rats were trained to associate 0.2% saccharin (CS) with intraduodenal infusions of LiCl, Lactose, or NaCl control. Rats trained with 18% lactose, 0.3 and 1.5 mEq/kg dose of LiCl subsequently avoided the taste CS in post-training single-bottle intake tests and two-bottle choice tests. However, only those trained with 1.5 mEq/kg LiCl displayed post-conditioning increases in taste CS-elicited aversive TR (Experiment 1a and 1b). This dose of LiCl also led to reductions in breakpoint for saccharin. The fact that conditioned avoidance is not always accompanied by changes in other common appetitive and/or consummatory indices of ingestive motivation further supports a functional dissociation between these processes, and highlights the intricacies of visceral influences on taste-guided ingestive motivation.
Collapse
Affiliation(s)
- Lindsey A. Schier
- Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Kellie M. Hyde
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - Alan C. Spector
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
daf-16/FOXO isoform b in AIY neurons is involved in low preference for Bifidobacterium infantis in Caenorhabditis elegans. Neurosci Res 2019; 150:8-16. [PMID: 30731110 DOI: 10.1016/j.neures.2019.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 02/01/2023]
Abstract
The neural and molecular mechanisms underlying food preference have been poorly understood. We previously showed that Bifidobacterium infantis (B. infantis), a well-known probiotic bacterium, extends the lifespan of Caenorhabditis elegans (C. elegans) compared with a standard food, Escherichia coli (E. coli) OP50. In this study, we characterized C. elegans behavior against B. infantis and examined the neural and molecular mechanisms governing that behavior. The majority of the wild-type animals were outside of the B. infantis lawn 10 min after transfer. Although worms did not prefer B. infantis compared to E. coli OP50, they preferred the B. infantis lawn over a lawn containing M9 buffer alone, in which there was no food. Mutant analyses suggested that leaving the B. infantis lawn required daf-16/FOXO. Isoform-specific mutant phenotypes suggested that daf-16 isoform b seemed to be associated with leaving. Genetic rescue experiments demonstrated that the function of daf-16b in AIY interneurons was involved in leaving the B. infantis lawn. The daf-18/PTEN mutants were also defective in leaving. In conclusion, C. elegans showed a low preference for B. infantis, and daf-16b in AIY interneurons and daf-18 had roles in leaving B. infantis.
Collapse
|
21
|
|
22
|
Batten SR, Pomerleau F, Quintero J, Gerhardt GA, Beckmann JS. The role of glutamate signaling in incentive salience: second-by-second glutamate recordings in awake Sprague-Dawley rats. J Neurochem 2018; 145:276-286. [PMID: 29315659 DOI: 10.1111/jnc.14298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 11/29/2022]
Abstract
The attribution of incentive salience to reward-predictive stimuli has been shown to be associated with substance abuse-like behavior such as increased drug taking. Evidence suggests that glutamate neurotransmission and sequential N-methyl-D-aspartate (NMDA) activation are involved in the attribution of incentive salience. Here, we further explore the role of second-by-second glutamate neurotransmission in the attribution of incentive salience to reward-predictive stimuli by measuring sign-tracking behavior during a Pavlovian conditioned approach procedure using ceramic-based microelectrode arrays configured for sensitive measures of extracellular glutamate in awake behaving Sprague-Dawley rats. Specifically, we show that there is an increase in extracellular glutamate levels in the prelimbic cortex (PrL) and the nucleus accumbens core (NAcC) during sign-tracking behavior to a food-predictive conditioned stimulus (CS+) compared to the presentation of a non-predictive conditioned stimulus (CS-). Furthermore, the results indicate greater increases in extracellular glutamate levels in the PrL compared to NAcC in response to the CS+, including differences in glutamate release and signal decay. Taken together, the present research suggests that there is differential glutamate signaling in the NAcC and PrL during sign-tracking behavior to a food-predictive CS+.
Collapse
Affiliation(s)
- Seth R Batten
- Department of Psychology, University of Kentucky, College of Arts and Sciences, Lexington, Kentucky, USA
| | - Francois Pomerleau
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Jorge Quintero
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky, College of Medicine, Lexington, Kentucky, USA
| | - Joshua S Beckmann
- Department of Psychology, University of Kentucky, College of Arts and Sciences, Lexington, Kentucky, USA
| |
Collapse
|
23
|
Anderson LC, Petrovich GD. Distinct recruitment of the hippocampal, thalamic, and amygdalar neurons projecting to the prelimbic cortex in male and female rats during context-mediated renewal of responding to food cues. Neurobiol Learn Mem 2018; 150:25-35. [PMID: 29496643 DOI: 10.1016/j.nlm.2018.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/02/2018] [Accepted: 02/15/2018] [Indexed: 01/10/2023]
Abstract
Persistent responding to food cues may underlie the difficulty to resist palatable foods and to maintain healthy eating habits. Renewal of responding after extinction is a model of persistent food seeking that can be used to study the underlying neural mechanisms. In context-mediated renewal, a return to the context in which the initial cue-food learning occurred induces robust responding to the cues that were extinguished elsewhere. Previous work found sex differences in context-mediated renewal and in the recruitment of the ventromedial prefrontal cortex (vmPFC) during that behavior. Males exhibited renewal of responding to food cues and had higher Fos induction in the prelimbic area (PL) of the vmPFC, while females failed to exhibit renewal of responding and had lower Fos induction in the PL. The main aim of the current study was to determine key components of the PL circuitry mediating renewal. The focus was on inputs from three areas important in appetitive associative learning and contextual processing: the amygdala, ventral hippocampal formation, and the paraventricular nucleus of the thalamus. The goal was to determine whether neurons from these areas that send direct projections to the PL (identified with a retrograde tracer) are selectively activated (Fos induction) during renewal and whether they are differently recruited in males and females. The Fos induction patterns demonstrated that the PL-projecting neurons in each of these areas were recruited in a sex-specific way that corresponded to the behavioral differences between males and females. These pathways were selectively activated in the male experimental group-the only group that showed renewal behavior. The findings suggest the pathways from the ventral hippocampal formation, paraventricular nucleus of the thalamus, and basolateral amygdala to the PL mediate renewal in males. The lack of recruitment in females suggests that under activation of these pathways may underlie their lack of renewal.
