1
|
Moro C, Magnan C. Revisited guidelines for metabolic tolerance tests in mice. Lab Anim (NY) 2025; 54:16-23. [PMID: 39587363 PMCID: PMC11695259 DOI: 10.1038/s41684-024-01473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Preclinical mouse models are extensively used in biomedical research to gain insight into disease mechanisms and to test new drug treatments. Glucose and insulin tolerance tests are simple experimental tests frequently used worldwide to assess glucose metabolism in mice. Various guidelines and methodological considerations have been published to help researchers standardize procedures and optimize research outcomes. Yet, there is still important experimental heterogeneity in the way these simple procedures are performed, with no real consensus on what the best practices are to achieve high-quality research and reproducible results. Here we critically examine several published guidelines and recent technical reports on how to perform these metabolic tests in laboratory mice and discuss the influence of various confounding factors on test results. We hope this work will help scientists establish more consensual guidelines for maximizing the relevance and clinical translation of studies using mouse models in metabolic research.
Collapse
Affiliation(s)
- Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM, Team MetaDiab, Paul Sabatier University, UMR1297, Toulouse, France.
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, Université Paris Cité, CNRS, Paris, France
| |
Collapse
|
2
|
McHill AW, Butler MP. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism. Annu Rev Nutr 2024; 44:25-50. [PMID: 38848598 PMCID: PMC11849495 DOI: 10.1146/annurev-nutr-062122-014528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew P Butler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Small L, Lundell LS, Iversen J, Ehrlich AM, Dall M, Basse AL, Dalbram E, Hansen AN, Treebak JT, Barrès R, Zierath JR. Seasonal light hours modulate peripheral clocks and energy metabolism in mice. Cell Metab 2023; 35:1722-1735.e5. [PMID: 37689069 DOI: 10.1016/j.cmet.2023.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
Except for latitudes close to the equator, seasonal variation in light hours can change dramatically between summer and winter. Yet investigations into the interplay between energy metabolism and circadian rhythms typically use a 12 h light:12 h dark photoperiod corresponding to the light duration at the equator. We hypothesized that altering the seasonal photoperiod affects both the rhythmicity of peripheral tissue clocks and energy homeostasis. Mice were housed at photoperiods representing either light hours in summer, winter, or the equinox. Mice housed at a winter photoperiod exhibited an increase in the amplitude of rhythmic lipid metabolism and a modest reduction in fat mass and liver triglyceride content. Comparing melatonin-proficient and -deficient mice, the effect of seasonal light on energy metabolism was largely driven by differences in the rhythmicity of food intake and not melatonin. Together, these data indicate that seasonal light impacts energy metabolism by modulating the timing of eating.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leonidas S Lundell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jo Iversen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Amy M Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie Dalbram
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ann N Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and CNRS, Nice, France.
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Physiology and Pharmacology and Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Dauchy RT, Blask DE. Vivarium Lighting as an Important Extrinsic Factor Influencing Animal-based Research. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:3-25. [PMID: 36755210 PMCID: PMC9936857 DOI: 10.30802/aalas-jaalas-23-000003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 01/22/2023]
Abstract
Light is an extrinsic factor that exerts widespread influence on the regulation of circadian, physiologic, hormonal, metabolic, and behavioral systems of all animals, including those used in research. These wide-ranging biologic effects of light are mediated by distinct photoreceptors, the melanopsin-containing intrinsically photosensitive retinal ganglion cells of the nonvisual system, which interact with the rods and cones of the conventional visual system. Here, we review the nature of light and circadian rhythms, current industry practices and standards, and our present understanding of the neurophysiology of the visual and nonvisual systems. We also consider the implications of this extrinsic factor for vivarium measurement, production, and technological application of light, and provide simple recommendations on artificial lighting for use by regulatory authorities, lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for optimizing animal health and wellbeing and, ultimately, improving scientific outcomes.
Collapse
Key Words
- blad, blue-enriched led light at daytime
- clock, circadian locomotor output kaput
- cct, correlated color temperature
- cwf, cool white fluorescent
- iprgc, intrinsically photosensitive retinal ganglion cell
- hiomt, hydroxyindole-o-methyltransferase
- lan, light at night
- led, light-emitting diode
- plr, pupillary light reflex
- scn, suprachiasmatic nuclei
- spd, spectral power distribution
Collapse
Affiliation(s)
- Robert T Dauchy
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Laboratory of Chrono-Neuroendocrine Oncology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
5
|
Fernández-Pérez A, Sanz-Magro A, Moratalla R, Vallejo M. Restricting feeding to dark phase fails to entrain circadian activity and energy expenditure oscillations in Pitx3-mutant Aphakia mice. Cell Rep 2022; 38:110241. [PMID: 35021074 DOI: 10.1016/j.celrep.2021.110241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic homeostasis is under circadian regulation to adapt energy requirements to light-dark cycles. Feeding cycles are regulated by photic stimuli reaching the suprachiasmatic nucleus via retinohypothalamic axons and by nutritional information involving dopaminergic neurotransmission. Previously, we reported that Pitx3-mutant Aphakia mice with altered development of the retinohypothalamic tract and the dopaminergic neurons projecting to the striatum, are resistant to locomotor and metabolic entrainment by time-restricted feeding. In their Matters Arising article, Scarpa et al. (2022) challenge this conclusion using mice from the same strain but following a different experimental paradigm involving calorie restriction. Here, we address their concerns by extending the analyses of our previous data, by identifying important differences in the experimental design between both studies and by presenting additional results on the dopaminergic deficit in the brain of Aphakia mice. This Matters Arising Response article addresses the Matters Arising article by Scarpa et al. (2022), published concurrently in Cell Reports.
