1
|
Jacquin-Piques A. The pleasantness of foods. Neurophysiol Clin 2025; 55:103031. [PMID: 39644807 DOI: 10.1016/j.neucli.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024] Open
Abstract
Food pleasantness is largely based on the palatability of food and is linked to taste. Along with homeostatic and cognitive control, it forms part of the control of food intake (hedonic control), and does not only correspond to the pleasure that can be described of food intake. There are many factors that cause variations in eating pleasantness between individuals, such as age, sex, culture, co-morbidities, treatments, environmental factors or the specific characteristics of foods. The control of food intake is based on four determinants: conditioned satiety, the reward system, sensory specific satiety and alliesthesia. These four determinants follow one another over time, in the per-prandial and inter-prandial periods, and complement one another. There are many cerebral areas involved in the hedonic control of food intake. The most involved brain areas are the orbitofrontal and anterior cingulate cortices, which interact with deep neural structures (amygdala, striatum, substantia nigra) for the reward circuit, with the hippocampi for memorising pleasant foods, and even with the hypothalamus and insula, brain areas more recently involved in the physiology of food pleasantness. Changes in brain activity secondary to modulation of food pleasantness can be measured objectively by recording taste-evoked potentials, an electroencephalography technique with very good temporal resolution.
Collapse
Affiliation(s)
- Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation (CSGA) - UMR CNRS 6265, INRAE 1324, University of Burgundy, L'institut Agro - 9E, Boulevard Jeanne d'Arc - 21000 DIJON, France; University Hospital of Dijon, Bourgogne - Department of Neurology - Clinical Neurophysiology - 14, rue Paul Gaffarel - 21000 DIJON, France.
| |
Collapse
|
2
|
Mouillot T, Brindisi MC, Gauthier C, Barthet S, Quere C, Litime D, Perrignon-Sommet M, Grall S, Lienard F, Fenech C, Devilliers H, Rouland A, Georges M, Penicaud L, Brondel L, Leloup C, Jacquin-Piques A. Prolonged latency of the gustatory evoked potentials for sucrose solution in subjects living with obesity compared with normal-weight subjects. Int J Obes (Lond) 2024; 48:1720-1727. [PMID: 39183345 DOI: 10.1038/s41366-024-01607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/19/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
OBJECTIVES A difference in cortical treatment of taste information could alter food intake promoting the development of obesity. The main purpose was to compare, in subjects living with obesity (OB) and normal-weight subjects (NW), the characteristics of gustatory evoked potentials (GEP) for sucrose solution (10 g.100 mL-1) before and after a standard lunch. The secondary objective was to evaluate the correlations between GEP and the plasmatic levels of acylated ghrelin, leptin, insulin and serotonin. METHODS Each subject had 2 randomized sessions spaced by an interval of 2 days. During one session, subjects were fasting and during the other, subjects took a lunch low in sugar. In each session, subjects had a blood test before a first GEP recording followed by a second GEP recording either after a lunch (feeding session) or no lunch (fasting session). RESULTS Twenty-eight OB (BMI: 38.6 ± 9.0 kg.m-2) were matched to 22 NW (BMI: 22.3 ± 2.2 kg.m-2). GEP latencies were prolonged in OB regardless the sessions and the time before and after lunch, compared with NW (in Cz at the morning: 170 ± 33 ms vs 138 ± 25 ms respectively; p < 0.001). The increase in latency observed in NW after lunch was not observed in OB. Negative or positive correlations were noted in all participants between GEP latencies and ghrelin, leptin, insulin plasmatic levels (P1Cz, r = -0.38, r = 0.33, r = 0.37 respectively, p < 0.0001). CONCLUSIONS This study highlights a slower activation in the taste cortex in OB compared with NW.
Collapse
Affiliation(s)
- Thomas Mouillot
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France.
- Hepato-gastroenterology Department, CHU F. Mitterrand, 21000, Dijon, France.