Collapse
Affiliation(s)
- Lauren C Anderson
- Department of Psychology, Boston College, Chestnut Hill, MA, United States; Department of Neurology, Harvard Medical School/Massachusetts General Hospital, Charlestown, MA, United States
| | - Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA, United States.
| |
Collapse
|
24
|
Contributions of Pavlovian incentive motivation to cue-potentiated feeding. Sci Rep 2018; 8:2766. [PMID: 29426846 PMCID: PMC5807356 DOI: 10.1038/s41598-018-21046-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/29/2018] [Indexed: 11/25/2022] Open
Abstract
Cues signaling the availability of palatable food acquire the ability to potentiate food seeking and consumption. The current study employed a combination of behavioral, pharmacological, and analytical techniques to probe the role of Pavlovian incentive motivation in cue-potentiated feeding. We show that a cue paired with sucrose solution (CS+) can transfer its control over feeding to stimulate sucrose consumption at a new receptacle, and that this effect depends on activation of D1 dopamine receptors, which is known to modulate other forms of cue-motivated behavior but not taste palatability. Microstructural analyses of sucrose-licking behavior revealed that the CS+ tended to increase the frequency with which rats engaged in active bouts of licking behavior without having a reliable effect on the duration of those licking bouts, a measure that was instead associated with sucrose palatability. Furthermore, we found that individual differences in CS+ elicited increases in bout frequency were associated with total sucrose intake at test, supporting the view that this process was related to meaningful dysregulation of eating behavior. The current study, therefore, (1) demonstrates that a dopamine-dependent Pavlovian incentive motivational process can mediate cue-potentiated feeding, and (2) lays out an experimental and analytical approach for parsing this aspect of behavior.
Collapse
|
25
|
Ventromedial prefrontal cortex mediates sex differences in persistent cognitive drive for food. Sci Rep 2018; 8:2230. [PMID: 29396448 PMCID: PMC5797070 DOI: 10.1038/s41598-018-20553-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 01/22/2018] [Indexed: 11/08/2022] Open
Abstract
Contemporary environments are saturated with food cues that stimulate appetites in the absence of hunger, which leads to maladaptive eating. These settings can induce persistent drive to eat, as learned behaviors can reappear after extinction. Behavioral paradigms of responding renewal provide a valuable framework to study how food cues contribute to the inability to resist palatable foods and change maladaptive eating habits. Using a rat model for this persistent food motivation, we determined sex differences in the causal function for the ventromedial prefrontal cortex (vmPFC) during context-mediated renewal of responding to food cues. Previously, we found behavioral sex differences (only males exhibited renewal) and differential recruitment within the vmPFC (increased Fos induction in males but decreased in females). Here, we used DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) to silence vmPFC neurons in males and to stimulate vmPFC neurons in females specifically during renewal. Silencing vmPFC neurons in males disrupted renewal of responding to a food cue, while stimulating vmPFC neurons in females induced this behavior. These findings demonstrate sex differences in the vmPFC function in a model of food seeking relevant to environmentally driven appetites contributing to obesity and eating disorders.
Collapse
|
26
|
Marshall AT, Liu AT, Murphy NP, Maidment NT, Ostlund SB. Sex-specific enhancement of palatability-driven feeding in adolescent rats. PLoS One 2017; 12:e0180907. [PMID: 28708901 PMCID: PMC5510835 DOI: 10.1371/journal.pone.0180907] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/22/2017] [Indexed: 11/24/2022] Open
Abstract
It has been hypothesized that brain development during adolescence perturbs reward processing in a way that may ultimately contribute to the risky decision making associated with this stage of life, particularly in young males. To investigate potential reward dysfunction during adolescence, Experiment 1 examined palatable fluid intake in rats as a function of age and sex. During a series of twice-weekly test sessions, non-food-deprived rats were given the opportunity to voluntarily consume a highly palatable sweetened condensed milk (SCM) solution. We found that adolescent male, but not female, rats exhibited a pronounced, transient increase in SCM intake (normalized by body weight) that was centered around puberty. Additionally, adult females consumed more SCM than adult males and adolescent females. Using a well-established analytical framework to parse the influences of reward palatability and satiety on the temporal structure of feeding behavior, we found that palatability-driven intake at the outset of the meal was significantly elevated in adolescent males, relative to the other groups. Furthermore, although we found that there were some group differences in the onset of satiety, they were unlikely to contribute to differences in intake. Experiment 2 confirmed that adolescent male rats exhibit elevated palatable fluid consumption, relative to adult males, even when a non-caloric saccharin solution was used as the taste stimulus, demonstrating that these results were unlikely to be related to age-related differences in metabolic need. These findings suggest that elevated palatable food intake during adolescence is sex specific and driven by a fundamental change in reward processing. As adolescent risk taking has been hypothesized as a potential result of hypersensitivity to and overvaluation of appetitive stimuli, individual differences in reward palatability may factor into individual differences in adolescent risky decision making.
Collapse
Affiliation(s)
- Andrew T. Marshall
- Department of Anesthesiology and Perioperative Care, Center for Addiction Neuroscience, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (SBO); (ATM)
| | - Angela T. Liu
- Department of Anesthesiology and Perioperative Care, Center for Addiction Neuroscience, University of California, Irvine, Irvine, California, United States of America
| | - Niall P. Murphy
- Hatos Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Nigel T. Maidment
- Hatos Center, Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, Center for Addiction Neuroscience, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (SBO); (ATM)
| |
Collapse
|
27
|
Keefer SE, Petrovich GD. Distinct recruitment of basolateral amygdala-medial prefrontal cortex pathways across Pavlovian appetitive conditioning. Neurobiol Learn Mem 2017; 141:27-32. [PMID: 28288832 DOI: 10.1016/j.nlm.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/13/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
Associative learning can enable environmental cues to signal food and stimulate feeding, independent of physiological hunger. Two forebrain regions necessary in cue driven feeding, the basolateral area of the amygdala and the medial prefrontal cortex, communicate via extensive, topographically organized connections. The basolateral nucleus (BLA) sends extensive projections to the prelimbic cortex (PL), and our aim here was to determine if this pathway was selectively recruited during cue-food associative learning. The anterior and posterior basolateral nuclei are recruited during different phases of cue-food learning, and thus we examined whether distinct pathways that originate in these nuclei and project to the PL are differently recruited during early and late stages of learning. To accomplish this we used neuroanatomical tract tracing combined with the detection of Fos induction. To identify projecting neurons within the BLA, prior to training, rats received a retrograde tracer, Fluoro-Gold (FG) into the PL. Rats were given either one or ten sessions of tone-food presentations (Paired group) or tone-only presentations (Control group). The Paired group learned the tone-food association quickly and robustly and had greater Fos induction within the anterior and posterior BLA during early and late learning compared to the Control group. Notably, the Paired group had more double-labeled neurons (FG + Fos) during late training compared to the Control group, specifically in the anterior BLA. This demonstrates selective recruitment of the anterior BLA-PL pathway by late cue-food learning. These findings indicate plasticity and specificity in the BLA-PL pathways across cue-food associative learning.