Collapse
Affiliation(s)
- Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas /Universidad Autónoma de Madrid, Calle Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Adrián Sanz-Magro
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas /Universidad Autónoma de Madrid, Calle Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
6
|
Walker WH, Kaper AL, Meléndez-Fernández OH, Bumgarner JR, Liu JA, Walton JC, DeVries AC, Nelson RJ. Time-restricted feeding alters the efficiency of mammary tumor growth. Chronobiol Int 2021; 39:535-546. [PMID: 34894935 DOI: 10.1080/07420528.2021.2011306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disruption of circadian rhythms has detrimental host consequences. Indeed, both clinical and foundational science demonstrate a clear relationship between disruption of circadian rhythms and cancer initiation and progression. Because timing of food intake can act as a zeitgeber (i.e., entrainment signal) for the circadian clock, and most individuals in the developed world have access to food at all times of the day in a "24/7" society, we sought to determine the effects of timing of food intake on mammary tumor growth. We hypothesized that restricting access to food to during the inactive phase would accelerate tumor growth. Adult female Balb/C mice received a unilateral orthotopic injection of murine mammary carcinoma 4T1 cells into the ninth inguinal mammary gland. Beginning on the day of tumor injection and continuing until the end of the experiment, mice were food restricted to their active phase (ZT12 (lights off)- ZT0 (lights on), inactive phase (ZT0 - ZT12), or had ad libitum access to food. Mice that were food restricted to their inactive phase displayed a significant increase in body mass on days 7 and 14 of tumor growth relative to active phase or ad libitum fed mice. Additionally, mice fed during their inactive phase demonstrated a 20% reduction in food consumption relative to mice fed during their active phase and a 17% reduction in food consumption relative to ab libitum fed mice. Tumor volume was not significantly different between groups. However, food restricting mice to their inactive phase increased mammary tumor growth efficiency (i.e., mg of tumor mass per gram of food intake) relative to mice fed during the active phase and approached significance (p = .06) relative to ad libitum fed mice. To determine a potential explanation for the increased tumor growth efficiency, we examined rhythms of activity and body temperature. Mice fed during the inactive phase displayed significantly disrupted daily activity and body temperature rhythms relative to both other feeding regimens. Together, these data demonstrate that improperly timed food intake can have detrimental consequences on mammary tumor growth likely via disrupted circadian rhythms.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - Alexis L Kaper
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | | | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA.,Department of Medicine, Division of Oncology/Hematology, West Virginia, USA.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| |
Collapse
|
7
|
Green CL, Mitchell SE, Derous D, García-Flores LA, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The Effects of Graded Levels of Calorie Restriction: XVI. Metabolomic Changes in the Cerebellum Indicate Activation of Hypothalamocerebellar Connections Driven by Hunger Responses. J Gerontol A Biol Sci Med Sci 2021; 76:601-610. [PMID: 33053185 DOI: 10.1093/gerona/glaa261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend life span and improve healthspan. Though the cerebellum is more commonly associated with motor control, it has strong links with the hypothalamus and is thought to be associated with nutritional regulation and adiposity. Using a global mass spectrometry-based metabolomics approach, we identified 756 metabolites that were significantly differentially expressed in the cerebellar region of the brain of C57BL/6J mice, fed graded levels of CR (10, 20, 30, and 40 CR) compared to mice fed ad libitum for 12 hours a day. Pathway enrichment indicated changes in the pathways of adenosine and guanine (which are precursors of DNA production), aromatic amino acids (tyrosine, phenylalanine, and tryptophan) and the sulfur-containing amino acid methionine. We also saw increases in the tricarboxylic acid cycle (TCA) cycle, electron donor, and dopamine and histamine pathways. In particular, changes in l-histidine and homocarnosine correlated positively with the level of CR and food anticipatory activity and negatively with insulin and body temperature. Several metabolic and pathway changes acted against changes seen in age-associated neurodegenerative disorders, including increases in the TCA cycle and reduced l-proline. Carnitine metabolites contributed to discrimination between CR groups, which corroborates previous work in the liver and plasma. These results indicate the conservation of certain aspects of metabolism across tissues with CR. Moreover, this is the first study to indicate CR alters the cerebellar metabolome, and does so in a graded fashion, after only a short period of restriction.
Collapse
Affiliation(s)
- Cara L Green
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Sharon E Mitchell
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Libia A García-Flores
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, China
| | - Jing-Dong J Han
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China
| | - Daniel E L Promislow
- Department of Pathology and Department of Biology, University of Washington at Seattle
| | - David Lusseau
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK
| | - John R Speakman
- Institute of Biological and Environmental Sciences, University of Aberdeen, UK.,State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:129. [PMID: 32631383 PMCID: PMC7339573 DOI: 10.1186/s13046-020-01639-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells, and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy. In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia.
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristina Cook
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health & Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harriet E Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
9
|
Ruddick-Collins LC, Morgan PJ, Johnstone AM. Mealtime: A circadian disruptor and determinant of energy balance? J Neuroendocrinol 2020; 32:e12886. [PMID: 32662577 DOI: 10.1111/jne.12886] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/24/2020] [Accepted: 06/14/2020] [Indexed: 12/21/2022]
Abstract
Circadian rhythms play a critical role in the physiological processes involved in energy metabolism and energy balance (EB). A large array of metabolic processes, including the expression of many energy-regulating endocrine hormones, display temporal rhythms that are driven by both the circadian clock and food intake. Mealtime has been shown to be a compelling zeitgeber in peripheral tissue rhythms. Inconsistent signalling to the periphery, because of mismatched input from the central clock vs time of eating, results in circadian disruption in which central and/or peripheral rhythms are asynchronously time shifted or their amplitudes reduced. A growing body of evidence supports the negative health effects of circadian disruption, with strong evidence in murine models that mealtime-induced circadian disruption results in various metabolic consequences, including energy imbalance and weight gain. Increased weight gain has been reported to occur even without differences in energy intake, indicating an effect of circadian disruption on energy expenditure. However, the translation of these findings to humans is not well established because the ability to undertake rigorously controlled dietary studies that explore the chronic effects on energy regulation is challenging. Establishing the neuroendocrine changes in response to both acute and chronic variations in mealtime, along with observations in populations with routinely abnormal mealtimes, may provide greater insight into underlying mechanisms that influence long-term weight management under different meal patterns. Human studies should explore mechanisms through relevant biomarkers; for example, cortisol, leptin, ghrelin and other energy-regulating neuroendocrine factors. Mistiming between aggregate hormonal signals, or between hormones with their receptors, may cause reduced signalling intensity and hormonal resistance. Understanding how mealtimes may impact on the coordination of endocrine factors is essential for untangling the complex regulation of EB. Here a review is provided on current evidence of the impacts of mealtime on energy metabolism and the underlying neuroendocrine mechanisms, with a specific focus on human research.