| | - Marie-Claude Brindisi
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
- Endocrinology and Diabetology Department, CHU F. Mitterrand, 21000, Dijon, France
| | - Cyril Gauthier
- Espace Médical Nutrition et Obésité, Ramsay Santé, Valmy medical center, 21000, Dijon, France
| | - Sophie Barthet
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Clémence Quere
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Djihed Litime
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Manon Perrignon-Sommet
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Sylvie Grall
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Fabienne Lienard
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Claire Fenech
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Hervé Devilliers
- Clinical Investigation Center, CHU F. Mitterrand, 21000, Dijon, France
| | - Alexia Rouland
- Endocrinology and Diabetology Department, CHU F. Mitterrand, 21000, Dijon, France
| | - Marjolaine Georges
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
- Pneumology Department, CHU F. Mitterrand, 21000, Dijon, France
| | - Luc Penicaud
- RESTORE, UMR INSERM 1301, CNRS 5070, University of Toulouse III - Paul Sabatier, EFS, ENVT, 31432, Toulouse, France
| | - Laurent Brondel
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
- Hepato-gastroenterology Department, CHU F. Mitterrand, 21000, Dijon, France
| | - Corinne Leloup
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
| | - Agnès Jacquin-Piques
- Center for Taste and Feeding Behaviour (CSGA), UMR CNRS 6265, INRAE 1324, Université de Bourgogne, L'institut Agro Dijon, 21000, Dijon, France
- Clinical Neurophysiology Department, CHU F. Mitterrand, 21000, Dijon, France
| |
Collapse
|
3
|
Karaivazoglou K, Aggeletopoulou I, Triantos C. The Contribution of the Brain-Gut Axis to the Human Reward System. Biomedicines 2024; 12:1861. [PMID: 39200325 PMCID: PMC11351993 DOI: 10.3390/biomedicines12081861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The human reward network consists of interconnected brain regions that process stimuli associated with satisfaction and modulate pleasure-seeking behaviors. Impairments in reward processing have been implicated in several medical and psychiatric conditions, and there is a growing interest in disentangling the underlying pathophysiological mechanisms. The brain-gut axis plays a regulatory role in several higher-order neurophysiological pathways, including reward processing. In this context, the aim of the current review was to critically appraise research findings on the contribution of the brain-gut axis to the human reward system. Enteric neuropeptides, which are implicated in the regulation of hunger and satiety, such as ghrelin, PYY3-36, and glucagon-like peptide 1 (GLP-1), have been associated with the processing of food-related, alcohol-related, and other non-food-related rewards, maintaining a delicate balance between the body's homeostatic and hedonic needs. Furthermore, intestinal microbiota and their metabolites have been linked to differences in the architecture and activation of brain reward areas in obese patients and patients with attention deficit and hyperactivity disorder. Likewise, bariatric surgery reduces hedonic eating by altering the composition of gut microbiota. Although existing findings need further corroboration, they provide valuable information on the pathophysiology of reward-processing impairments and delineate a novel framework for potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Ioanna Aggeletopoulou
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| | - Christos Triantos
- Division of Gastroenterology, Department of Internal Medicine, University Hospital of Patras, 26504 Patras, Greece;
| |
Collapse
|
4
|
Bhargava R, Luur S, Rodriguez Flores M, Emini M, Prechtl CG, Goldstone AP. Postprandial Increases in Liver-Gut Hormone LEAP2 Correlate with Attenuated Eating Behavior in Adults Without Obesity. J Endocr Soc 2023; 7:bvad061. [PMID: 37287649 PMCID: PMC10243873 DOI: 10.1210/jendso/bvad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/09/2023] Open
Abstract
Background The novel liver-gut hormone liver-expressed antimicrobial peptide-2 (LEAP2) is a centrally acting inverse agonist, and competitive antagonist of orexigenic acyl ghrelin (AG), at the GH secretagogue receptor, reducing food intake in rodents. In humans, the effects of LEAP2 on eating behavior and mechanisms behind the postprandial increase in LEAP2 are unclear, though this is reciprocal to the postprandial decrease in plasma AG. Methods Plasma LEAP2 was measured in a secondary analysis of a previous study. Twenty-two adults without obesity attended after an overnight fast, consuming a 730-kcal meal without or with subcutaneous AG administration. Postprandial changes in plasma LEAP2 were correlated with postprandial changes in appetite, high-energy (HE) or low-energy (LE) food cue reactivity using functional magnetic resonance imaging, ad libitum food intake, and plasma/serum AG, glucose, insulin, and triglycerides. Results Postprandial plasma LEAP2 increased by 24.5% to 52.2% at 70 to 150 minutes, but was unchanged by exogenous AG administration. Postprandial increases in LEAP2 correlated positively with postprandial decreases in appetite, and cue reactivity to HE/LE and HE food in anteroposterior cingulate cortex, paracingulate cortex, frontal pole, and middle frontal gyrus, with similar trend for food intake. Postprandial increases in LEAP2 correlated negatively with body mass index, but did not correlate positively with increases in glucose, insulin, or triglycerides, nor decreases in AG. Conclusions These correlational findings are consistent with a role for postprandial increases in plasma LEAP2 in suppressing human eating behavior in adults without obesity. Postprandial increases in plasma LEAP2 are unrelated to changes in plasma AG and the mediator(s) remain uncertain.
Collapse
Affiliation(s)
- Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Sandra Luur
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Marcela Rodriguez Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Mimoza Emini
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Christina G Prechtl
- School of Public Health, Faculty of Medicine, Imperial College London, St. Mary's Hospital, London, W2 1PG, UK
| | - Anthony P Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| |
Collapse
|
5
|
How gut hormones shape reward: A systematic review of the role of ghrelin and GLP-1 in human fMRI. Physiol Behav 2023; 263:114111. [PMID: 36740132 DOI: 10.1016/j.physbeh.2023.114111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
The gastrointestinal hormones ghrelin and glucagon-like peptide-1 (GLP-1) have opposite secretion patterns, as well as opposite effects on metabolism and food intake. Beyond their role in energy homeostasis, gastrointestinal hormones have also been suggested to modulate the reward system. However, the potential of ghrelin and GLP-1 to modulate reward responses in humans has not been systematically reviewed before. To evaluate the convergence of published results, we first conduct a multi-level kernel density meta-analysis of studies reporting a positive association of ghrelin (Ncomb = 353, 18 contrasts) and a negative association of GLP-1 (Ncomb = 258, 12 contrasts) and reward responses measured using task functional magnetic resonance imaging (fMRI). Second, we complement the meta-analysis using a systematic literature review, focusing on distinct reward phases and applications in clinical populations that may account for variability across studies. In line with preclinical research, we find that ghrelin increases reward responses across studies in key nodes of the motivational circuit, such as the nucleus accumbens, pallidum, putamen, substantia nigra, ventral tegmental area, and the dorsal mid insula. In contrast, for GLP-1, we did not find sufficient convergence in support of reduced reward responses. Instead, our systematic review identifies potential differences of GLP-1 on anticipatory versus consummatory reward responses. Based on a systematic synthesis of available findings, we conclude that there is considerable support for the neuromodulatory potential of gut-based circulating peptides on reward responses. To unlock their potential for clinical applications, it may be useful for future studies to move beyond anticipated rewards to cover other reward facets.
