1
|
Tkaczynski J, Riser J, Patel M, Shellenbarger N, Park J, Manvich D, Chandler DJ. Effects of social isolation on locus coeruleus opioid receptor expression and affective behavior. Neurobiol Stress 2025; 36:100717. [PMID: 40206287 PMCID: PMC11978347 DOI: 10.1016/j.ynstr.2025.100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/12/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Social isolation is a stressor that impairs homeostatic neuroendocrine functions and is associated with the development of several mood disorders characterized by persistent negative affect. Persistent feelings of loneliness have been growing public health concerns for several years and were greatly exacerbated by the onset of the COVID-19 pandemic. The problem has grown so severe the U.S. Surgeon General recently declared loneliness to be an epidemic health concern that is associated with poor mental and somatic health outcomes. Therefore, identifying mechanisms of neuroadaptation that contribute to the development of persistent negative affect is a critical step in the identifying better treatments for mood disorders. One region of the brain that becomes dysregulated in neuropsychiatric disease is the locus coeruleus. It is innervated by multiple stress-related peptidergic afferents, including those that release endogenous opioids to affect behavior. It is a major contributor to the behavioral limb of the stress response, but its role in the neurobiology of social behavior is understudied. Here we show that in laboratory rats, six weeks of social isolation leads to increased neophobia, reduced sociality, and passive stress coping. These behavioral changes are also associated with downregulation of the δ-opioid receptor and upregulation of the κ-opioid receptor in locus coeruleus. These findings suggest that extended social isolation promotes dysregulation of several opioid receptor subtypes in a brain structure that has an important role in regulating affective behavior, implicating them as potential targets for the treatment of neuropsychiatric disease associated with social isolation and loneliness.
Collapse
Affiliation(s)
- John Tkaczynski
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford NJ, 08084, USA
| | - Jordan Riser
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford NJ, 08084, USA
| | - Maya Patel
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford NJ, 08084, USA
| | - Nicole Shellenbarger
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford NJ, 08084, USA
| | - Jin Park
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford NJ, 08084, USA
| | - Daniel Manvich
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford NJ, 08084, USA
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 E. Laurel Road, Stratford NJ, 08084, USA
| |
Collapse
|
2
|
Wongsaengchan C, McCafferty DJ, Evans NP, McKeegan DEF, Nager RG. Body surface temperature of rats reveals both magnitude and sex differences in the acute stress response. Physiol Behav 2023; 264:114138. [PMID: 36871696 DOI: 10.1016/j.physbeh.2023.114138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Understanding how biological markers of stress relate to stressor magnitude is much needed and can be used in welfare assessment. Changes in body surface temperature can be measured using infrared thermography (IRT) as a marker of a physiological response to acute stress. While an avian study has shown that changes in body surface temperature can reflect the intensity of acute stress, little is known about surface temperature responses to stressors of different magnitudes and its sex-specificity in mammals, and how they correlate with hormonal and behavioural responses. We used IRT to collect continuous surface temperature measurements of tail and eye of adult male and female rats (Rattus norvegicus), for 30 minutes after exposure to one of three stressors (small cage, encircling handling or rodent restraint cone) for one minute, and cross-validated the thermal response with plasma corticosterone (CORT) and behavioural assessment. To obtain individual baseline temperatures and thermal responses to stress, rats were imaged in a test arena (to which they were habituated) for 30 seconds before and 30 minutes after being exposed to the stressor. In response to the three stressors, tail temperature initially decreased and then recovered to, or overshot the baseline temperature. Tail temperature dynamics differed between stressors; being restrained in the small cage was associated with the smallest drop in temperature, in male rats, and the fastest thermal recovery, in both sexes. Increases in eye temperature only distinguished between stressors early in the response and only in females. The post stressor increase in eye temperature was greater in the right eye of males and the left eye of females. In both sexes encircling may have been associated with the fastest increase in CORT. These results were in line with observed behavioural changes, with greater movement in rats exposed to the small cage and higher immobility after encircling. The female tail and eye temperature, as well as the CORT concentrations did not return to pre-stressor levels in the observation period, in conjunction with the greater occurrence of escape-related behaviours in female rats. These results suggest that female rats are more vulnerable to acute restraint stress compared to male rats and emphasise the importance of using both sexes in future investigations of stressor magnitude. This study demonstrates that acute stress induced changes in mammalian surface temperature measured with IRT relate to the magnitude of restraint stress, indicate sex differences and correlate with hormonal and behavioural responses. Thus, IRT has the potential to become a non-invasive method of continuous welfare assessment in unrestrained mammals.