Collapse
Affiliation(s)
| | - Peter J Morgan
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
10
|
Hanifin JP, Dauchy RT, Blask DE, Hill SM, Brainard GC. Relevance of Electrical Light on Circadian, Neuroendocrine, and Neurobehavioral Regulation in Laboratory Animal Facilities. ILAR J 2020; 60:150-158. [PMID: 33094817 DOI: 10.1093/ilar/ilaa010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 02/03/2023] Open
Abstract
Light is a key extrinsic factor to be considered in operations and design of animal room facilities. Over the past four decades, many studies on typical laboratory animal populations have demonstrated impacts on neuroendocrine, neurobehavioral, and circadian physiology. These effects are regulated independently from the defined physiology for the visual system. The range of physiological responses that oscillate with the 24 hour rhythm of the day include sleep and wakefulness, body temperature, hormonal secretion, and a wide range of other physiological parameters. Melatonin has been the chief neuroendocrine hormone studied, but acute light-induced effects on corticosterone as well as other hormones have also been observed. Within the last two decades, a new photosensory system in the mammalian eye has been discovered. A small set of retinal ganglion cells, previously thought to function as a visual output neuron, have been shown to be directly photosensitive and act differently from the classic photoreceptors of the visual system. Understanding the effects of light on mammalian physiology and behavior must take into account how the classical visual photoreceptors and the newly discovered ipRGC photoreceptor systems interact. Scientists and facility managers need to appreciate lighting impacts on circadian, neuroendocrine, and neurobehavioral regulation in order to improve lighting of laboratory facilities to foster optimum health and well-being of animals.
Collapse
Affiliation(s)
- John P Hanifin
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Robert T Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| | - David E Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| | - Steven M Hill
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane, Louisiana
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Zhong LX, Li XN, Yang GY, Zhang X, Li WX, Zhang QQ, Pan HX, Zhang HH, Zhou MY, Wang YD, Zhang WW, Hu QS, Zhu W, Zhang B. Circadian misalignment alters insulin sensitivity during the light phase and shifts glucose tolerance rhythms in female mice. PLoS One 2019; 14:e0225813. [PMID: 31851682 PMCID: PMC6919582 DOI: 10.1371/journal.pone.0225813] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Shift work and jet lag, characterized by circadian misalignment, can disrupt several physiological activities, but whether they affect the rhythm of glucose uptake and insulin sensitivity remain unclear. In the present study, female C57BL/6J mice were maintained for four weeks under the condition of 8-hour phase advance and delay every 3–4 days to mimic shift work. Intraperitoneal glucose tolerance test (IPGTT) and intraperitoneal insulin tolerance test (IPITT) were performed repeatedly at Zeitgeber time (ZT) 0, ZT6, ZT12, and ZT18. Glucose-stimulated insulin secretion (GSIS) test was performed at ZT6. We found that the average level of daily glucose tolerance did not decrease but the phase of glucose tolerance advanced by 2.27 hours and the amplitude attenuated by 20.4% in shift work mice. At ZT6, IPITT showed blood glucose at 30 min after insulin injection decreased faster in shift work mice (−3.50±0.74mmol/L, −61.58±7.89%) than that in control mice (−2.11±1.10mmol/L, −33.72±17.24%), but IPGTT and GSIS test showed no significant difference between the two groups. Food intake monitor showed that the feeding time of shift work mice continued to advance. Restricting feed to a fixed 12-hour period alleviated the increase of insulin sensitivity induced by shift-work. We also observed that an increase of blood glucose and liver glycogen at ZT0, as well as a phase advance of liver clock genes and some glucose metabolism-related genes such as forkhead box O1 (Foxo1) and peroxisome proliferator activated receptor alpha (Pparα) in shift work mice. Our results showed that light change-simulated shift work altered insulin sensitivity during the light phase and shifted glucose tolerance rhythms in female mice, suggesting a causal association between long-term shift work and type 2 diabetes.
Collapse
Affiliation(s)
- Li-Xin Zhong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China.,Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Na Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guang-Yu Yang
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xia Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Wen-Xue Li
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qian-Qian Zhang
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huan-Xin Pan
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Hui-Hong Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Meng-Ya Zhou
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Ding Wang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei-Wei Zhang
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Qian-Sheng Hu
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Zhu
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Bo Zhang
- Food Safety and Health Research Center, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Time-restricted feeding improves adaptation to chronically alternating light-dark cycles. Sci Rep 2019; 9:7874. [PMID: 31133707 PMCID: PMC6536683 DOI: 10.1038/s41598-019-44398-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
Disturbance of the circadian clock has been associated with increased risk of cardio-metabolic disorders. Previous studies showed that optimal timing of food intake can improve metabolic health. We hypothesized that time-restricted feeding could be a strategy to minimize long term adverse metabolic health effects of shift work and jetlag. In this study, we exposed female FVB mice to weekly alternating light-dark cycles (i.e. 12 h shifts) combined with ad libitum feeding, dark phase feeding or feeding at a fixed clock time, in the original dark phase. In contrast to our expectations, long-term disturbance of the circadian clock had only modest effects on metabolic parameters. Mice fed at a fixed time showed a delayed adaptation compared to ad libitum fed animals, in terms of the similarity in 24 h rhythm of core body temperature, in weeks when food was only available in the light phase. This was accompanied by increased plasma triglyceride levels and decreased energy expenditure, indicating a less favorable metabolic state. On the other hand, dark phase feeding accelerated adaptation of core body temperature and activity rhythms, however, did not improve the metabolic state of animals compared to ad libitum feeding. Taken together, restricting food intake to the active dark phase enhanced adaptation to shifts in the light-dark schedule, without significantly affecting metabolic parameters.
Collapse
|
13
|
Crosby P, Hamnett R, Putker M, Hoyle NP, Reed M, Karam CJ, Maywood ES, Stangherlin A, Chesham JE, Hayter EA, Rosenbrier-Ribeiro L, Newham P, Clevers H, Bechtold DA, O'Neill JS. Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell 2019; 177:896-909.e20. [PMID: 31030999 PMCID: PMC6506277 DOI: 10.1016/j.cell.2019.02.017] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 10/26/2018] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body. Insulin and IGF-1 are a systemic synchronizing cue for circadian rhythms in mammals Insulin and IGF-1 signaling rapidly upregulates translation of PERIOD clock proteins Coincident signaling facilitates selective induction of PERIOD synthesis Circadian disruption is recapitulated by mistimed insulin in cell and animal models
Collapse
Affiliation(s)
- Priya Crosby
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Ryan Hamnett
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Marrit Putker
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Hubrecht Institute, Utrecht 3584 CT, the Netherlands
| | | | - Martin Reed
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | | | | | - Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | | | - Peter Newham
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Cambridge CB4 0FZ, UK
| | - Hans Clevers
- Hubrecht Institute, Utrecht 3584 CT, the Netherlands; Princess Máxima Centre, Utrecht 3584 CS, the Netherlands
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.
| |
Collapse
|
14
|
Abstract
Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.