Collapse
|
6
|
Perszyk EE, Davis XS, Small DM. Olfactory decoding is positively associated with ad libitum food intake in sated humans. Appetite 2023; 180:106351. [PMID: 36270421 DOI: 10.1016/j.appet.2022.106351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
The role of olfaction in eating behavior and body weight regulation is controversial. Here we reanalyzed data from a previous functional magnetic resonance imaging study to test whether central olfactory coding is associated with hunger/satiety state, food intake, and change in body weight over one year in healthy human adults. Since odor quality and category are coded across distributed neural patterns that are not discernible with traditional univariate analyses, we used multi-voxel pattern analyses to decode patterns of brain activation to food versus nonfood odors. We found that decoding accuracies in the piriform cortex and amygdala were greater in the sated compared to hungry state. Sated decoding accuracies in these and other regions were also associated with post-scan ad libitum food intake, but not with weight change. These findings demonstrate that the fidelity of olfactory decoding is influenced by meal consumption and is associated with immediate food intake, but not longer-term body weight regulation.
Collapse
Affiliation(s)
- Emily E Perszyk
- Modern Diet and Physiology Research Center, New Haven, CT, 06510, USA; Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06510, USA.
| | - Xue S Davis
- Modern Diet and Physiology Research Center, New Haven, CT, 06510, USA; Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06510, USA
| | - Dana M Small
- Modern Diet and Physiology Research Center, New Haven, CT, 06510, USA; Yale University School of Medicine, Department of Psychiatry, New Haven, CT, 06510, USA; Yale University, Department of Psychology, New Haven, CT, 06510, USA.
| |
Collapse
|
7
|
Althubeati S, Avery A, Tench CR, Lobo DN, Salter A, Eldeghaidy S. Mapping brain activity of gut-brain signaling to appetite and satiety in healthy adults: A systematic review and functional neuroimaging meta-analysis. Neurosci Biobehav Rev 2022; 136:104603. [PMID: 35276299 PMCID: PMC9096878 DOI: 10.1016/j.neubiorev.2022.104603] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/20/2022] [Accepted: 03/06/2022] [Indexed: 12/19/2022]
Abstract
Understanding how neurohormonal gut-brain signaling regulates appetite and satiety is vital for the development of therapies for obesity and altered eating behavior. However, reported brain areas associated with appetite or satiety regulators show inconsistency across functional neuroimaging studies. The aim of this study was to systematically assess the convergence of brain regions modulated by appetite and satiety regulators. Twenty-five studies were considered for qualitative synthesis, and 14 independent studies (20-experiments) found eligible for coordinate-based neuroimaging meta-analyses across 212 participants and 123 foci. We employed two different meta-analysis approaches. The results from the systematic review revealed the modulation of insula, amygdala, hippocampus, and orbitofrontal cortex (OFC) with appetite regulators, where satiety regulators were more associated with caudate nucleus, hypothalamus, thalamus, putamen, anterior cingulate cortex in addition to the insula and OFC. The two neuroimaging meta-analyses methods identified the caudate nucleus as a key area associated with satiety regulators. Our results provide quantitative brain activation maps of neurohormonal gut-brain signaling in heathy-weight adults that can be used to define alterations with eating behavior.
Collapse
Affiliation(s)
- Sarah Althubeati
- Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Faculty of Applied Medical Sciences, Department of Clinical Nutrition, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amanda Avery
- Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Christopher R Tench
- Division of Clinical Neurosciences, Clinical Neurology, University of Nottingham, Queen's Medical Centre, Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Dileep N Lobo
- Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK; MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew Salter
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | - Sally Eldeghaidy
- Division of Food, Nutrition & Dietetics and Future Food Beacon, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK; Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
8
|
Franssen S, Jansen A, van den Hurk J, Adam T, Geyskens K, Roebroeck A, Roefs A. Effects of mindset on hormonal responding, neural representations, subjective experience and intake. Physiol Behav 2022; 249:113746. [PMID: 35182553 DOI: 10.1016/j.physbeh.2022.113746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
A person can alternate between food-related mindsets, which in turn may depend on one's emotional state or situation. Being in a certain mindset can influence food-related thoughts, but interestingly it might also affect eating-related physiological responses. The current study investigates the influence of an induced 'loss of control' mindset as compared to an 'in control' mindset on hormonal, neural and behavioural responses to chocolate stimuli. Mindsets were induced by having female chocolate lovers view a short movie during two sessions in a within-subjects design. Neural responses to visual chocolate stimuli were measured using an ultra-high field (7T) scanner. Momentary ghrelin and glucagon-like peptide 1 (GLP-1) levels were determined on five moments and were simultaneously assessed with self-reports on perceptions of chocolate craving, hunger and feelings of control. Furthermore, chocolate intake was measured using a bogus chocolate taste test. It was hypothesized that the loss of control mindset would lead to hormonal, neural and behavioural responses that prepare for ongoing food intake, even after eating, while the control mindset would lead to responses reflecting satiety. Results show that neural activity in the mesocorticolimbic system was stronger for chocolate stimuli than for neutral stimuli and that ghrelin and GLP-1 levels responded to food intake, irrespective of mindset. Self-reported craving and actual chocolate intake were affected by mindset, in that cravings and intake were higher with a loss of control mindset than with a control mindset. Interestingly, these findings suggest that physiology on the one hand (hormonal and neural responses) and behavior and subjective experience (food intake and craving) on the other hand are not in sync, are not equally affected by mindset.