Collapse
Affiliation(s)
- Chanakarn Wongsaengchan
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, KY16 9JP, United Kingdom
| | - Dominic J McCafferty
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Scottish Centre for Ecology and the Natural Environment, Rowardennan, G63 0AW, United Kingdom
| | - Neil P Evans
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Dorothy E F McKeegan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Ruedi G Nager
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
3
|
Moraes DA, Machado RB, Koban M, Hoffman GE, Suchecki D. The Pituitary-Adrenal Response to Paradoxical Sleep Deprivation Is Similar to a Psychological Stressor, Whereas the Hypothalamic Response Is Unique. Front Endocrinol (Lausanne) 2022; 13:885909. [PMID: 35880052 PMCID: PMC9308007 DOI: 10.3389/fendo.2022.885909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Stressors of different natures induce activation of the hypothalamic-pituitary-adrenal (HPA) axis at different magnitudes. Moreover, the HPA axis response to repeated exposure is usually distinct from that elicited by a single session. Paradoxical sleep deprivation (PSD) augments ACTH and corticosterone (CORT) levels, but the nature of this stimulus is not yet defined. The purpose of the present study was to qualitatively compare the stress response of animals submitted to PSD to that of rats exposed once or four times to cold, as a physiological stress, movement restraint (RST) as a mixed stressor and predator odour (PRED) as the psychological stressor, whilst animals were submitted for 1 or 4 days to PSD and respective control groups. None of the stressors altered corticotropin releasing factor immunoreactivity in the paraventricular nucleus of the hypothalamus (PVN), median eminence (ME) or central amygdala, compared to control groups, whereas vasopressin immunoreactivity in PSD animals was decreased in the PVN and increased in the ME, indicating augmented activity of this system. ACTH levels were higher after repeated stress or prolonged PSD than after single- or 1 day-exposure and control groups, whereas the CORT response was habituated by repeated stress, but not by 4-days PSD. This dissociation resulted in changes in the CORT : ACTH ratio, with repeated cold and RST decreasing the ratio compared to single exposure, but no change was seen in PRED and PSD groups. Comparing the magnitude and pattern of pituitary-adrenal response to the different stressors, PSD-induced responses were closer to that shown by PRED-exposed rats. In contrast, the hypothalamic response of PSD-exposed rats was unique, inasmuch as this was the only stressor which increased the activity of the vasopressin system. In conclusion, we propose that the pituitary-adrenal response to PSD is similar to that induced by a psychological stressor.
Collapse
Affiliation(s)
- Danilo A. Moraes
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo B. Machado
- Grupo de Pesquisa em Psicossomática, Universidade Ibirapuera, São Paulo, Brazil
| | - Michael Koban
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Gloria E. Hoffman
- Department of Biology, Morgan State University, Baltimore, MD, United States
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Deborah Suchecki,
| |
Collapse
|
4
|
Mograbi KDM, Suchecki D, da Silva SG, Covolan L, Hamani C. Chronic unpredictable restraint stress increases hippocampal pro-inflammatory cytokines and decreases motivated behavior in rats. Stress 2020; 23:427-436. [PMID: 31928117 DOI: 10.1080/10253890.2020.1712355] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Most chronic stress protocols are too laborious or do not abide by the two main characteristics of the stress concept: uncontrollability and unpredictability. The goal of this study was to establish a simple and reliable model of chronic stress, while maintaining the main features of the concept. Animals were exposed to chronic movement restraint with variable duration (2, 4 or 6 h, in an unpredictable schedule) for 3 weeks and assessed in several physiological and behavioral readouts known to reflect chronic stress states. Body weight, levels of plasma corticosterone, hippocampal pro-and anti-inflammatory cytokines, anxiety-like (novelty suppressed feeding and elevated plus maze) and motivated behaviors (sucrose negative contrast test and forced swim test) were evaluated three days after the end of the chronic protocol. Stressed animals had a lower body weight gain, higher levels of cytokines in the hippocampus, reduced suppression of a low concentration sucrose solution and increased immobility in the forced swim test. Based on these data, we suggest that chronic movement restraint with variable duration may be a suitable and simple protocol for the study of changes induced by chronic stress and for the testing of possible treatments relevant to psychiatry.