Collapse
Affiliation(s)
- Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
15
|
Borck PC, Batista TM, Vettorazzi JF, Soares GM, Lubaczeuski C, Guan D, Boschero AC, Vieira E, Lazar MA, Carneiro EM. Nighttime light exposure enhances Rev-erbα-targeting microRNAs and contributes to hepatic steatosis. Metabolism 2018; 85:250-258. [PMID: 29751019 PMCID: PMC6145802 DOI: 10.1016/j.metabol.2018.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The exposure to artificial light at night (ALAN) disrupts the biological rhythms and has been associated with the development of metabolic syndrome. MicroRNAs (miRNAs) display a critical role in fine-tuning the circadian system and energy metabolism. In this study, we aimed to assess whether altered miRNAs expression in the liver underlies metabolic disorders caused by disrupted biological rhythms. RESULTS We found that C3H/HePas mice exposed to ALAN developed obesity, and hepatic steatosis, which was paralleled by decreased expression of Rev-erbα and up-regulation of its lipogenic targets ACL and FAS in liver. Furthermore, the expression of Rev-erbα-targeting miRNAs, miR-140-5p, 185-5p, 326-5p and 328-5p were increased in this group. Consistently, overexpression of these miRNAs in primary hepatocytes reduced Rev-erbα expression at the mRNA and protein levels. Importantly, overexpression of Rev-erbα-targeting miRNAs increased mRNA levels of Acly and Fasn. CONCLUSION Thus, altered miRNAs profile is an important mechanism underlying the disruption of the peripheral clock caused by exposure to ALAN, which could lead to hepatic steatosis.
Collapse
Affiliation(s)
- Patricia C Borck
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil.
| | - Thiago M Batista
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Jean F Vettorazzi
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Gabriela M Soares
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Camila Lubaczeuski
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Dongyin Guan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Antonio C Boschero
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| | - Elaine Vieira
- Postgraduate Program in Physical Education, Universidade Católica de Brasília - UCB, DF, Brazil
| | - Mitchell A Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and the Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Everardo M Carneiro
- Obesity and Comorbidities Research Center, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil; Department of Structural and Functional Biology, Institute of Biology, University of Campinas/UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
16
|
Reichenbach A, Stark R, Mequinion M, Lockie SH, Lemus MB, Mynatt RL, Luquet S, Andrews ZB. Carnitine acetyltransferase (Crat) in hunger-sensing AgRP neurons permits adaptation to calorie restriction. FASEB J 2018; 32:fj201800634R. [PMID: 29932868 PMCID: PMC6219829 DOI: 10.1096/fj.201800634r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
Abstract
Hunger-sensing agouti-related peptide (AgRP) neurons ensure survival by adapting metabolism and behavior to low caloric environments. This adaption is accomplished by consolidating food intake, suppressing energy expenditure, and maximizing fat storage (nutrient partitioning) for energy preservation. The intracellular mechanisms responsible are unknown. Here we report that AgRP carnitine acetyltransferase (Crat) knockout (KO) mice exhibited increased fatty acid utilization and greater fat loss after 9 d of calorie restriction (CR). No differences were seen in mice with ad libitum food intake. Eleven days ad libitum feeding after CR resulted in greater food intake, rebound weight gain, and adiposity in AgRP Crat KO mice compared with wild-type controls, as KO mice act to restore pre-CR fat mass. Collectively, this study highlights the importance of Crat in AgRP neurons to regulate nutrient partitioning and fat mass during chronically reduced caloric intake. The increased food intake, body weight gain, and adiposity in KO mice after CR also highlights the detrimental and persistent metabolic consequence of impaired substrate utilization associated with CR. This finding may have significant implications for postdieting weight management in patients with metabolic diseases.-Reichenbach, A., Stark, R., Mequinion, M., Lockie, S. H., Lemus, M. B., Mynatt, R. L., Luquet, S., Andrews, Z. B. Carnitine acetyltransferase (Crat) in hunger-sensing AgRP neurons permits adaptation to calorie restriction.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Romana Stark
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sarah H. Lockie
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Moyra B. Lemus
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Randall L. Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA
- Transgenic Core Facility, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana, USA; and
| | - Serge Luquet
- Université of Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionelle et Adaptative, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 8251, Paris, France
| | - Zane B. Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Reichenbach A, Mequinion M, Bayliss JA, Lockie SH, Lemus MB, Mynatt RL, Stark R, Andrews ZB. Carnitine Acetyltransferase in AgRP Neurons Is Required for the Homeostatic Adaptation to Restricted Feeding in Male Mice. Endocrinology 2018; 159:2473-2483. [PMID: 29697769 PMCID: PMC6692886 DOI: 10.1210/en.2018-00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/19/2018] [Indexed: 12/14/2022]
Abstract
Behavioral adaptation to periods of varying food availability is crucial for survival, and agouti-related protein (AgRP) neurons have been associated with entrainment to temporal restricted feeding. We have shown that carnitine acetyltransferase (Crat) in AgRP neurons enables metabolic flexibility and appropriate nutrient partitioning. In this study, by restricting food availability to 3 h/d during the light phase, we examined whether Crat is a component of a food-entrainable oscillator (FEO) that helps link behavior to food availability. AgRP Crat knockout (KO) mice consumed less food and regained less body weight but maintained blood glucose levels during the 25-day restricted feeding protocol. Importantly, we observed no difference in meal latency, food anticipatory activity (FAA), or brown adipose tissue temperature during the first 13 days of restricted feeding. However, as the restricted feeding paradigm progressed, we noticed an increased FAA in AgRP Crat KO mice. The delayed increase in FAA, which developed during the last 12 days of restricted feeding, corresponded with elevated plasma levels of corticosterone and nonesterified fatty acids, indicating it resulted from greater energy debt incurred by KO mice over the course of the experiment. These experiments highlight the importance of Crat in AgRP neurons in regulating feeding behavior and body weight gain during restricted feeding but not in synchronizing behavior to food availability. Thus, Crat within AgRP neurons forms a component of the homeostatic response to restricted feeding but is not likely to be a molecular component of FEO.