Collapse
Affiliation(s)
- Sara E Keefer
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - Gorica D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
28
|
Anderson LC, Petrovich GD. Sex specific recruitment of a medial prefrontal cortex-hippocampal-thalamic system during context-dependent renewal of responding to food cues in rats. Neurobiol Learn Mem 2016; 139:11-21. [PMID: 27940080 DOI: 10.1016/j.nlm.2016.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/10/2016] [Accepted: 12/02/2016] [Indexed: 12/13/2022]
Abstract
Renewal, or reinstatement, of responding to food cues after extinction may explain the inability to resist palatable foods and change maladaptive eating habits. Previously, we found sex differences in context-dependent renewal of extinguished Pavlovian conditioned responding to food cues. Context-induced renewal involves cue-food conditioning and extinction in different contexts and the renewal of conditioned behavior is induced by return to the conditioning context (ABA renewal). Male rats showed renewal of responding while females did not. In the current study we sought to identify recruitment of key neural systems underlying context-mediated renewal and sex differences. We examined Fos induction within the ventromedial prefrontal cortex (vmPFC), hippocampal formation, thalamus and amygdala in male and female rats during the test for renewal. We found sex differences in vmPFC recruitment during renewal. Male rats in the experimental condition showed renewal of responding and had more Fos induction within the infralimbic and prelimbic vmPFC areas compared to controls that remained in the same context throughout training and testing. Females in the experimental condition did not show renewal or an increase in Fos induction. Additionally, Fos expression differed between experimental and control groups and between the sexes in the hippocampal formation, thalamus and amygdala. Within the ventral subiculum, the experimental groups of both sexes had more Fos compared to control groups. Within the dorsal CA1 and the anterior region of the paraventricular nucleus of the thalamus, in males, the experimental group had higher Fos induction, while both females groups had similar number of Fos-positive neurons. Within the capsular part of the central amygdalar nucleus, females in the experimental group had higher Fos induction, while males groups had similar amounts. The differential recruitment corresponded to the behavioral differences between males and females and suggests the medial prefrontal cortex-hippocampal-thalamic system is a critical site of sex differences during renewal of appetitive Pavlovian responding to food cues. These findings provide evidence for novel neural mechanisms underlying sex differences in food motivation and contextual processing in associative learning and memory. The results should also inform future molecular and translational work investigating sex differences and maladaptive eating habits.
Collapse
Affiliation(s)
- Lauren C Anderson
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - Gorica D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
29
|
Nicola SM. Reassessing wanting and liking in the study of mesolimbic influence on food intake. Am J Physiol Regul Integr Comp Physiol 2016; 311:R811-R840. [PMID: 27534877 PMCID: PMC5130579 DOI: 10.1152/ajpregu.00234.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023]
Abstract
Humans and animals such as rats and mice tend to overconsume calorie-dense foods, a phenomenon that likely contributes to obesity. One often-advanced explanation for why we preferentially consume sweet and fatty foods is that they are more "rewarding" than low-calorie foods. "Reward" has been subdivided into three interdependent psychological processes: hedonia (liking a food), reinforcement (formation of associations among stimuli, actions, and/or the food), and motivation (wanting the food). Research into these processes has focused on the mesolimbic system, which comprises both dopamine neurons in the ventral tegmental area and neurons in their major projection target, the nucleus accumbens. The mesolimbic system and closely connected structures are commonly referred to as the brain's "reward circuit." Implicit in this title is the assumption that "rewarding" experiences are generally the result of activity in this circuit. In this review, I argue that food intake and the preference for calorie-dense foods can be explained without reference to subjective emotions. Furthermore, the contribution of mesolimbic dopamine to food intake and preference may not be a general one of promoting or coordinating behaviors that result in the most reward or caloric intake but may instead be limited to the facilitation of a specific form of neural computation that results in conditioned approach behavior. Studies on the neural mechanisms of caloric intake regulation must address how sensory information about calorie intake affects not just the mesolimbic system but also many other forms of computation that govern other types of food-seeking and food-oriented behaviors.
Collapse
Affiliation(s)
- Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
30
|
Frank GKW, Shott ME, Riederer J, Pryor TL. Altered structural and effective connectivity in anorexia and bulimia nervosa in circuits that regulate energy and reward homeostasis. Transl Psychiatry 2016; 6:e932. [PMID: 27801897 PMCID: PMC5314116 DOI: 10.1038/tp.2016.199] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 08/18/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022] Open
Abstract
Anorexia and bulimia nervosa are severe eating disorders that share many behaviors. Structural and functional brain circuits could provide biological links that those disorders have in common. We recruited 77 young adult women, 26 healthy controls, 26 women with anorexia and 25 women with bulimia nervosa. Probabilistic tractography was used to map white matter connectivity strength across taste and food intake regulating brain circuits. An independent multisample greedy equivalence search algorithm tested effective connectivity between those regions during sucrose tasting. Anorexia and bulimia nervosa had greater structural connectivity in pathways between insula, orbitofrontal cortex and ventral striatum, but lower connectivity from orbitofrontal cortex and amygdala to the hypothalamus (P<0.05, corrected for comorbidity, medication and multiple comparisons). Functionally, in controls the hypothalamus drove ventral striatal activity, but in anorexia and bulimia nervosa effective connectivity was directed from anterior cingulate via ventral striatum to the hypothalamus. Across all groups, sweetness perception was predicted by connectivity strength in pathways connecting to the middle orbitofrontal cortex. This study provides evidence that white matter structural as well as effective connectivity within the energy-homeostasis and food reward-regulating circuitry is fundamentally different in anorexia and bulimia nervosa compared with that in controls. In eating disorders, anterior cingulate cognitive-emotional top down control could affect food reward and eating drive, override hypothalamic inputs to the ventral striatum and enable prolonged food restriction.
