1
|
Activation of Peripheral Blood CD4+ T-Cells in IBS is not Associated with Gastrointestinal or Psychological Symptoms. Sci Rep 2019; 9:3710. [PMID: 30842618 PMCID: PMC6403230 DOI: 10.1038/s41598-019-40124-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Immune activation may underlie the pathogenesis of irritable bowel syndrome (IBS), but the evidence is conflicting. We examined whether peripheral CD4+ T-cells from IBS patients demonstrated immune activation and changes in cytokine production. To gain mechanistic insight, we examined whether immune activation correlated with psychological stress and changing symptoms over time. IBS patients (n = 29) and healthy volunteers (HV; n = 29) completed symptom and psychological questionnaires. IBS patients had a significant increase in CD4+ T-cells expressing the gut homing marker integrin β7 (p = 0.023) and lymphoid marker CD62L (p = 0.026) compared to HV. Furthermore, phytohaemagglutinin stimulated CD4+ T-cells from IBS-D patients demonstrated increased TNFα secretion when compared to HV (p = 0.044). Increased psychological scores in IBS did not correlate with TNFα production, while stress hormones inhibited cytokine secretion from CD4+ T-cells of HV in vitro. IBS symptoms, but not markers of immune activation, decreased over time. CD4+ T-cells from IBS-D patients exhibit immune activation, but this did not appear to correlate with psychological stress measurements or changing symptoms over time. This could suggest that immune activation is a surrogate of an initial trigger and/or ongoing parallel peripheral mechanisms.
Collapse
|
2
|
Siddeek B, Li N, Mauduit C, Chehade H, Rigal E, Tolsa JF, Armengaud JB, Yzydorczyk C, Benahmed M, Vergely C, Simeoni U. Transient postnatal over nutrition induces long-term alterations in cardiac NLRP3-inflammasome pathway. Nutr Metab Cardiovasc Dis 2018; 28:944-951. [PMID: 29752038 DOI: 10.1016/j.numecd.2018.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/22/2018] [Accepted: 03/31/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The prevalence of obesity is increasing worldwide at an alarming rate. Altered early nutrition, in particular postnatal overfeeding (PNOF), is a risk factor for impaired cardiac function in adulthood. In the understanding of the initiation or progression of heart diseases, NLRP3 inflammasome and non-coding RNAs have been proposed as key players. In this context, the aim of this study was to decipher the role of NLRP3 inflammasome and its post transcriptional control by micro-RNAs in the regulation of cardiac metabolic function induced by PNOF in mice. METHODS AND RESULTS Based on a model of mice exposed to PNOF through litter size reduction, we observed increased cardiac protein expression levels of NLRP3 and ETS-1 associated with alterations in insulin signaling. Additionally, miR-193b levels were down-regulated in the adult hearts of overfed animals. In a cardiomyocyte cell line, transfection with miR-193b induced down-regulation of ETS-1 and NLRP3 and improved insulin signaling. CONCLUSIONS These findings suggest that the miR-193b could be involved in cardiac phenotypic changes observed in adulthood induced by PNOF likely through the regulation of ETS-1 and NLRP3 expression, and through this of insulin signaling.
Collapse
Affiliation(s)
- B Siddeek
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland.