Collapse
Affiliation(s)
- Alex Reichenbach
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Mathieu Mequinion
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Jacqueline A Bayliss
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Sarah H Lockie
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Moyra B Lemus
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Randall L Mynatt
- Gene Nutrient Interactions Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
- Transgenic Core Facility, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Romana Stark
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| | - Zane B Andrews
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Su Y, Foppen E, Mansur Machado FS, Fliers E, Kalsbeek A. The role of the daily feeding rhythm in the regulation of the day/night rhythm in triglyceride secretion in rats. Chronobiol Int 2018; 35:885-895. [PMID: 29446660 DOI: 10.1080/07420528.2018.1438456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plasma triglyceride (TG) levels show a clear daily rhythm, however, thus far it is still unknown whether this rhythm results from a daily rhythm in TG production, TG uptake or both. Previous studies have shown that feeding activity affects plasma TG concentrations, but it is not clear how the daily rhythm in feeding activity affects plasma TG concentrations. In the present study, we measured plasma TG concentrations and TG secretion rates in rats at 6 Zeitgeber times to investigate whether plasma TG concentrations and TG secretion show a daily rhythm. We found that plasma TG concentrations and TG secretion show a significant day/night rhythm. Next, we removed the daily rhythm in feeding behavior by introducing a 6-meals-a-day (6M) feeding schedule to investigate whether the daily rhythm in feeding behavior is necessary to maintain the daily rhythm in TG secretion. We found that the day/night rhythm in TG secretion was abolished under 6M feeding conditions. Hepatic apolipoprotein B (ApoB) and microsomal TG transfer protein (Mttp), which are both involved in TG secretion, also lost their daily rhythmicity under 6M feeding conditions. Together, these results indicate that: (1) the daily rhythm in TG secretion contributes to the formation of a day/night rhythm in plasma TG levels and (2) a daily feeding rhythm is essential for maintaining the daily rhythm in TG secretion.
Collapse
Affiliation(s)
- Yan Su
- a Hypothalamic Integration Mechanisms , Netherlands Institute for Neuroscience , Amsterdam , The Netherlands
| | - Ewout Foppen
- b Department of Endocrinology and Metabolism , Academic Medical Center (AMC), University of Amsterdam , Amsterdam , The Netherlands
| | | | - Eric Fliers
- b Department of Endocrinology and Metabolism , Academic Medical Center (AMC), University of Amsterdam , Amsterdam , The Netherlands
| | - Andries Kalsbeek
- a Hypothalamic Integration Mechanisms , Netherlands Institute for Neuroscience , Amsterdam , The Netherlands.,b Department of Endocrinology and Metabolism , Academic Medical Center (AMC), University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
19
|
Shift-work: is time of eating determining metabolic health? Evidence from animal models. Proc Nutr Soc 2018; 77:199-215. [DOI: 10.1017/s0029665117004128] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The circadian disruption in shift-workers is suggested to be a risk factor to develop overweight and metabolic dysfunction. The conflicting time signals given by shifted activity, shifted food intake and exposure to light at night occurring in the shift-worker are proposed to be the cause for the loss of internal synchrony and the consequent adverse effects on body weight and metabolism. Because food elicited signals have proven to be potent entraining signals for peripheral oscillations, here we review the findings from experimental models of shift-work and verify whether they provide evidence about the causal association between shifted feeding schedules, circadian disruption and altered metabolism. We found mainly four experimental models that mimic the conditions of shift-work: protocols of forced sleep deprivation, of forced activity during the normal rest phase, exposure to light at night and shifted food timing. A big variability in the intensity and duration of the protocols was observed, which led to a diversity of effects. A common result was the disruption of temporal patterns of activity; however, not all studies explored the temporal patterns of food intake. According to studies that evaluate time of food intake as an experimental model of shift-work and studies that evaluate shifted food consumption, time of food intake may be a determining factor for the loss of balance at the circadian and metabolic level.
Collapse
|
20
|
Varcoe TJ, Gatford KL, Kennaway DJ. Maternal circadian rhythms and the programming of adult health and disease. Am J Physiol Regul Integr Comp Physiol 2017; 314:R231-R241. [PMID: 29141950 DOI: 10.1152/ajpregu.00248.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The in utero environment is inherently rhythmic, with the fetus subjected to circadian changes in temperature, substrates, and various maternal hormones. Meanwhile, the fetus is developing an endogenous circadian timing system, preparing for life in an external environment where light, food availability, and other environmental factors change predictably and repeatedly every 24 h. In humans, there are many situations that can disrupt circadian rhythms, including shift work, international travel, insomnias, and circadian rhythm disorders (e.g., advanced/delayed sleep phase disorder), with a growing consensus that this chronodisruption can have deleterious consequences for an individual's health and well-being. However, the impact of chronodisruption during pregnancy on the health of both the mother and fetus is not well understood. In this review, we outline circadian timing system ontogeny in mammals and examine emerging research from animal models demonstrating long-term negative implications for progeny health following maternal chronodisruption during pregnancy.
Collapse
Affiliation(s)
- Tamara J Varcoe
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - David J Kennaway
- Robinson Research Institute, Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| |
Collapse
|
21
|
Rastogi A, Mintz EM. Neural correlates of food anticipatory activity in mice subjected to once- or twice-daily feeding periods. Eur J Neurosci 2017; 46:2265-2275. [PMID: 28858407 DOI: 10.1111/ejn.13671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
In rodents, restricted food access to a limited period each day at a predictable time results in the appearance of food anticipatory activity (FAA). Two shorter periods of food access each day can result in two FAA bouts. In this study, we examine FAA under 12:12 and 18:6 photoperiods in mice (Mus musculus) with one or two food access periods per day and measure the activation of the suprachiasmatic, dorsomedial and arcuate nuclei by assaying Fos protein expression, while making use of tissue-type plasminogen activator knockout mice to assess the role of neural plasticity in adaptation to restricted feeding cycles. Long days were utilised to allow for temporal separation of two restricted feeding periods during the light phase. Mice fed twice per day generally divided FAA into two distinct bouts, with mice lacking tissue-type plasminogen activator showing reduced FAA. Increases in Fos expression in response to one restricted feeding period per day were seen in the dorsomedial and arcuate nuclei in both 12:12 and 18:6 conditions, with an increase seen in the SCN in only the 12:12 condition. These increases were eliminated or reduced in the two feeding time conditions (done in 18:6 only). Both activity patterns and Fos expression differed for single restricted feeding times between 18:6 and 12:12 photoperiods. Fos activation was lower during RF in 18:6 than 12:12 across all three brain regions, a pattern not reflective of changes in FAA. These data suggest that involvement of these regions in FAA may be influenced by photoperiodic context.