Collapse
Affiliation(s)
| | - Deborah Suchecki
- Departament of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sérgio Gomes da Silva
- Hospital do Câncer de Muriaé - Fundação Cristiano Varella, Centro Universitário UNIFAMINAS, Muriaé, Brazil
| | - Luciene Covolan
- Departament of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clement Hamani
- Division of Neurosurgery, Harquail Centre for Neuromodulation, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Neuroendocrine and neuroimmune adaptation to Chronic Escalating Distress (CED): A novel model of chronic stress. Neurobiol Stress 2018; 9:74-83. [PMID: 30450375 PMCID: PMC6234279 DOI: 10.1016/j.ynstr.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 11/21/2022] Open
Abstract
Acute and chronic stress challenges have a profound influence on the development and expression of subsequent affective disorders, alcohol use disorders, and natural aging processes. These experiments examined adaptation in neuroimmune and neuroendocrine responses that occurred as a result of exposure to a novel model of chronic stress, termed chronic escalating distress (CED). This model involves exposure to highly predictable daily stress challenges involving a systematic escalation in both the intensity and length of daily stress challenges, and has recently been shown to profoundly alter alcohol sensitivity. Male Sprague-Dawley rats were exposed to an 11 day procedure where days 1-5 consisted of 60 min of restraint, days 6-10 consisted of 60 min of restraint immediately followed by 30 min of forced swim, and on day 11 subjects were exposed to a 2 h session of intermittent footshock. Experiment 1 examined adaptation in the corticosterone (CORT) response at key points in the 11 day procedure, and found that the escalation in stressors disrupted habituation to restraint, whereas the CORT response to daily forced swim exposure increased across days. Experiment 2 investigated the impact of this stress paradigm on the expression of several cytokine (IL-1β, IL-6, TNF-α) and cellular activation marker (c-Fos, CD14, CD200R) genes in key brain regions (PVN, HPC, & PFC) known to be influenced by stress. Interestingly, a history of CED had no effect on footshock-induced neuroimmune changes (increased IL-1 in the PVN; increased IL-6 in the HPC and PFC). In addition, acute footshock and CED produced similar c-fos induction within the PVN whereas CED led to enhanced c-fos induction in both the HPC and PFC. These findings support recent work indicating that neuroimmune responses to acute stress challenges persisted in rats with a recent history of repeated stress exposure, and that these effects occurred contemporaneously with ongoing changes in HPA axis reactivity. Overall, this CED model may serve as a highly tractable model for studying adaptation to chronic stress, and may have implications for understanding stress-induced alterations in alcohol sensitivity and natural aging processes.
Collapse
|
6
|
Lam VYY, Raineki C, Takeuchi LE, Ellis L, Woodward TS, Weinberg J. Chronic Stress Alters Behavior in the Forced Swim Test and Underlying Neural Activity in Animals Exposed to Alcohol Prenatally: Sex- and Time-Dependent Effects. Front Behav Neurosci 2018; 12:42. [PMID: 29593510 PMCID: PMC5855032 DOI: 10.3389/fnbeh.2018.00042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/23/2018] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of the hypothalamic-pituitary-adrenal (HPA) stress response has been suggested to play a role in vulnerability to stress-related disorders, such as depression. Prenatal alcohol exposure (PAE) may result in HPA dysregulation, which in turn may predispose individuals to the effects of stress exposure throughout life, and increase their risk of developing depression compared to unexposed individuals. We examined the immediate and delayed effects of chronic unpredictable stress (CUS) in adulthood on behavior of PAE animals in the forced swim test (FST) and the neurocircuitry underlying behavioral, emotional, and stress regulation. Adult male and female offspring from PAE and control conditions were tested for 2 days in the FST, with testing initiated either 1 day (CUS-1; immediate) or 14 days (CUS-14; delayed) post-CUS. Following testing, c-fos mRNA expression of the medial prefrontal cortex (mPFC), amygdala, hippocampal formation, and the paraventricular nucleus of the hypothalamus was assessed. Our results indicate that PAE and CUS interact to differentially alter FST behaviors and neural activation of several brain areas in males and females, and effects may depend on whether testing is immediate or delayed post-CUS. PAE males showed decreased time immobile (Day 1 of FST) following immediate testing, while PAE females showed increased time immobile (Day 2 of FST) following delayed testing compared to their respective control counterparts. Moreover, in males, PAE decreased c-fos mRNA expression in the lateral and central nuclei of the amygdala in the non-CUS condition, and increased c-fos mRNA expression in the CA1 in the CUS-14 condition. By contrast in females, c-fos mRNA expression in the Cg1 was decreased in PAE animals (independent of CUS) and decreased in all mPFC subregions in CUS-14 animals (independent of prenatal treatment). Constrained principal component analysis, used to identify neural and behavioral networks, revealed that PAE altered the activation of these networks and modulated the effects of CUS on these networks in a sex- and time-dependent manner. This dysregulation of the neurocircuitry underlying behavioral, emotional and stress regulation, may ultimately contribute to an increased vulnerability to psychopathologies, such as depression, that are often observed following PAE.