Collapse
Affiliation(s)
- Sieske Franssen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Anita Jansen
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Tanja Adam
- Department of school of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht UMC+, Maastricht University, Maastricht, The Netherlands
| | - Kelly Geyskens
- Department of Marketing and Supply Chain Management, School of Business and Economics, Maastricht University, Maastricht, The Netherlands
| | - Alard Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht
| | - Anne Roefs
- Department of Clinical Psychological Science, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
9
|
Rebollo I, Schmidt M, Longren L, Park S. Influence of visual food cues on autonomic activity and craving. Biol Psychol 2021; 165:108197. [PMID: 34606946 DOI: 10.1016/j.biopsycho.2021.108197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/30/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
In this study, we tested the hypothesis that autonomic control of the stomach is related to craving and is modulated by visual food cues. Twenty-nine healthy human participants were shown pictures of either high- or low-appeal food, as well as non-food pictures, and were asked to rate how much they wanted to eat each item using a 7-point Likert scale. Simultaneously, the electrogastrogram, electrocardiogram, electrodermal activity, respiration rate, and pupil diameter were recorded. After the ingestion of a 500-kcal liquid meal, participants were asked to perform the task a second time. Despite changes in craving ratings, we did not find changes in the amplitude of the gastric rhythm, but we found increases in pupil diameter for the high appeal food pictures. Moreover, craving ratings were mostly related to increases in pupil and tonic electrodermal activity, compatible with an increase in arousal and a heightened motivational response to food.
Collapse
Affiliation(s)
- Ignacio Rebollo
- Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; Corporate member of Freie Universität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Neuroscience ResearchCenter, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | - Mine Schmidt
- Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
| | - Luke Longren
- Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany
| | - Soyoung Park
- Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Nuthetal, Germany; Corporate member of Freie Universität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Neuroscience ResearchCenter, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Deutsches Zentrum für Diabetes, 85764 Neuherberg, Germany
| |
Collapse
|
10
|
Berland C, Small DM, Luquet S, Gangarossa G. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol Metab 2021; 32:693-705. [PMID: 34148784 DOI: 10.1016/j.tem.2021.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 02/03/2023]
Abstract
The abundance of energy-dense and palatable diets in the modern food environment tightly contributes to the obesity pandemic. The reward circuit participates to the regulation of body homeostasis by integrating energy-related signals with neural substrates encoding cognitive and motivational components of feeding behaviors. Obesity and lipid-rich diets alter dopamine (DA) transmission leading to reward dysfunctions and food overconsumption. Recent reports indicate that dietary lipids can act, directly and indirectly, as functional modulators of the DA circuit. This raises the possibility that nutritional or genetic conditions affecting 'lipid sensing' mechanisms might lead to maladaptations of the DA system. Here, we discuss the most recent findings connecting dietary lipid sensing with DA signaling and its multimodal influence on circuits regulating food-reward processes.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France; Department of Medicine, The Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA
| | - Dana M Small
- Department of Psychiatry, and the Modern Diet and Physiology Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Serge Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | | |
Collapse
|
11
|
Wever MCM, van Meer F, Charbonnier L, Crabtree DR, Buosi W, Giannopoulou A, Androutsos O, Johnstone AM, Manios Y, Meek CL, Holst JJ, Smeets PAM. Associations between ghrelin and leptin and neural food cue reactivity in a fasted and sated state. Neuroimage 2021; 240:118374. [PMID: 34245869 DOI: 10.1016/j.neuroimage.2021.118374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
Food cue exposure can trigger eating. Food cue reactivity (FCR) is a conditioned response to food cues and includes physiological responses and activation of reward-related brain areas. FCR can be affected by hunger and weight status. The appetite-regulating hormones ghrelin and leptin play a pivotal role in homeostatic as well as hedonic eating. We examined the association between ghrelin and leptin levels and neural FCR in the fasted and sated state and the association between meal-induced changes in ghrelin and neural FCR, and in how far these associations are related to BMI and HOMA-IR. Data from 109 participants from three European centers (age 50±18 y, BMI 27±5 kg/m2) who performed a food viewing task during fMRI after an overnight fast and after a standardized meal were analyzed. Blood samples were drawn prior to the viewing task in which high-caloric, low-caloric and non-food images were shown. Fasting ghrelin was positively associated with neural FCR in the inferior and superior occipital gyrus in the fasted state. This was partly attributable to BMI and HOMA-IR. These brain regions are involved in visual attention, suggesting that individuals with higher fasting ghrelin have heightened attention to food cues. Leptin was positively associated with high calorie FCR in the medial prefrontal cortex (PFC) in the fasted state and to neural FCR in the left supramarginal gyrus in the fasted versus sated state, when correcting for BMI and HOMA-IR, respectively. This PFC region is involved in assessing anticipated reward value, suggesting that for individuals with higher leptin levels high-caloric foods are more salient than low-caloric foods, but foods in general are not more salient than non-foods. There were no associations between ghrelin and leptin and neural FCR in the sated state, nor between meal-induced changes in ghrelin and neural FCR. In conclusion, we show modest associations between ghrelin and leptin and neural FCR in a relatively large sample of European adults with a broad age and BMI range. Our findings indicate that people with higher leptin levels for their weight status and people with higher ghrelin levels may be more attracted to high caloric foods when hungry. The results of the present study form a foundation for future studies to test whether food intake and (changes in) weight status can be predicted by the association between (mainly fasting) ghrelin and leptin levels and neural FCR.