Collapse
Affiliation(s)
- Ashutosh Rastogi
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH, 44242, USA
| | - Eric M Mintz
- Department of Biological Sciences, Kent State University, 1275 University Esplanade, Kent, OH, 44242, USA
| |
Collapse
|
22
|
Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metab 2017; 26:267-277.e2. [PMID: 28683292 PMCID: PMC5576447 DOI: 10.1016/j.cmet.2017.06.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/08/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) extends lifespan in mammals, yet the mechanisms underlying its beneficial effects remain unknown. The manner in which CR has been implemented in longevity experiments is variable, with both timing and frequency of meals constrained by work schedules. It is commonplace to find that nocturnal rodents are fed during the daytime and meals are spaced out, introducing prolonged fasting intervals. Since implementation of feeding paradigms over the lifetime is logistically difficult, automation is critical, but existing systems are expensive and not amenable to scale. We have developed a system that controls duration, amount, and timing of food availability and records feeding and voluntary wheel-running activity in mice. Using this system, mice were exposed to temporal or caloric restriction protocols. Mice under CR self-imposed a temporal component by consolidating food intake and unexpectedly increasing wheel-running activity during the rest phase, revealing previously unrecognized relationships among feeding, metabolism, and behavior.
Collapse
|
23
|
Espitia-Bautista E, Velasco-Ramos M, Osnaya-Ramírez I, Ángeles-Castellanos M, Buijs RM, Escobar C. Social jet-lag potentiates obesity and metabolic syndrome when combined with cafeteria diet in rats. Metabolism 2017. [PMID: 28641787 DOI: 10.1016/j.metabol.2017.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND/OBJECTIVES Modern lifestyle promotes shifted sleep onset and shifted wake up time between weekdays and weekends, producing a condition termed "social-jet lag." Disrupted sleep promotes increased appetite for carbohydrate and fat-rich food, which in long term leads to overweight, obesity and metabolic syndrome. In order to mimic the human situation we produced an experimental model of social-jet lag (Sj-l). With this model, we explored the link between shifted sleep time with consumption of a cafeteria diet (CafD) and the development of obesity and metabolic syndrome. SUBJECTS/METHODS The first experiment was designed to create and confirm the model of Sj-l. Rats (n=8-10/group) were exposed to a shifted sleep time protocol achieved by placing the rats in slow rotating wheels from Monday to Friday during the first 4h of the light period, while on weekends they were left undisturbed. The second experiment (n=8-12/group) explored the combined effect of Sj-l with the opportunity to ingest CafD. All protocols lasted 12weeks. We evaluated the development of overweight and indicators of metabolic syndrome. The statistical significance for all variables was set at P<0.05. RESULTS Sj-l alone did not affect body weight gain but induced significant changes in cholesterol in metabolic variables representing a risk factor for metabolic syndrome. Daily restricted access to CafD in the day or night induced glucose intolerance and only CafD during the day led to overweight. Sj-l combined with CafD induced overconsumption of the diet, potentiated body weight gain (16%) and promoted 5 of the criteria for metabolic syndrome including high insulin and dislipidemia. CONCLUSION Present data provide an experimental model of social-jet lag that combined with overconsumption of CafD, and maximized the development of obesity and metabolic syndrome. Importantly, access to CafD during the night did not lead to overweight nor metabolic syndrome.
Collapse
Affiliation(s)
- Estefania Espitia-Bautista
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Mario Velasco-Ramos
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, México, DF 04510, Mexico; Departamento de Biología Molecular, Instituto Nacional de Cardiología, 14080, México, DF, Mexico
| | - Iván Osnaya-Ramírez
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Manuel Ángeles-Castellanos
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Ruud M Buijs
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF 04510, Mexico
| | - Carolina Escobar
- Facultad de Medicina, Departamento de Anatomía, Universidad Nacional Autónoma de México, México, DF 04510, Mexico.
| |
Collapse
|
24
|
Opperhuizen AL, Wang D, Foppen E, Jansen R, Boudzovitch-Surovtseva O, de Vries J, Fliers E, Kalsbeek A. Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats. Eur J Neurosci 2016; 44:2795-2806. [PMID: 27562056 DOI: 10.1111/ejn.13377] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
Abstract
Shiftworkers run an increased risk of developing metabolic disorders, presumably as a result of disturbed circadian physiology. Eating at a time-of-day that is normally dedicated to resting and fasting, may contribute to this association. The hypothalamus is the key brain area that integrates different inputs, including environmental time information from the central biological clock in the suprachiasmatic nuclei, with peripheral information on energy status to maintain energy homeostasis. The orexin system within the lateral hypothalamus is an important output of the suprachiasmatic nuclei involved in the control of sleep/wake behavior and glucose homeostasis, among other functions. In this study, we tested the hypothesis that feeding during the rest period disturbs the orexin system as a possible underlying contributor to metabolic health problems. Male Wistar rats were exposed to an 8-week protocol in which food was available ad libitum for 24-h, for 12-h during the light phase (i.e., unnatural feeding time) or for 12-h during the dark phase (i.e., restricted feeding, but at the natural time-of-day). Animals forced to eat at an unnatural time, i.e., during the light period, showed no changes in orexin and orexin-receptor gene expression in the hypothalamus, but the rhythmic expression of clock genes in the lateral hypothalamus was absent in these animals. Light fed animals did show adverse changes in whole-body physiology and internal desynchronization of muscle and liver clock and metabolic gene expression. Eating at the 'wrong' time-of-day thus causes internal desynchronization at different levels, which in the long run may disrupt body physiology.