Collapse
Affiliation(s)
- G K W Frank
- Department of Psychiatry, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA,Neuroscience Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA,Departments of Psychiatry and Neuroscience, Developmental Brain Research Program, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Gary Pavilion A036/B-130, 13123 East 16th Avenue, Aurora, CO 80045, USA. E-mail:
| | - M E Shott
- Department of Psychiatry, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - J Riederer
- Department of Psychiatry, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - T L Pryor
- Eating Disorders Center Denver, Denver, CO, USA
| |
Collapse
|
31
|
Corwin RLW, Wojnicki FHE, Zimmer DJ, Babbs RK, McGrath LE, Olivos DR, Mietlicki-Baase EG, Hayes MR. Binge-type eating disrupts dopaminergic and GABAergic signaling in the prefrontal cortex and ventral tegmental area. Obesity (Silver Spring) 2016; 24:2118-25. [PMID: 27558648 DOI: 10.1002/oby.21626] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Binge eating is characterized by repeated intermittent bouts of compulsive overconsumption of food. Treatment is challenging given limited understanding of the mechanisms underlying this type of disordered eating. The hypothesis that dysregulation of mesocortical dopaminergic and GABAergic systems underlie binge eating was tested. METHODS Analysis of gene expression within the ventral tegmental area and its terminal mesocortical regions was examined in bingeing rats before and after bingeing occurred. In addition, alterations in binge-type behavior induced by pharmacological inactivation of subnuclei of the prefrontal cortex (PFC) and by pharmacological activation and inhibition of cortical D1 and D2 receptors were examined. RESULTS Correlative and functional evidence demonstrates dysregulated neurotransmitter processing by the PFC and ventral tegmental area, but not the amygdala or nucleus accumbens, in bingeing rats. Either GABAergic inactivation or D2-like receptor activation within the PFC increased consumption in bingeing rats, but not controls, suggesting that the PFC, and D2 receptors in particular, functions as a behavioral brake to limit bingeing. CONCLUSIONS The act of bingeing resolved some gene expression differences that preceded binge onset, further suggesting that bingeing may partially serve to self-medicate a system driving this maladaptive behavior. However, the failure of bingeing to resolve other dopaminergic/GABAergic differences may render individuals vulnerable to future binge episodes.
Collapse
Affiliation(s)
- Rebecca L W Corwin
- Nutritional Sciences Department, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | - Francis H E Wojnicki
- Nutritional Sciences Department, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Derek J Zimmer
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - R Keith Babbs
- Nutritional Sciences Department, College of Health and Human Development, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lauren E McGrath
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Diana R Olivos
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth G Mietlicki-Baase
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew R Hayes
- Department of Psychiatry, Translational Neuroscience Program, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Abstract
Theorists have proposed several neural vulnerability factors that may increase overeating and consequent weight gain. Early cross-sectional imaging studies could not determine whether aberrant neural responsivity was a precursor or consequence of overeating. However, recent prospective imaging studies examining predictors of future weight gain and response to obesity treatment, and repeated-measures imaging studies before and after weight gain and loss have advanced knowledge of etiologic processes and neural plasticity resulting from weight change. The present article reviews evidence from prospective studies using imaging and behavioral measures reflecting neural function, as well as randomized experiments with humans and animals that are consistent or inconsistent with 5 neural vulnerability theories for excessive weight gain. Extant data provide strong support for the incentive sensitization theory of obesity and moderate support for the reward surfeit theory, inhibitory control deficit theory, and dynamic vulnerability model of obesity, which attempted to synthesize the former theories into a single etiologic model. However, existing data provide only minimal support for the reward deficit theory. Findings are synthesized into a new working etiologic model that is based on current scientific knowledge. Important directions for future studies, which have the potential to support or refute this working etiologic model, are delineated. (PsycINFO Database Record
Collapse
|
33
|
Sharpe MJ, Clemens KJ, Morris MJ, Westbrook RF. Daily Exposure to Sucrose Impairs Subsequent Learning About Food Cues: A Role for Alterations in Ghrelin Signaling and Dopamine D2 Receptors. Neuropsychopharmacology 2016; 41:1357-65. [PMID: 26365954 PMCID: PMC4793120 DOI: 10.1038/npp.2015.287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/01/2015] [Accepted: 09/04/2015] [Indexed: 01/15/2023]
Abstract
The prevalence of hedonic foods and associated advertising slogans has contributed to the rise of the obesity epidemic in the modern world. Research has shown that intake of these foods disrupt dopaminergic systems. It may be that a disruption of these circuits produces aberrant learning about food-cue relationships. We found that rodents given 28 days of intermittent access to sucrose exhibited a deficit in the ability to block learning about a stimulus when it is paired in compound with food and another stimulus that has already been established as predictive of the food outcome. This deficit was characterized by an approach to a cue signaling food delivery that is usually blocked by prior learning, an effect dependent on dopaminergic prediction-error signaling in the midbrain. Administering the D2 agonist quinpirole during learning restored blocking in animals with a prior history of sucrose exposure. Further, repeated central infusions of ghrelin produced a deficit in blocking in the same manner as sucrose exposure. We argue that changes in dopaminergic systems resulting from sucrose exposure are mediated by a disruption of ghrelin signaling as rodents come to anticipate delivery of the highly palatable sucrose outside of normal feeding schedules. This suggestion is supported by our finding that both sucrose and ghrelin treatments resulted in increases in amphetamine-induced locomotor responding. Thus, for the first time, we have provided evidence of a potential link between alterations in D2 receptors caused by the intake of hedonic foods and aberrant learning about cue-food relationships capable of promoting inappropriate feeding habits. In addition, we have found preliminary evidence to suggest that this is mediated by changes in ghrelin signaling, a finding that should stimulate further research into modulation of ghrelin activity to treat obesity.