Collapse
Affiliation(s)
- Mirjam C M Wever
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Floor van Meer
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Lisette Charbonnier
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| | - Daniel R Crabtree
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland; Division of Biomedical Sciences, Centre for Health Science, University of the Highlands and Islands, Inverness IV2 3JH, United Kingdom
| | - William Buosi
- The Rowett Institute, University of Aberdeen, Foresterhill Road AB25 2ZD, Scotland
| | - Angeliki Giannopoulou
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Odysseas Androutsos
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece; Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala 42132, Greece
| | | | - Yannis Manios
- Department of Nutrition-Dietetics, School of Health Science & Education, Harokopio University Athens, 70 El. Venizelou avenue, 17671 Kallithea, Greece
| | - Claire L Meek
- Department of Clinical Biochemistry, Cambridge University Hospitals, Cambridge, United Kingdom; Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Jens J Holst
- NNF Center for Basic Metabolic Research and Research Section, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul A M Smeets
- Image Sciences Institute, University Medical Center Utrecht Brain Center, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands; Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | | |
Collapse
|
12
|
Morville T, Madsen KH, Siebner HR, Hulme OJ. Reward signalling in brainstem nuclei under fluctuating blood glucose. PLoS One 2021; 16:e0243899. [PMID: 33826633 PMCID: PMC8026025 DOI: 10.1371/journal.pone.0243899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022] Open
Abstract
Phasic dopamine release from mid-brain dopaminergic neurons is thought to signal errors of reward prediction (RPE). If reward maximisation is to maintain homeostasis, then the value of primary rewards should be coupled to the homeostatic errors they remediate. This leads to the prediction that RPE signals should be configured as a function of homeostatic state and thus diminish with the attenuation of homeostatic error. To test this hypothesis, we collected a large volume of functional MRI data from five human volunteers on four separate days. After fasting for 12 hours, subjects consumed preloads that differed in glucose concentration. Participants then underwent a Pavlovian cue-conditioning paradigm in which the colour of a fixation-cross was stochastically associated with the delivery of water or glucose via a gustometer. This design afforded computation of RPE separately for better- and worse-than expected outcomes during ascending and descending trajectories of serum glucose fluctuations. In the parabrachial nuclei, regional activity coding positive RPEs scaled positively with serum glucose for both ascending and descending glucose levels. The ventral tegmental area and substantia nigra became more sensitive to negative RPEs when glucose levels were ascending. Together, the results suggest that RPE signals in key brainstem structures are modulated by homeostatic trajectories of naturally occurring glycaemic flux, revealing a tight interplay between homeostatic state and the neural encoding of primary reward in the human brain.
Collapse
Affiliation(s)
- Tobias Morville
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kristoffer H. Madsen
- DTU Compute, Department of Informatics and Mathematical Modelling, Technical University of Denmark, Copenhagen, Denmark
| | - Hartwig R. Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Oliver J. Hulme
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
13
|
Faulkner ML, Momenan R, Leggio L. A neuroimaging investigation into the role of peripheral metabolic biomarkers in the anticipation of reward in alcohol use. Drug Alcohol Depend 2021; 221:108638. [PMID: 33667782 PMCID: PMC8527598 DOI: 10.1016/j.drugalcdep.2021.108638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The relationship between alcohol use and metabolism has focused on the effects of alcohol use on metabolic factors. Metabolic factors, such as triglycerides, cholesterol, and glucose, have been shown to be associated with increased risk for heavy alcohol consumption and alcohol use disorder (AUD). It's been suggested that changes in metabolic factors may play a role in reward seeking behaviors and pathways. Studies on feeding behavior and obesity revealed the role of triglycerides in neural response to food cues in neurocircuitry regulating reward and feeding behaviors. This study aimed to explore the relationship of peripheral metabolism, alcohol use, and reward processing in individuals that use alcohol. METHODS Ninety participants from a previously collected dataset were included in the analysis. Participants were treatment seeking, detoxified individuals with AUD and healthy individuals without AUD, with the following metabolic biomarkers: triglyceride, glucose, high- and low-density cholesterol, and HbA1c levels. Participants completed a neuroimaging version of the Monetary Incentive Delay task (MID). RESULTS Correlations on peripheral metabolic biomarkers, alcohol use, and neural activity during reward anticipation and outcome during the MID task were not significant. Mediation models revealed triglycerides and high-density cholesterol had significant effects on left anterior insula during anticipation of potential monetary loss and this effect was not mediated by alcohol use. CONCLUSION Limbic recruitment by anticipation of monetary rewards revealed an independent relationship with peripheral metabolism and was not affected by individual differences in alcohol use, despite the effects of alcohol use on metabolic markers and reward processing neural circuitry.