Collapse
Affiliation(s)
- Anne-Loes Opperhuizen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Dawei Wang
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Institute of Plant Protection (IPP), Chinese Academy of Agricultural Science (CAAS), Beijing, China
| | - Ewout Foppen
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Remi Jansen
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Olga Boudzovitch-Surovtseva
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Janneke de Vries
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
de Almeida Faria J, de Araújo TMF, Mancuso RI, Meulman J, da Silva Ferreira D, Batista TM, Vettorazzi JF, da Silva PMR, Rodrigues SC, Kinote A, Carneiro EM, Bordin S, Anhê GF. Day-restricted feeding during pregnancy and lactation programs glucose intolerance and impaired insulin secretion in male rat offspring. Acta Physiol (Oxf) 2016; 217:240-53. [PMID: 27029505 DOI: 10.1111/apha.12684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/27/2016] [Accepted: 03/29/2016] [Indexed: 12/18/2022]
Abstract
AIM The maternal environment during pregnancy and lactation plays a determining role in programming energy metabolism in offspring. Among a myriad of maternal factors, disruptions in the light/dark cycle during pregnancy can program glucose intolerance in offspring. Out-of-phase feeding has recently been reported to influence metabolism in adult humans and rodents; however, it is not known whether this environmental factor impacts offspring metabolism when applied during pregnancy and lactation. This study aims to determine whether maternal day-restricted feeding (DF) influences energy metabolism in offspring. METHODS Pregnant and lactating Wistar rats were subjected to ad libitum (AL) or DF during pregnancy and lactation. The offspring born to the AL and DF dams were intra- and interfostered, which resulted in 4 group types. RESULTS The male offspring born to and breastfed by the DF dams (DF/DF off) were glucose intolerant, but without parallel insulin resistance as adults. Experiments with isolated pancreatic islets demonstrated that the male DF/DF off rats had reduced insulin secretion with no parallel disruption in calcium handling. However, this reduction in insulin secretion was accompanied by increased miRNA-29a and miRNA34a expression and decreased syntaxin 1a protein levels. CONCLUSION We conclude that out-of-phase feeding during pregnancy and lactation can lead to glucose intolerance in male offspring, which is caused by a disruption in insulin secretion capacity. This metabolic programming is possibly caused by mechanisms dependent on miRNA modulation of syntaxin 1a.
Collapse
Affiliation(s)
- J de Almeida Faria
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - T M F de Araújo
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - R I Mancuso
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - J Meulman
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - D da Silva Ferreira
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - T M Batista
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - J F Vettorazzi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - P M R da Silva
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - S C Rodrigues
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - A Kinote
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| | - E M Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - S Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - G F Anhê
- Faculty of Medical Sciences, Department of Pharmacology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
26
|
Affiliation(s)
- L. T. Dalgaard
- Department of Science and Environment; Roskilde University; Roskilde Denmark
| |
Collapse
|
27
|
When to eat? The influence of circadian rhythms on metabolic health: are animal studies providing the evidence? Nutr Res Rev 2016; 29:180-193. [PMID: 27364352 DOI: 10.1017/s095442241600010x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As obesity and metabolic diseases rise, there is need to investigate physiological and behavioural aspects associated with their development. Circadian rhythms have a profound influence on metabolic processes, as they prepare the body to optimise energy use and storage. Moreover, food-related signals confer temporal order to organs involved in metabolic regulation. Therefore food intake should be synchronised with the suprachiasmatic nucleus (SCN) to elaborate efficient responses to environmental challenges. Human studies suggest that a loss of synchrony between mealtime and the SCN promotes obesity and metabolic disturbances. Animal research using different paradigms has been performed to characterise the effects of timing of food intake on metabolic profiles. Therefore the purpose of the present review is to critically examine the evidence of animal studies, to provide a state of the art on metabolic findings and to assess whether the paradigms used in rodent models give the evidence to support a 'best time' for food intake. First we analyse and compare the current findings of studies where mealtime has been shifted out of phase from the light-dark cycle. Then, we analyse studies restricting meal times to different moments within the active period. So far animal studies correlate well with human studies, demonstrating that restricting food intake to the active phase limits metabolic disturbances produced by high-energy diets and that eating during the inactive/sleep phase leads to a worse metabolic outcome. Based on the latter we discuss the missing elements and possible mechanisms leading to the metabolic consequences, as these are still lacking.
Collapse
|
28
|
Goh GH, Mark PJ, Maloney SK. Altered energy intake and the amplitude of the body temperature rhythm are associated with changes in phase, but not amplitude, of clock gene expression in the rat suprachiasmatic nucleus in vivo. Chronobiol Int 2016; 33:85-97. [PMID: 26745660 DOI: 10.3109/07420528.2015.1112395] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Circadian rhythms in mammals are driven by a central clock in the suprachiasmatic nucleus (SCN). In vitro, temperature cycles within the physiological range can act as potent entraining cues for biological clocks. We altered the body temperature (Tc) rhythm in rats by manipulating energy intake (EI) to determine whether EI-induced changes in Tc oscillations are associated with changes in SCN clock gene rhythms in vivo. Male Wistar rats (n = 16 per diet) were maintained on either an ad libitum diet (CON), a high energy cafeteria diet (CAF), or a calorie restricted diet (CR), and Tc was recorded every 30 min for 6-7 weeks. SCN tissue was harvested from rats at zeitgeber time (ZT) 0, ZT6, ZT12, or ZT18. Expression of the clock genes Bmal1, Per2, Cry1, and Rev-erbα, the heat shock transcription factor Hsf1, and the heat shock protein Hsp90aa1, were determined using qPCR. The circadian profile of gene expression for each gene was characterized using cosinor analysis. Compared to the CON rats, the amplitude of Tc was decreased in CAF rats by 0.1 °C (p < 0.001), and increased in CR rats by 0.3 °C (p < 0.001). The amplitude of Hsp90aa1 expression was lowest in CAF rats and highest in CR rats (p = 0.045), but the amplitude of all of the clock genes and Hsf1 were unaffected by diet (p > 0.25). Compared to CON, phase advances of the Tc, Bmal1, and Per2 rhythms were observed with CR feeding (p < 0.05), but CAF feeding elicited no significant changes in phase. The present results indicate that in vivo, the SCN is largely resistant to entrainment by EI-induced changes in the Tc rhythm, although some phase entrainment may occur.