| | - N Li
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - C Mauduit
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, France
| | - H Chehade
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - E Rigal
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - J-F Tolsa
- Woman-Mother-Child Department, Division of Neonatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - J-B Armengaud
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - C Yzydorczyk
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - M Benahmed
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Team 5, Nice, France
| | - C Vergely
- Equipe Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2, EA7460), UFR Sciences de Santé, Université de Bourgogne Franche-Comté, Dijon, France
| | - U Simeoni
- Woman-Mother-Child Department, Division of Pediatrics, DOHaD Laboratory, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Zhang WJ, Cao WY, Huang YQ, Cui YH, Tu BX, Wang LF, Zou GJ, Liu Y, Hu ZL, Hu R, Li CQ, Xing XW, Li F. The Role of miR-150 in Stress-Induced Anxiety-Like Behavior in Mice. Neurotox Res 2018; 35:160-172. [PMID: 30120712 DOI: 10.1007/s12640-018-9943-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Stress plays a crucial role in several psychiatric disorders, including anxiety. However, the underlying mechanisms remain poorly understood. Here, we used acute stress (AS) and chronic restraint stress (CRS) models to develop anxiety-like behavior and investigate the role of miR-150 in the hippocampi of mice. Corticosterone levels as well as glutamate receptors in the hippocampus were evaluated. We found that anxiety-like behavior was induced after either AS or CRS, as determined by the open-field test (OFT) and elevated plus-maze test (EPM). Increased corticosterone levels were observed in the blood of AS and CRS groups, while the expression of miR-150 mRNA in the hippocampus was significantly decreased. The expressions of GluN2A, GluR1, GluR2, and V-Glut2 in the hippocampus were decreased after either AS or CRS. Hippocampal GAD67 expression was increased by AS but not CRS, and GluN2B expression was decreased by CRS but not AS. Adult miR-150 knockout mice showed anxiety-like behavior, as assessed by the OFT and EPM. The expressions of GluN2A, GluN2B, GluR1, and GluR2 were also downregulated, but the expression of V-Glut2 was upregulated in the hippocampi of miR-150 knockout mice compared with wild-type mice. Interestingly, we found that the miR-150 knockout mice showed decreased dendrite lengths, dendrite branchings, and numbers of dendrite spines in the hippocampus compared with wild-type mice. These results suggest that miR-150 may influence the synaptic plasticity of the hippocampus and play a significant role in stress-induced anxiety-like behavior in adult mice.
Collapse
Affiliation(s)
- Wen-Juan Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Wen-Yu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Yan-Qing Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Bo-Xuan Tu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Lai-Fa Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Guang-Jing Zou
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Yu Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Zhao-Lan Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Rong Hu
- Department of Pain, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China
| | - Xiao-Wei Xing
- Center for Medical Experiments, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Fang Li
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Tongzipo Road 172, Changsha, Hunan, China.
| |
Collapse
|
4
|
Pascuan CG, Di Rosso ME, Pivoz-Avedikian JE, Wald MR, Zorrilla Zubilete MA, Genaro AM. Alteration of neurotrophin and cytokine expression in lymphocytes as novel peripheral markers of spatial memory deficits induced by prenatal stress. Physiol Behav 2017; 173:144-155. [DOI: 10.1016/j.physbeh.2017.01.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/31/2022]
|
5
|
Chen T, Liu HX, Yan HY, Wu DM, Ping J. Developmental origins of inflammatory and immune diseases. Mol Hum Reprod 2016; 22:858-65. [PMID: 27226490 DOI: 10.1093/molehr/gaw036] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/18/2016] [Indexed: 12/23/2022] Open
Abstract
Epidemiological and experimental animal studies show that suboptimal environments in fetal and neonatal life exert a profound influence on physiological function and risk of diseases in adult life. The concepts of the 'developmental programming' and Developmental Origins of Health and Diseases (DOHaD) have become well accepted and have been applied across almost all fields of medicine. Adverse intrauterine environments may have programming effects on the crucial functions of the immune system during critical periods of fetal development, which can permanently alter the immune function of offspring. Immune dysfunction may in turn lead offspring to be susceptible to inflammatory and immune diseases in adulthood. These facts suggest that inflammatory and immune disorders might have developmental origins. In recent years, inflammatory and immune disorders have become a growing health problem worldwide. However, there is no systematic report in the literature on the developmental origins of inflammatory and immune diseases and the potential mechanisms involved. Here, we review the impacts of adverse intrauterine environments on the immune function in offspring. This review shows the results from human and different animal species and highlights the underlying mechanisms, including damaged development of cells in the thymus, helper T cell 1/helper T cell 2 balance disturbance, abnormal epigenetic modification, effects of maternal glucocorticoid overexposure on fetal lymphocytes and effects of the fetal hypothalamic-pituitary-adrenal axis on the immune system. Although the phenomena have already been clearly implicated in epidemiologic and experimental studies, new studies investigating the mechanisms of these effects may provide new avenues for exploiting these pathways for disease prevention.