Collapse
Affiliation(s)
- Monica L. Faulkner
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD, USA, 20814
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA 20814
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, MD 20814, USA; Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI 02903, USA; Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA; Department of Neuroscience, Georgetown University Medical Center, Washington DC 20057, USA.
| |
Collapse
|
14
|
Arsalidou M, Vijayarajah S, Sharaev M. Basal ganglia lateralization in different types of reward. Brain Imaging Behav 2021; 14:2618-2646. [PMID: 31927758 DOI: 10.1007/s11682-019-00215-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Reward processing is a fundamental human activity. The basal ganglia are recognized for their role in reward processes; however, specific roles of the different nuclei (e.g., nucleus accumbens, caudate, putamen and globus pallidus) remain unclear. Using quantitative meta-analyses we assessed whole-brain and basal ganglia specific contributions to money, erotic, and food reward processing. We analyzed data from 190 fMRI studies which reported stereotaxic coordinates of whole-brain, within-group results from healthy adult participants. Results showed concordance in overlapping and distinct cortical and sub-cortical brain regions as a function of reward type. Common to all reward types was concordance in basal ganglia nuclei, with distinct differences in hemispheric dominance and spatial extent in response to the different reward types. Food reward processing favored the right hemisphere; erotic rewards favored the right lateral globus pallidus and left caudate body. Money rewards engaged the basal ganglia bilaterally including its most anterior part, nucleus accumbens. We conclude by proposing a model of common reward processing in the basal ganglia and separate models for money, erotic, and food rewards.
Collapse
Affiliation(s)
- Marie Arsalidou
- Department of Psychology, National Research University Higher School of Economics, Moscow, Russian Federation. .,Department of Psychology, Faculty of Health, York University, Toronto, ON, Canada.
| | - Sagana Vijayarajah
- Department of Psychology, Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| |
Collapse
|
15
|
The use of 'artificial saliva' as a neutral control condition in gustatory research: Artificial saliva is not a neutral gustatory stimulus. Physiol Behav 2021; 229:113254. [PMID: 33220327 DOI: 10.1016/j.physbeh.2020.113254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
Distilled water with NaHCO3 and KCl is a solution often referred to as 'artificial saliva' because its chemical composition mimics human saliva. It is often used as a control stimulus in gustatory research, especially in neuroimaging, owing to the claim that it does not produce a response in primary gustatory cortex Yet evidence that human research volunteers perceive this liquid as affectively neutral is lacking. Unpublished data from our lab suggested that this solution might be perceived as aversive. This study set out to systematically test the parameters influencing taste neutrality. We used two different concentrations of distilled water with NaHCO3 and KCl, as well as bottled water as a control stimulus. Healthy adults rated all stimuli on two separate scales to rule out an interpretation based on the specifics of a single scale. Our participants rated artificial saliva as aversive on both scales. The bottled water was rated as neutral in valence on both scales, and as significantly less intense in sensation than both concentrations of the artificial saliva. This is the first study to have directly tested the subjective feelings that accompany the ingestion of these oft-used solutions on a trial-by-trial basis. We found that these stimuli, which were previously assumed to be neutral, may not be perceived as such by research participants. Therefore, future gustatory studies should take care when using this solution as a neutral baseline. It is advised that trial-by-trial ratings are collected. Also, depending on the nature of future studies, bottled water may be considered as a preferable neutral baseline.
Collapse
|
16
|
Reed DR, Alhadeff AL, Beauchamp GK, Chaudhari N, Duffy VB, Dus M, Fontanini A, Glendinning JI, Green BG, Joseph PV, Kyriazis GA, Lyte M, Maruvada P, McGann JP, McLaughlin JT, Moran TH, Murphy C, Noble EE, Pepino MY, Pluznick JL, Rother KI, Saez E, Spector AC, Sternini C, Mattes RD. NIH Workshop Report: sensory nutrition and disease. Am J Clin Nutr 2021; 113:232-245. [PMID: 33300030 PMCID: PMC7779223 DOI: 10.1093/ajcn/nqaa302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
In November 2019, the NIH held the "Sensory Nutrition and Disease" workshop to challenge multidisciplinary researchers working at the interface of sensory science, food science, psychology, neuroscience, nutrition, and health sciences to explore how chemosensation influences dietary choice and health. This report summarizes deliberations of the workshop, as well as follow-up discussion in the wake of the current pandemic. Three topics were addressed: A) the need to optimize human chemosensory testing and assessment, B) the plasticity of chemosensory systems, and C) the interplay of chemosensory signals, cognitive signals, dietary intake, and metabolism. Several ways to advance sensory nutrition research emerged from the workshop: 1) refining methods to measure chemosensation in large cohort studies and validating measures that reflect perception of complex chemosensations relevant to dietary choice; 2) characterizing interindividual differences in chemosensory function and how they affect ingestive behaviors, health, and disease risk; 3) defining circuit-level organization and function that link and interact with gustatory, olfactory, homeostatic, visceral, and cognitive systems; and 4) discovering new ligands for chemosensory receptors (e.g., those produced by the microbiome) and cataloging cell types expressing these receptors. Several of these priorities were made more urgent by the current pandemic because infection with sudden acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease of 2019 has direct short- and perhaps long-term effects on flavor perception. There is increasing evidence of functional interactions between the chemosensory and nutritional sciences. Better characterization of this interface is expected to yield insights to promote health, mitigate disease risk, and guide nutrition policy.