Collapse
Affiliation(s)
- Vivian Y Y Lam
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lily E Takeuchi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Linda Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Todd S Woodward
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.,BC Mental Health and Addictions Research Institute, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Lovelock DF, Deak T. Repeated exposure to two stressors in sequence demonstrates that corticosterone and paraventricular nucleus of the hypothalamus interleukin-1β responses habituate independently. J Neuroendocrinol 2017; 29:10.1111/jne.12514. [PMID: 28803453 PMCID: PMC5617797 DOI: 10.1111/jne.12514] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/09/2023]
Abstract
A wide range of stress-related pathologies such as post-traumatic stress disorder are considered to arise from aberrant or maladaptive forms of stress adaptation. The hypothalamic-pituitary-adrenal (HPA) axis readily adapts to repeated stressor exposure, yet little is known about adaptation in neuroimmune responses to repeated or sequential stress challenges. In Experiment 1, rats were exposed to 10 days of restraint alone (60 minutes daily), forced swim alone (30 minutes daily) or daily sequential exposure to restraint (60 minutes) followed immediately by forced swim (30 minutes), termed sequential stress exposure. Habituation of the corticosterone (CORT) response occurred to restraint by 5 days and swim at 10 days, whereas rats exposed to sequential stress exposure failed to display habituation to the combined challenge. Experiment 2 compared 1 or 5 days of forced swim with sequential stress exposure and examined how each affected expression of several neuroimmune and cellular activation genes in the paraventricular nucleus of the hypothalamus (PVN), prefrontal cortex (PFC) and hippocampus (HPC). Sequential exposure to restraint and swim increased interleukin (IL)-1β in the PVN, an effect that was attenuated after 5 days. Sequential stress exposure also elicited IL-6 and tumour necrosis factor-α responses in the HPC and PFC, respectively, which did not habituate after 5 days. Experiment 3 tested whether prior habituation to restraint (5 days) would alter the IL-1β response evoked by swim exposure imposed immediately after the sixth day of restraint. Surprisingly, a history of repeated exposure to restraint attenuated the PVN IL-1β response after swim in comparison to acutely-exposed subjects despite an equivalent CORT response. Overall, these findings suggest that habituation of neuroimmune responses to stress proceeds: (i) independent of HPA axis habituation; (ii) likely requires more daily sessions of stress to develop; and (iii) IL-1β displays a greater tendency to habituate after repeated stress challenges compared to other stress-reactive cytokines.
Collapse
Affiliation(s)
- Dennis F. Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University—SUNY, Binghamton NY 13902-6000
| |
Collapse
|
8
|
Goodell DJ, Ahern MA, Baynard J, Wall VL, Bland ST. A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat. Behav Brain Res 2016; 317:1-15. [PMID: 27633556 DOI: 10.1016/j.bbr.2016.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 01/18/2023]
Abstract
Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the third trial all rats engaged in more of the quantified social behaviors and spent less time escaping in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction time and aggressive behaviors during escapable social interaction, and that the aggressiveness of the stimulus rat in a social encounter is an important component of behavioral and neural outcomes for both isolation and group-reared rats.