Collapse
Affiliation(s)
- Ting Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Han-Xiao Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Hui-Yi Yan
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dong-Mei Wu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Jie Ping
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| |
Collapse
|
6
|
Boone-Heinonen J, Messer LC, Fortmann SP, Wallack L, Thornburg KL. From fatalism to mitigation: A conceptual framework for mitigating fetal programming of chronic disease by maternal obesity. Prev Med 2015; 81:451-9. [PMID: 26522092 PMCID: PMC4679670 DOI: 10.1016/j.ypmed.2015.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 02/07/2023]
Abstract
Prenatal development is recognized as a critical period in the etiology of obesity and cardiometabolic disease. Potential strategies to reduce maternal obesity-induced risk later in life have been largely overlooked. In this paper, we first propose a conceptual framework for the role of public health and preventive medicine in mitigating the effects of fetal programming. Second, we review a small but growing body of research (through August 2015) that examines interactive effects of maternal obesity and two public health foci - diet and physical activity - in the offspring. Results of the review support the hypothesis that diet and physical activity after early life can attenuate disease susceptibility induced by maternal obesity, but human evidence is scant. Based on the review, we identify major gaps relevant for prevention research, such as characterizing the type and dose response of dietary and physical activity exposures that modify the adverse effects of maternal obesity in the offspring. Third, we discuss potential implications of interactions between maternal obesity and postnatal dietary and physical activity exposures for interventions to mitigate maternal obesity-induced risk among children. Our conceptual framework, evidence review, and future research directions offer a platform to develop, test, and implement fetal programming mitigation strategies for the current and future generations of children.
Collapse
Affiliation(s)
| | - Lynne C Messer
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | | | - Lawrence Wallack
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | - Kent L Thornburg
- Bob and Charlee Moore Institute for Nutrition and Wellness, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Messer LC, Boone-Heinonen J, Mponwane L, Wallack L, Thornburg KL. Developmental Programming: Priming Disease Susceptibility for Subsequent Generations. CURR EPIDEMIOL REP 2015; 2:37-51. [PMID: 26366336 PMCID: PMC4563822 DOI: 10.1007/s40471-014-0033-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Racial and/or ethnic minorities carry the highest burden of many adverse health outcomes intergenerationally We propose a paradigm in which developmental programming exacerbates the effects of racial patterning of adverse environmental conditions, thereby contributing to health disparity persistence. Evidence that developmental programming induces a heightened response to adverse exposures ("second hits") encountered later in life is considered. We evaluated the evidence for the second hit phenomenon reported in animal and human studies from three domains (air, stress, nutrition). Original research including a gestational exposure and a childhood or adulthood second hit exposure was reviewed. Evidence from animal studies suggest that prenatal exposure to air pollutants is associated with an exaggerated reaction to postnatal air pollution exposure, which results in worse health outcomes. It also indicates offspring exposed to prenatal maternal stress produce an exaggerated response to subsequent stressors, including anxiety and hyper-responsiveness of the hypothalamic-pituitary-adrenal axis. Similarly, prenatal and postnatal Western-style diets induce synergistic effects on weight gain, metabolic dysfunction, and atherosclerotic risk. Cross-domain second hits (e.g., gestational air pollution followed by childhood stressor) were also considered. Suboptimal gestational environments induce exaggerated offspring responses to subsequent environmental and social exposures. These developmental programming effects may result in enhanced sensitivity of ongoing, racially patterned, adverse exposures in race/ethnic minorities, thereby exacerbating health disparities from one generation to the next. Empirical assessment of the hypothesized role of priming processes in the propagation of health disparities is needed. Future social epidemiology research must explicitly consider synergistic relationships among social environmental conditions to which gestating females are exposed and offspring exposures when assessing causes for persistent health disparities.
Collapse
Affiliation(s)
- L. C. Messer
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | - J. Boone-Heinonen
- Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR, USA
| | - L. Mponwane
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | - L. Wallack
- School of Community Health, College of Urban and Public Affairs, Portland State University, Portland, OR, USA
| | - K. L. Thornburg
- Moore Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|