Collapse
Affiliation(s)
| | - Amber L Alhadeff
- Monell Chemical Senses Center, Philadelphia, PA, USA
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nirupa Chaudhari
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA
- Program in Neurosciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valerie B Duffy
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Monica Dus
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alfredo Fontanini
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - John I Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, Columbia University, New York, NY, USA
| | - Barry G Green
- The John B Pierce Laboratory, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Paule V Joseph
- National Institute of Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
- National Institute of Nursing, NIH, Bethesda, MD, USA
| | - George A Kyriazis
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Mark Lyte
- Interdepartmental Microbiology Graduate Program, Iowa State University, Ames, IA, USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, USA
| | - Padma Maruvada
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - John P McGann
- Behavioral and Systems Neuroscience, Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - John T McLaughlin
- Division of Diabetes, Endocrinology, & Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
- Department of Gastroenterology, Salford Royal NHS Foundation Trust, Salford, United Kingdom
| | - Timothy H Moran
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Claire Murphy
- Department of Psychology, San Diego State University, San Diego, CA, USA
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - M Yanina Pepino
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristina I Rother
- Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Alan C Spector
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Catia Sternini
- Digestive Disease Division, Departments of Medicine and Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Gobbi S, Weber S, Graf G, Hinz D, Asarian L, Geary N, Leeners B, Hare T, Tobler P. Reduced Neural Satiety Responses in Women Affected by Obesity. Neuroscience 2020; 447:94-112. [DOI: 10.1016/j.neuroscience.2020.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 03/04/2020] [Accepted: 07/13/2020] [Indexed: 02/08/2023]
|
19
|
Chen EY, Zeffiro TA. Hunger and BMI modulate neural responses to sweet stimuli: fMRI meta-analysis. Int J Obes (Lond) 2020; 44:1636-1652. [PMID: 32555497 PMCID: PMC8023765 DOI: 10.1038/s41366-020-0608-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Consuming sweet foods, even when sated, can lead to unwanted weight gain. Contextual factors, such as longer time fasting, subjective hunger, and body mass index (BMI), may increase the likelihood of overeating. Nevertheless, the neural mechanisms underlying these moderating influences on energy intake are poorly understood. METHODS We conducted both categorical meta-analysis and meta-regression of factors modulating neural responses to sweet stimuli, using data from 30 functional magnetic resonance imaging (fMRI) articles incorporating 39 experiments (N = 995) carried out between 2006 and 2019. RESULTS Responses to sweet stimuli were associated with increased activity in regions associated with taste, sensory integration, and reward processing. These taste-evoked responses were modulated by context. Longer fasts were associated with higher posterior cerebellar, thalamic, and striatal activity. Greater self-reported hunger was associated with higher medial orbitofrontal cortex (OFC), dorsal striatum, and amygdala activity and lower posterior cerebellar activity. Higher BMI was associated with higher posterior cerebellar and insular activity. CONCLUSIONS Variations in fasting time, self-reported hunger, and BMI are contexts associated with differential sweet stimulus responses in regions associated with reward processing and homeostatic regulation. These results are broadly consistent with a hierarchical model of taste processing. Hunger, but not fasting or BMI, was associated with sweet stimulus-related OFC activity. Our findings extend existing models of taste processing to include posterior cerebellar regions that are associated with moderating effects of both state (fast length and self-reported hunger) and trait (BMI) variables.
Collapse
Affiliation(s)
- Eunice Y Chen
- TEDP (Temple Eating Disorders Program), Department of Psychology, Temple University, 1701 N 13th Street, Philadelphia, PA, 19122, USA.