Collapse
Affiliation(s)
- Dayton J Goodell
- Department of Pharmacology, Program in Neuroscience, University of Colorado AMC, Aurora, CO, United States
| | - Megan A Ahern
- College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Jessica Baynard
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Vanessa L Wall
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Sondra T Bland
- Department of Psychology, University of Colorado Denver, Denver, CO, United States.
| |
Collapse
|
9
|
Abstract
In this review, nonassociative learning is advanced as an organizing principle to draw together findings from both sympathetic-adrenal medullary and hypothalamic-pituitary-adrenocortical (HPA) axis responses to chronic intermittent exposure to a variety of stressors. Studies of habituation, facilitation and sensitization of stress effector systems are reviewed and linked to an animal's prior experience with a given stressor, the intensity of the stressor and the appraisal by the animal of its ability to mobilize physiological systems to adapt to the stressor. Brain pathways that regulate physiological and behavioral responses to stress are discussed, especially in light of their regulation of nonassociative processes in chronic intermittent stress. These findings may have special relevance to various psychiatric diseases, including depression and post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Richard McCarty
- a Department of Psychology , Vanderbilt University , Nashville , TN , USA
| |
Collapse
|
10
|
O'Neill CE, Newsom RJ, Stafford J, Scott T, Archuleta S, Levis SC, Spencer RL, Campeau S, Bachtell RK. Adolescent caffeine consumption increases adulthood anxiety-related behavior and modifies neuroendocrine signaling. Psychoneuroendocrinology 2016; 67:40-50. [PMID: 26874560 PMCID: PMC4808446 DOI: 10.1016/j.psyneuen.2016.01.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/26/2022]
Abstract
Caffeine is a commonly used psychoactive substance and consumption by children and adolescents continues to rise. Here, we examine the lasting effects of adolescent caffeine consumption on anxiety-related behaviors and several neuroendocrine measures in adulthood. Adolescent male Sprague-Dawley rats consumed caffeine (0.3g/L) for 28 consecutive days from postnatal day 28 (P28) to P55. Age-matched control rats consumed water. Behavioral testing for anxiety-related behavior began in adulthood (P62) 7 days after removal of caffeine. Adolescent caffeine consumption enhanced anxiety-related behavior in an open field, social interaction test, and elevated plus maze. Similar caffeine consumption in adult rats did not alter anxiety-related behavior after caffeine removal. Characterization of neuroendocrine measures was next assessed to determine whether the changes in anxiety were associated with modifications in the HPA axis. Blood plasma levels of corticosterone (CORT) were assessed throughout the caffeine consumption procedure in adolescent rats. Adolescent caffeine consumption elevated plasma CORT 24h after initiation of caffeine consumption that normalized over the course of the 28-day consumption procedure. CORT levels were also elevated 24h after caffeine removal and remained elevated for 7 days. Despite elevated basal CORT in adult rats that consumed caffeine during adolescence, the adrenocorticotropic hormone (ACTH) and CORT response to placement on an elevated pedestal (a mild stressor) was significantly blunted. Lastly, we assessed changes in basal and stress-induced c-fos and corticotropin-releasing factor (Crf) mRNA expression in brain tissue collected at 7 days withdrawal from adolescent caffeine. Adolescent caffeine consumption increased basal c-fos mRNA in the paraventricular nucleus of the hypothalamus. Adolescent caffeine consumption had no other effects on the basal or stress-induced c-fos mRNA changes. Caffeine consumption during adolescence increased basal Crf mRNA in the central nucleus of the amygdala, but no additional effects of stress or caffeine consumption were observed in other brain regions. Together these findings suggest that adolescent caffeine consumption may increase vulnerability to psychiatric disorders including anxiety-related disorders, and this vulnerability may result from dysregulation of the neuroendocrine stress response system.