Collapse
Affiliation(s)
- M J Sharpe
- School of Psychology, UNSW, Australia,National Institute on Drug Abuse, 251 Bayview Boulevard, Baltimore, MD 21224, USA, Tel: +14156291740, E-mail:
| | | | - M J Morris
- Department of Pharmacology, Medical Sciences, UNSW, Australia
| | | |
Collapse
|
34
|
Dailey MJ, Moran TH, Holland PC, Johnson AW. The antagonism of ghrelin alters the appetitive response to learned cues associated with food. Behav Brain Res 2016; 303:191-200. [PMID: 26802728 DOI: 10.1016/j.bbr.2016.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/06/2016] [Accepted: 01/17/2016] [Indexed: 12/17/2022]
Abstract
The rapid increase in obesity may be partly mediated by an increase in the exposure to cues for food. Food-paired cues play a role in food procurement and intake under conditions of satiety. The mechanism by which this occurs requires characterization, but may involve ghrelin. This orexigenic peptide alters the response to food-paired conditioned stimuli, and neural responses to food images in reward nuclei. Therefore, we tested whether a ghrelin receptor antagonist alters the influence of food-paired cues on the performance of instrumental responses that earn food and the consumption of food itself using tests of Pavlovian-to-instrumental transfer (PIT) and cue potentiated feeding (CPF), respectively. Food-deprived rats received Pavlovian conditioning where an auditory cue was paired with delivery of sucrose solution followed by instrumental conditioning to lever press for sucrose. Following training, rats were given ad libitum access to chow. On test day, rats were injected with the ghrelin receptor antagonist GHRP-6 [D-Lys3] and then tested for PIT or CPF. Disrupting ghrelin signaling enhanced expression of PIT. In addition, GHRP-6 [D-Lys3] impaired the initiation of feeding behavior in CPF without influencing overall intake of sucrose. Finally, in PIT tested rats, enhanced FOS immunoreactivity was revealed following the antagonist in regions thought to underlie PIT; however, the antagonist had no effect on FOS immunoreactivity in CPF tested rats.
Collapse
Affiliation(s)
- Megan J Dailey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Alexander W Johnson
- Department of Psychology and Neuroscience Program, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
35
|
Deletion of Melanin Concentrating Hormone Receptor-1 disrupts overeating in the presence of food cues. Physiol Behav 2015; 152:402-7. [DOI: 10.1016/j.physbeh.2015.05.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/09/2015] [Accepted: 05/29/2015] [Indexed: 11/24/2022]
|
36
|
Abstract
Binge eating disorder is characterized by excessive, uncontrollable consumption of palatable food within brief periods of time. Excessive intake of palatable food is thought to be driven by hedonic, rather than energy homeostatic, mechanisms. However, reward processing does not only comprise consummatory actions; a key component is represented by the anticipatory phase directed at procuring the reward. This phase is highly influenced by environmental food-associated stimuli, which can robustly enhance the desire to eat even in the absence of physiological needs. The opioid system (endogenous peptides and their receptors) has been strongly linked to the rewarding aspects of palatable food intake, and perhaps represents the key system involved in hedonic overeating. Here we review evidence suggesting that the opioid system can also be regarded as one of the systems that regulates the anticipatory incentive processes preceding binge eating hedonic episodes.
Collapse
|
37
|
Robinson MJF, Burghardt PR, Patterson CM, Nobile CW, Akil H, Watson SJ, Berridge KC, Ferrario CR. Individual Differences in Cue-Induced Motivation and Striatal Systems in Rats Susceptible to Diet-Induced Obesity. Neuropsychopharmacology 2015; 40:2113-23. [PMID: 25761571 PMCID: PMC4613617 DOI: 10.1038/npp.2015.71] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/29/2015] [Accepted: 02/23/2015] [Indexed: 12/16/2022]
Abstract
Pavlovian cues associated with junk-foods (caloric, highly sweet, and/or fatty foods), like the smell of brownies, can elicit craving to eat and increase the amount of food consumed. People who are more susceptible to these motivational effects of food cues may have a higher risk for becoming obese. Further, overconsumption of junk-foods leading to the development of obesity may itself heighten attraction to food cues. Here, we used a model of individual susceptibility to junk-foods diet-induced obesity to determine whether there are pre-existing and/or diet-induced increases in attraction to and motivation for sucrose-paired cues (ie, incentive salience or 'wanting'). We also assessed diet- vs obesity-associated alterations in mesolimbic function and receptor expression. We found that rats susceptible to diet-induced obesity displayed heightened conditioned approach prior to the development of obesity. In addition, after junk-food diet exposure, those rats that developed obesity also showed increased willingness to gain access to a sucrose cue. Heightened 'wanting' was not due to individual differences in the hedonic impact ('liking') of sucrose. Neurobiologically, Mu opioid receptor mRNA expression was lower in striatal 'hot-spots' that generate eating or hedonic impact only in those rats that became obese. In contrast, prolonged exposure to junk-food resulted in cross-sensitization to amphetamine-induced locomotion and downregulation of striatal D2R mRNA regardless of the development of obesity. Together these data shed light on individual differences in behavioral and neurobiological consequences of exposure to junk-food diets and the potential contribution of incentive sensitization in susceptible individuals to greater food cue-triggered motivation.