Collapse
Affiliation(s)
- Grace H Goh
- a School of Anatomy, Physiology, and Human Biology, The University of Western Australia , Crawley , Australia
| | - Peter J Mark
- a School of Anatomy, Physiology, and Human Biology, The University of Western Australia , Crawley , Australia
| | - Shane K Maloney
- a School of Anatomy, Physiology, and Human Biology, The University of Western Australia , Crawley , Australia
| |
Collapse
|
29
|
Valenzuela FJ, Vera J, Venegas C, Muñoz S, Oyarce S, Muñoz K, Lagunas C. Evidences of Polymorphism Associated with Circadian System and Risk of Pathologies: A Review of the Literature. Int J Endocrinol 2016; 2016:2746909. [PMID: 27313610 PMCID: PMC4893437 DOI: 10.1155/2016/2746909] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/14/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022] Open
Abstract
The circadian system is a supraphysiological system that modulates different biological functions such as metabolism, sleep-wake, cellular proliferation, and body temperature. Different chronodisruptors have been identified, such as shift work, feeding time, long days, and stress. The environmental changes and our modern lifestyle can alter the circadian system and increase the risk of developing pathologies such as cancer, preeclampsia, diabetes, and mood disorder. This system is organized by transcriptional/tranductional feedback loops of clock genes Clock, Bmal1, Per1-3, and Cry1-2. How molecular components of the clock are able to influence the development of diseases and their risk relation with genetic components of polymorphism of clock genes is unknown. This research describes different genetic variations in the population and how these are associated with risk of cancer, metabolic diseases such as diabetes, obesity, and dyslipidemias, and also mood disorders such as depression, bipolar disease, excessive alcohol intake, and infertility. Finally, these findings will need to be implemented and evaluated at the level of genetic interaction and how the environment factors trigger the expression of these pathologies will be examined.
Collapse
Affiliation(s)
- F. J. Valenzuela
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
- Group of Biotechnological Sciences, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
- *F. J. Valenzuela:
| | - J. Vera
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
- Group of Biotechnological Sciences, Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - C. Venegas
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - S. Muñoz
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - S. Oyarce
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - K. Muñoz
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| | - C. Lagunas
- Department of Basic Sciences, Universidad del Bío-Bío, Campus Fernando May, 378000 Chillán, Chile
| |
Collapse
|
30
|
Abstract
Robust circadian rhythms in metabolic processes have been described in both humans and animal models, at the whole body, individual organ, and even cellular level. Classically, these time-of-day-dependent rhythms have been considered secondary to fluctuations in energy/nutrient supply/demand associated with feeding/fasting and wake/sleep cycles. Renewed interest in this field has been fueled by studies revealing that these rhythms are driven, at least in part, by intrinsic mechanisms and that disruption of metabolic synchrony invariably increases the risk of cardiometabolic disease. The objectives of this paper are to provide a comprehensive review regarding rhythms in glucose, lipid, and protein/amino acid metabolism, the relative influence of extrinsic (eg, neurohumoral factors) versus intrinsic (eg, cell autonomous circadian clocks) mediators, the physiologic roles of these rhythms in terms of daily fluctuations in nutrient availability and activity status, as well as the pathologic consequences of dyssynchrony.
Collapse
Affiliation(s)
- Graham R McGinnis
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
31
|
Barandas R, Landgraf D, McCarthy MJ, Welsh DK. Circadian Clocks as Modulators of Metabolic Comorbidity in Psychiatric Disorders. Curr Psychiatry Rep 2015; 17:98. [PMID: 26483181 DOI: 10.1007/s11920-015-0637-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Psychiatric disorders such as schizophrenia, bipolar disorder, and major depressive disorder are often accompanied by metabolic dysfunction symptoms, including obesity and diabetes. Since the circadian system controls important brain systems that regulate affective, cognitive, and metabolic functions, and neuropsychiatric and metabolic diseases are often correlated with disturbances of circadian rhythms, we hypothesize that dysregulation of circadian clocks plays a central role in metabolic comorbidity in psychiatric disorders. In this review paper, we highlight the role of circadian clocks in glucocorticoid, dopamine, and orexin/melanin-concentrating hormone systems and describe how a dysfunction of these clocks may contribute to the simultaneous development of psychiatric and metabolic symptoms.
Collapse
Affiliation(s)
- Rita Barandas
- Department of Psychiatry, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
- Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA
| | - Dominic Landgraf
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA.
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA.
| | - Michael J McCarthy
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA
| | - David K Welsh
- VA San Diego Healthcare System Psychiatry Service, La Jolla, CA, USA
- Department of Psychiatry and Center for Circadian Biology, University of California, San Diego, 9500 Gilman Drive MC-0603, La Jolla, CA, 92093-0603, USA
| |
Collapse
|
32
|
Opperhuizen AL, van Kerkhof LWM, Proper KI, Rodenburg W, Kalsbeek A. Rodent models to study the metabolic effects of shiftwork in humans. Front Pharmacol 2015; 6:50. [PMID: 25852554 PMCID: PMC4371697 DOI: 10.3389/fphar.2015.00050] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/01/2015] [Indexed: 11/14/2022] Open
Abstract
Our current 24-h society requires an increasing number of employees to work nightshifts with millions of people worldwide working during the evening or night. Clear associations have been found between shiftwork and the risk to develop metabolic health problems, such as obesity. An increasing number of studies suggest that the underlying mechanism includes disruption of the rhythmically organized body physiology. Normally, daily 24-h rhythms in physiological processes are controlled by the central clock in the brain in close collaboration with peripheral clocks present throughout the body. Working schedules of shiftworkers greatly interfere with these normal daily rhythms by exposing the individual to contrasting inputs, i.e., at the one hand (dim)light exposure at night, nightly activity and eating and at the other hand daytime sleep and reduced light exposure. Several different animal models are being used to mimic shiftwork and study the mechanism responsible for the observed correlation between shiftwork and metabolic diseases. In this review we aim to provide an overview of the available animal studies with a focus on the four most relevant models that are being used to mimic human shiftwork: altered timing of (1) food intake, (2) activity, (3) sleep, or (4) light exposure. For all studies we scored whether and how relevant metabolic parameters, such as bodyweight, adiposity and plasma glucose were affected by the manipulation. In the discussion, we focus on differences between shiftwork models and animal species (i.e., rat and mouse). In addition, we comment on the complexity of shiftwork as an exposure and the subsequent difficulties when using animal models to investigate this condition. In view of the added value of animal models over human cohorts to study the effects and mechanisms of shiftwork, we conclude with recommendations to improve future research protocols to study the causality between shiftwork and metabolic health problems using animal models.
Collapse
Affiliation(s)
- Anne-Loes Opperhuizen
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Hypothalamic Integration Mechanisms Amsterdam, Netherlands
| | - Linda W M van Kerkhof
- Centre for Health Protection, National Institute for Public Health and the Environment Bilthoven, Netherlands
| | - Karin I Proper
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment Bilthoven, Netherlands
| | - Wendy Rodenburg
- Centre for Health Protection, National Institute for Public Health and the Environment Bilthoven, Netherlands
| | - Andries Kalsbeek
- Department of Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Hypothalamic Integration Mechanisms Amsterdam, Netherlands ; Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|