Collapse
Affiliation(s)
- Casey E O'Neill
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan J Newsom
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Jacob Stafford
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Talia Scott
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Solana Archuleta
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia C Levis
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Robert L Spencer
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Serge Campeau
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ryan K Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
11
|
Harris RBS. Chronic and acute effects of stress on energy balance: are there appropriate animal models? Am J Physiol Regul Integr Comp Physiol 2015; 308:R250-65. [PMID: 25519732 PMCID: PMC4329465 DOI: 10.1152/ajpregu.00361.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
12
|
Zhang W, Hetzel A, Shah B, Atchley D, Blume SR, Padival MA, Rosenkranz JA. Greater physiological and behavioral effects of interrupted stress pattern compared to daily restraint stress in rats. PLoS One 2014; 9:e102247. [PMID: 25014526 PMCID: PMC4094544 DOI: 10.1371/journal.pone.0102247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022] Open
Abstract
Repeated stress can trigger a range of psychiatric disorders, including anxiety. The propensity to develop abnormal behaviors after repeated stress is related to the severity, frequency and number of stressors. However, the pattern of stress exposure may contribute to the impact of stress. In addition, the anxiogenic nature of repeated stress exposure can be moderated by the degree of coping that occurs, and can be reflected in homotypic habituation to the repeated stress. However, expectations are not clear when a pattern of stress presentation is utilized that diminishes habituation. The purpose of these experiments is to test whether interrupted stress exposure decreases homotypic habituation and leads to greater effects on anxiety-like behavior in adult male rats. We found that repeated interrupted restraint stress resulted in less overall homotypic habituation compared to repeated daily restraint stress. This was demonstrated by greater production of fecal boli and greater corticosterone response to restraint. Furthermore, interrupted restraint stress resulted in a lower body weight and greater adrenal gland weight than daily restraint stress, and greater anxiety-like behavior in the elevated plus maze. Control experiments demonstrated that these effects of the interrupted pattern could not be explained by differences in the total number of stress exposures, differences in the total number of days that the stress periods encompased, nor could it be explained as a result of only the stress exposures after an interruption from stress. These experiments demonstrate that the pattern of stress exposure is a significant determinant of the effects of repeated stress, and that interrupted stress exposure that decreases habituation can have larger effects than a greater number of daily stress exposures. Differences in the pattern of stress exposure are therefore an important factor to consider when predicting the severity of the effects of repeated stress on psychiatric disorders.
Collapse
Affiliation(s)
- Wei Zhang
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Andrea Hetzel
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Bijal Shah
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Derek Atchley
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Shannon R. Blume
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - Mallika A. Padival
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
| | - J. Amiel Rosenkranz
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pastor-Ciurana J, Rabasa C, Ortega-Sánchez JA, Sanchís-Ollè M, Gabriel-Salazar M, Ginesta M, Belda X, Daviu N, Nadal R, Armario A. Prior exposure to repeated immobilization or chronic unpredictable stress protects from some negative sequels of an acute immobilization. Behav Brain Res 2014; 265:155-62. [DOI: 10.1016/j.bbr.2014.02.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 11/27/2022]
|
14
|
Fan X, Li D, Zhang Y, Green TA. Differential phosphoproteome regulation of nucleus accumbens in environmentally enriched and isolated rats in response to acute stress. PLoS One 2013; 8:e79893. [PMID: 24278208 PMCID: PMC3838351 DOI: 10.1371/journal.pone.0079893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/07/2013] [Indexed: 11/18/2022] Open
Abstract
Increasing evidence shows that stress contributes to the pathogenesis of major depressive disorder which is a severe neuropsychiatric disorder and influences over 10% of the world's population. Our previous studies revealed that rats reared in an enriched environment display less depression-related behavior compared to rats raised in an isolated environment, which implies that environmental enrichment produces an antidepressant-like behavioral phenotype. However, the molecular mechanisms are not fully understood. Protein phosphorylation rapidly changes signaling pathway function and alters the function of proteins associated with the stress-induced depressive disorder. Thus, in this study, a phosphoproteomic approach was used to uncover differential phosphoprotein regulation in rat nucleus accumbens between isolated (IC) and enriched environmental conditions (EC) under basal conditions, and in response to acute stress. We found 23 phosphoproteins were regulated in EC vs. IC rats under basal conditions; 10 phosphoproteins regulated by stress in IC rats; and 15 regulated by stress in EC rats. Among all significantly regulated phosphoproteins, 11 of them were represented in at least two conditions. The regulated phosphoproteins represent signaling pathway proteins (including ERK2), enzymes, transcriptional regulators, protein translation regulators, transporters, chaperones and cytoskeletal proteins. These findings provide a global view for further understanding the contribution of protein phosphorylation in depression pathogenesis and antidepressant action.
Collapse
Affiliation(s)
- Xiuzhen Fan
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dingge Li
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yafang Zhang
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas A. Green
- Center for Addiction Research, Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|