Collapse
Affiliation(s)
- Mike JF Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA,Department of Psychology, Wesleyan University, Middletown, CT, USA
| | - Paul R Burghardt
- Molecular and Behavioral Neuroscience Institute, The University of Michigan School of Medicine, Ann Arbor, MI, USA,Department of Psychiatry, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christa M Patterson
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cameron W Nobile
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Stanley J Watson
- Molecular and Behavioral Neuroscience Institute, The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan School of Medicine, Ann Arbor, MI, USA,Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, MSRB III 1301, Ann Arbor, MI 48109, USA, Tel: +1 734 945 9887, Fax: +847 578 8515, E-mail:
| |
Collapse
|
38
|
Ifland J, Preuss HG, Marcus MT, Rourke KM, Taylor W, Theresa Wright H. Clearing the Confusion around Processed Food Addiction. J Am Coll Nutr 2015; 34:240-3. [DOI: 10.1080/07315724.2015.1022466] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Cole S, Hobin MP, Petrovich GD. Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions. Neuroscience 2015; 286:187-202. [PMID: 25463526 PMCID: PMC4298477 DOI: 10.1016/j.neuroscience.2014.11.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 11/16/2014] [Indexed: 12/30/2022]
Abstract
The amygdala, prefrontal cortex, striatum and other connected forebrain areas are important for reward-associated learning and subsequent behaviors. How these structurally and functionally dissociable regions are recruited during initial learning, however, is unclear. Recently, we showed amygdalar nuclei were differentially recruited across different stages of cue-food associations in a Pavlovian conditioning paradigm. Here, we systematically examined Fos induction in the forebrain, including areas associated with the amygdala, during early (day 1) and late (day 10) training sessions of cue-food conditioning. During training, rats in the conditioned group received tone-food pairings, while controls received presentations of the tone alone in the conditioning chamber followed by food delivery in their home cage. We found that a small subset of telencephalic and hypothalamic regions were differentially recruited during the early and late stages of training, suggesting evidence of learning-induced plasticity. Initial tone-food pairings recruited solely the amygdala, while late tone-food pairings came to induce Fos in distinct areas within the medial and lateral prefrontal cortex, the dorsal striatum, and the hypothalamus (lateral hypothalamus and paraventricular nucleus). Furthermore, within the perifornical lateral hypothalamus, tone-food pairings selectively recruited neurons that produce the orexigenic neuropeptide orexin/hypocretin. These data show a functional map of the forebrain areas recruited by appetitive associative learning and dependent on experience. These selectively activated regions include interconnected prefrontal, striatal, and hypothalamic regions that form a discrete but distributed network that is well placed to simultaneously inform cortical (cognitive) processing and behavioral (motivational) control during cue-food learning.
Collapse
Affiliation(s)
- S Cole
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - M P Hobin
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA
| | - G D Petrovich
- Department of Psychology, Boston College, 140 Commonwealth Avenue, Chestnut Hill, MA 02467-3807, USA.
| |
Collapse
|
40
|
Boutelle KN, Liang J, Knatz S, Matheson B, Risbrough V, Strong D, Rhee KE, Craske MG, Zucker N, Bouton ME. Design and implementation of a study evaluating extinction processes to food cues in obese children: the Intervention for Regulations of Cues Trial (iROC). Contemp Clin Trials 2015; 40:95-104. [PMID: 25461494 PMCID: PMC4314468 DOI: 10.1016/j.cct.2014.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Obesity and its health sequelae affect a significant portion of children in the United States. Yet, the current gold-standard family-based behavioral weight-loss treatments are only effective for one-third of children long-term. Therefore, we developed iROC (Intervention for Regulation of Cues) to specifically target a method to decrease overeating in overweight children, based on learning theory, to inform and enhance interventions targeting diet and obesity in youth. This study will rigorously test extinction processes as a method of decreasing physiological and psychological responses to food cues in overweight and obese children. Through exposing children to their highly craved foods, and 'training the brain and body' to decrease overeating, we are hoping to produce longer-lasting weight loss or weight-gain prevention over time.
Collapse
Affiliation(s)
- Kerri N Boutelle
- University of California San Diego, Department of Pediatrics, United States; University of California San Diego, Department of Psychiatry, United States.
| | - June Liang
- University of California San Diego, Department of Pediatrics, United States
| | - Stephanie Knatz
- University of California San Diego, Department of Pediatrics, United States
| | - Brittany Matheson
- University of California San Diego, Department of Pediatrics, United States
| | - Victoria Risbrough
- University of California San Diego, Department of Psychiatry, United States
| | - David Strong
- University of California San Diego, Department of Family and Preventative Medicine, United States
| | - Kyung E Rhee
- University of California San Diego, Department of Pediatrics, United States
| | - Michelle G Craske
- University of California, Los Angeles, Department of Psychology, United States
| | - Nancy Zucker
- Duke University, Department of Psychiatry, United States
| | - Mark E Bouton
- University of Vermont, Department of Psychology, United States
| |
Collapse
|
41
|
Holland PC. Stimuli associated with the cancellation of food and its cues enhance eating but display negative incentive value. Learn Behav 2014; 42:365-82. [PMID: 25209534 PMCID: PMC4221408 DOI: 10.3758/s13420-014-0154-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially neutral conditioned stimuli paired with food often acquire motivating properties, including serving as secondary reinforcers, enhancing instrumental responding in Pavlovian-instrumental transfer procedures, and potentiating food consumption under conditions of food satiation. Interestingly, cues associated with the cancellation of food and food cues may also potentiate food consumption (e.g., Galarce and Holland, 2009), despite their apparent negative correlations with food delivery. In three experiments with rats, we investigated conditions under which potentiation of feeding by such "interruption stimuIi" (ISs) develops, and some aspects of the content of that learning. Although in all three experiments ISs enhanced food consumption beyond control levels, they were found to act as conditioned inhibitors for anticipatory food cup entry (Experiment 1), to serve as conditioned punishers of instrumental responding (Experiment 2), and to suppress instrumental lever press responding in a Pavlovian instrumental transfer procedure (Experiment 3). Furthermore, when given concurrent choice between different foods, an IS enhanced consumption of the food whose interruption it had previously signaled, but when given a choice between performing two instrumental responses, the IS shifted rats' choice away from the response that had previously yielded the food whose interruption had been signaled by IS (Experiment 3). Thus, the effects of an IS on appetitive responses were opposite to its effects on consummatory responding. Implications for our understanding of learned incentive motivation and the control of overeating are discussed.
Collapse
Affiliation(s)
- Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA,
| |
Collapse
|
42
|
Malkusz DC, Yenko I, Rotella FM, Banakos T, Olsson K, Dindyal T, Vig V, Bodnar RJ. Dopamine receptor signaling in the medial orbital frontal cortex and the acquisition and expression of fructose-conditioned flavor preferences in rats. Brain Res 2014; 1596:116-25. [PMID: 25446441 DOI: 10.1016/j.brainres.2014.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022]
Abstract
Systemic dopamine (DA) D1 (SCH23390: SCH) and D2 (raclopride: RAC) antagonists blocked fructose-conditioned flavor preference (CFP) acquisition and expression. Fructose-CFP acquisition was eliminated by medial prefrontal cortex (mPFC) SCH and mPFC or amygdala (AMY) RAC. Fructose-CFP expression was reduced following SCH or RAC in AMY or nucleus accumbens (NAc). The present study examined fructose-CFP acquisition and expression following SCH and RAC in the medial orbital frontal cortex (MOFC), another ventral tegmental area DA target. For fructose-CFP acquisition, five groups of rats received vehicle, SCH (24 or 48 nmol) or RAC (24 or 48 nmol) in the MOFC 0.5h prior to 8 training sessions with one flavor (CS+/Fs) mixed in 8% fructose and 0.2% saccharin, and another flavor (CS-/s) mixed in 0.2% saccharin. In six 2-bottle choice tests in 0.2% saccharin, similar fructose-CFP preferences occurred in groups trained with vehicle (76-77%), SCH24 (69-78%), SCH48 (70-74%) and RAC48 (85-92%). RAC24-trained rats displayed significant CS+ preferences during the first (79%) and third (71%), but not second (58%) test pair. For fructose-CFP expression, rats similarly trained with CS+/Fs and CS- solutions received 2-bottle choice tests following MOFC injections of SCH or RAC (12-48 nmol). CS+ preference expression was significantly reduced by RAC (48 nmol: 58%), but not SCH relative to vehicle (78%). A control group receiving RAC in the dorsolateral prefrontal cortex displayed fructose-CFP expression similar to vehicle. These data demonstrate differential frontal cortical DA mediation of fructose-CFP with mPFC D1 and D2 signaling exclusively mediating acquisition, and MOFC D2 signaling primarily mediating expression.
Collapse
Affiliation(s)
- Danielle C Malkusz
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Ira Yenko
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Francis M Rotella
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Theodore Banakos
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Kerstin Olsson
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Trisha Dindyal
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Vishal Vig
- Department of Psychology, Queens College, City University of New York, New York, NY, United States
| | - Richard J Bodnar
- Behavioral and Cognitive Neuroscience Cluster, Psychology Doctoral Program, The Graduate Center, City University of New York, New York, NY, United States; Department of Psychology, Queens College, City University of New York, New York, NY, United States.
| |
Collapse
|
43
|
Holland PC, Hsu M. Role of amygdala central nucleus in the potentiation of consuming and instrumental lever-pressing for sucrose by cues for the presentation or interruption of sucrose delivery in rats. Behav Neurosci 2014; 128:71-82. [PMID: 24512067 DOI: 10.1037/a0035445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Initially neutral conditioned stimuli (CSs) paired with food often acquire motivating properties. For example, CS presentations may enhance the rate of instrumental responding that normally earns that food reward (Pavlovian-instrumental transfer), or potentiate consumption of that food when the animal is food-sated. Recent evidence suggests that cues associated with the withdrawal of food and food cues (interruption stimuli or ISs) may also potentiate feeding, despite exhibiting some characteristics of conditioned inhibition. Here, we compared the ability of CSs and ISs to modulate both eating food and working for it. If CSs and ISs potentiate eating food by controlling a similar incentive state, both types of cues might also be expected to enhance instrumental responding for food. Although we found substantial potentiation of feeding by both CSs and ISs, and powerful enhancement of instrumental responding by a CS, we found no evidence for such instrumental enhancement by an IS. Furthermore, although an IS produced more FOS expression in the amygdala central nucleus (CeA) than either a previously reinforced CS or a control stimulus after a test for potentiated feeding, an intact CeA was unnecessary for potentiation of feeding by either a CS or an IS. Nevertheless, as in previous studies, CeA was critical to the ability of a CS to enhance instrumental responding. Implications for understanding the nature and basis for incentive learning are discussed.
Collapse
Affiliation(s)
| | - Melanie Hsu
- Department of Psychological and Brain Sciences
| |
Collapse
|
44
|
Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014; 34:237-60. [PMID: 24819325 DOI: 10.1146/annurev-nutr-071812-161201] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.
Collapse
Affiliation(s)
- Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | | | | |
Collapse
|
45
|
Sandner G, Angst MJ, Guiberteau T, Guignard B, Nehlig A. Effects of caffeine or RX821002 in rats with a neonatal ventral hippocampal lesion. Front Behav Neurosci 2014; 8:15. [PMID: 24478661 PMCID: PMC3904090 DOI: 10.3389/fnbeh.2014.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/09/2014] [Indexed: 01/23/2023] Open
Abstract
Rats with a neonatal ventral hippocampal lesion (NVHL) are used to model schizophrenia. They show enhanced locomotion and difficulties in learning after puberty. Such behavioral modifications are strengthened by dopaminergic psychostimulant drugs, which is also relevant for schizophrenia because illustrating its dopaminergic facet. But it remains questionable that only dopaminergic drugs elicit such effects. The behavioral effects could simply represent a non specific arousal, in which case NVHL rats should also be hyper-responsive to other vigilance enhancing drugs. We administered an adenosine (caffeine) or an adrenaline receptor antagonist, (RX821002) at doses documented to modify alertness of rats, respectively 5 mg/kg and 1 mg/kg. Rats were selected prior to the experiments using magnetic resonance imaging (MRI). Each group contained typical and similar NVHL lesions. They were compared to sham lesioned rats. We evaluated locomotion in a new environment and the capacity to remember a visual or acoustic cue that announced the occurrence of food. Both caffeine and RX82100 enhanced locomotion in the novel environment, particularly in NVHL rats. But, RX82100 had a biphasic effect on locomotion, consisting of an initial reduction preceding the enhancement. It was independent of the lesion. Caffeine did not modify the learning performance of NVHL rats. But, RX821002 was found to facilitate learning. Patients tend to intake much more caffeine than healthy people, which has been interpreted as a means to counter some cognitive deficits. This idea was not validated with the present results. But adrenergic drugs could be helpful for attenuating some of their cognitive deficits.
Collapse
Affiliation(s)
- Guy Sandner
- Faculté de Médecine, Université de Strasbourg, U1114 INSERM Strasbourg, France
| | - Marie-Josée Angst
- Faculté de Médecine, Université de Strasbourg, U1114 INSERM Strasbourg, France
| | - Thierry Guiberteau
- Faculté de Médecine, Université de Strasbourg, UMR 7237 CNRS/UdS Strasbourg, France
| | - Blandine Guignard
- Faculté de Médecine, Université de Strasbourg, UMR 7237 CNRS/UdS Strasbourg, France
| | - Astrid Nehlig
- Faculté de Médecine, Université de Strasbourg, U663 INSERM Strasbourg, France
| |
Collapse
|
46
|
Díaz-Mataix L, Tallot L, Doyère V. The amygdala: A potential player in timing CS–US intervals. Behav Processes 2014; 101:112-22. [DOI: 10.1016/j.beproc.2013.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/15/2013] [Accepted: 08/06/2013] [Indexed: 01/29/2023]
|
47
|
The effect of high fat diet and saturated fatty acids on insulin signaling in the amygdala and hypothalamus of rats. Brain Res 2013; 1537:191-200. [DOI: 10.1016/j.brainres.2013.09.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/13/2013] [Accepted: 09/19/2013] [Indexed: 12/22/2022]
|
48
|
McDannald MA, Setlow B, Holland PC. Effects of ventral striatal lesions on first- and second-order appetitive conditioning. Eur J Neurosci 2013; 38:2589-99. [PMID: 23691939 DOI: 10.1111/ejn.12255] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/10/2013] [Accepted: 04/14/2013] [Indexed: 02/01/2023]
Abstract
Rats with bilateral lesions of the ventral striatal nucleus accumbens failed to acquire Pavlovian second-order conditioning to auditory stimuli paired with visual stimuli that had previously received first-order pairings with food. This deficit in second-order conditioning was specific to learning driven by incentive properties of the first-order cues, and was observed whether the first-order training had occurred prior to or after lesion surgery. Lesions also produced deficits in the display of conditioned responses to the first-order conditioned stimulus, but only when they were made after first-order training. These results suggest a specific role for the ventral striatum in acquiring and expressing incentive properties of conditioned stimuli through second-order conditioning, as well as a more general role in expressing previously acquired Pavlovian conditioned responses.
Collapse
Affiliation(s)
- Michael A McDannald
- National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | | | | |
Collapse
|
49
|
Volkow ND, Wang GJ, Tomasi D, Baler RD. The addictive dimensionality of obesity. Biol Psychiatry 2013; 73:811-8. [PMID: 23374642 PMCID: PMC4827347 DOI: 10.1016/j.biopsych.2012.12.020] [Citation(s) in RCA: 260] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/10/2012] [Accepted: 12/29/2012] [Indexed: 12/18/2022]
Abstract
Our brains are hardwired to respond and seek immediate rewards. Thus, it is not surprising that many people overeat, which in some can result in obesity, whereas others take drugs, which in some can result in addiction. Though food intake and body weight are under homeostatic regulation, when highly palatable food is available, the ability to resist the urge to eat hinges on self-control. There is no homeostatic regulator to check the intake of drugs (including alcohol); thus, regulation of drug consumption is mostly driven by self-control or unwanted effects (i.e., sedation for alcohol). Disruption in both the neurobiological processes that underlie sensitivity to reward and those that underlie inhibitory control can lead to compulsive food intake in some individuals and compulsive drug intake in others. There is increasing evidence that disruption of energy homeostasis can affect the reward circuitry and that overconsumption of rewarding food can lead to changes in the reward circuitry that result in compulsive food intake akin to the phenotype seen with addiction. Addiction research has produced new evidence that hints at significant commonalities between the neural substrates underlying the disease of addiction and at least some forms of obesity. This recognition has spurred a healthy debate to try and ascertain the extent to which these complex and dimensional disorders overlap and whether or not a deeper understanding of the crosstalk between the homeostatic and reward systems will usher in unique opportunities for prevention and treatment of both obesity and drug addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
50
|
Petrovich GD. Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 2013; 121:10-8. [PMID: 23562305 DOI: 10.1016/j.physbeh.2013.03.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/06/2013] [Indexed: 01/23/2023]
Abstract
The motivation to eat is driven by a complex sum of physiological and non-physiological influences computed by the brain. Physiological signals that inform the brain about energy and nutrient needs are the primary drivers, but environmental signals unrelated to energy balance also control appetite and eating. The two components could act in concert to support the homeostatic regulation of food intake. Often, however, environmental influences rival physiological control and stimulate eating irrespective of satiety, or inhibit eating irrespective of hunger. If persistent, such maladaptive challenges to the physiological system could lead to dysregulated eating and ultimately to eating disorders. Nevertheless, the brain mechanisms underlying environmental contribution in the control of food intake are poorly understood. This paper provides an overview in recent advances in deciphering the critical brain systems using rodent models for environmental control by learned cues. These models use associative learning to compete with the physiological control, and in one preparation food cues stimulate a meal despite satiety, while in another preparation fear cues stop a meal despite hunger. Thus far, four forebrain regions have been identified as part of the essential cue induced feeding circuitry. These are telencephalic areas critical for associative learning, memory encoding, and decision making, the amygdala, hippocampus and prefrontal cortex and the lateral hypothalamus, which functions to integrate feeding, reward, and motivation. This circuitry also engages two orexigenic peptides, ghrelin and orexin. A parallel amygdalar circuitry supports fear cue cessation of feeding. These findings illuminate the brain mechanisms underlying environmental control of food intake and might be also relevant to aspects of human appetite and maladaptive overeating and undereating.
Collapse
Affiliation(s)
- Gorica D Petrovich
- Department of Psychology, Boston College, Chestnut Hill, MA, United States.
| |
Collapse
|