| | | |
Collapse
|
20
|
Tiedemann LJ, Alink A, Beck J, Büchel C, Brassen S. Valence Encoding Signals in the Human Amygdala and the Willingness to Eat. J Neurosci 2020; 40:5264-5272. [PMID: 32457069 PMCID: PMC7329310 DOI: 10.1523/jneurosci.2382-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/28/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
One of the strongest drivers of food consumption is pleasure, and with a large variety of palatable food continuously available, there is rarely any necessity to eat something not tasty. The amygdala is involved in hedonic valuation, but its role in valence assignment during food choices is less understood. Given recent evidence for spatially segregated amygdala signatures encoding palatability, we applied a multivariate approach on fMRI data to extract valence-specific signal patterns during an explicit evaluation of food liking. These valence localizers were then used to identify hedonic valuation processes while the same healthy human participants (14 female, 16 male; in overnight fasted state on both scanning days) performed a willingness-to-eat task in a separate fMRI measurement. Valence-specific patterns of amygdala signaling predicted decisions on food consumption significantly. Findings could be validated using the same valence localizers to predict consumption decisions participants made on a separate set of food stimuli that had not been used for localizer identification. Control analyses revealed these findings to be restricted to a multivariate compared with a univariate approach, and to be specific for valence processing in the amygdala. Spatially distributed valuation signals of the amygdala thus appear to modulate appetitive consumption decisions, and may be useful to identify current hedonic valuation processes triggering food choices even when not explicitly instructed.SIGNIFICANCE STATEMENT The expectation of tastiness is a particularly strong driver in everyday decisions on food consumption. The amygdala is important for hedonic valuation processes and involved in valence-related behavior, but the relationship between both processes is less understood. Here, we show that hedonic values of food are represented in spatially distributed activation patterns in the amygdala. The engagement of these patterns during food choices modulates consumption decisions. Findings are stable in a separate stimulus set. These results suggest that valence-specific amygdala signals are integrated into the formation of food choices.
Collapse
Affiliation(s)
- Lena J Tiedemann
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Arjen Alink
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Judith Beck
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| | - Stefanie Brassen
- Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, D-20246, Germany
| |
Collapse
|
21
|
Berland C, Montalban E, Perrin E, Di Miceli M, Nakamura Y, Martinat M, Sullivan M, Davis XS, Shenasa MA, Martin C, Tolu S, Marti F, Caille S, Castel J, Perez S, Salinas CG, Morel C, Hecksher-Sørensen J, Cador M, Fioramonti X, Tschöp MH, Layé S, Venance L, Faure P, Hnasko TS, Small DM, Gangarossa G, Luquet SH. Circulating Triglycerides Gate Dopamine-Associated Behaviors through DRD2-Expressing Neurons. Cell Metab 2020; 31:773-790.e11. [PMID: 32142669 PMCID: PMC7250662 DOI: 10.1016/j.cmet.2020.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/16/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Energy-dense food alters dopaminergic (DA) transmission in the mesocorticolimbic (MCL) system and can promote reward dysfunctions, compulsive feeding, and weight gain. Yet the mechanisms by which nutrients influence the MCL circuitry remain elusive. Here, we show that nutritional triglycerides (TGs), a conserved post-prandial metabolic signature among mammals, can be metabolized within the MCL system and modulate DA-associated behaviors by gating the activity of dopamine receptor subtype 2 (DRD2)-expressing neurons through a mechanism that involves the action of the lipoprotein lipase (LPL). Further, we show that in humans, post-prandial TG excursions modulate brain responses to food cues in individuals carrying a genetic risk for reduced DRD2 signaling. Collectively, these findings unveil a novel mechanism by which dietary TGs directly alter signaling in the reward circuit to regulate behavior, thereby providing a new mechanistic basis by which energy-rich diets may lead to (mal)adaptations in DA signaling that underlie reward deficit and compulsive behavior.
Collapse
Affiliation(s)
- Chloé Berland
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France; Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Neuherberg, Germany
| | | | - Elodie Perrin
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | - Mathieu Di Miceli
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Yuko Nakamura
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Maud Martinat
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Mary Sullivan
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Xue S Davis
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Mohammad Ali Shenasa
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Claire Martin
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Stefania Tolu
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Fabio Marti
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Stephanie Caille
- Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR5287, 33076 Bordeaux, France
| | - Julien Castel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | | | - Chloé Morel
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France
| | - Jacob Hecksher-Sørensen
- Global Research, Novo Nordisk A/S, Måløv, Denmark; Gubra ApS, Hørsholm Kongevej 11B, 2970 Hørsholm, Denmark
| | - Martine Cador
- Université Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, UMR5287, 33076 Bordeaux, France
| | - Xavier Fioramonti
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Matthias H Tschöp
- Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Neuherberg, Germany; Division of Metabolic Diseases, TUM, Munich, Germany; Institute for Advanced Study, TUM, Munich, Germany
| | - Sophie Layé
- Université Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology, College de France, INSERM U1050, CNRS UMR 7241, Labex Memolife, 75005 Paris, France
| | - Philippe Faure
- Sorbonne Université, CNRS UMR 8246, INSERM, Neurosciences Paris Seine, Institut de Biologie Paris-Seine, Paris, France
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Research Service VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Dana M Small
- The Modern Diet and Physiology Research Center, New Haven, CT, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Serge H Luquet
- Université de Paris, BFA, UMR 8251, CNRS, F-75014 Paris, France; The Modern Diet and Physiology Research Center, New Haven, CT, USA.
| |
Collapse
|
22
|
Divergent associations between ghrelin and neural responsivity to palatable food in hyperphagic and hypophagic depression. J Affect Disord 2019; 242:29-38. [PMID: 30170236 PMCID: PMC6151278 DOI: 10.1016/j.jad.2018.07.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The neurobiological mechanisms involved in divergent appetitive phenotypes in major depressive disorder (MDD) are not well understood, although recent data suggest disruption in mesolimbic reward circuitry. Ghrelin, an orexigenic hormone, has been shown to modulate the reward circuitry. We aimed to investigate the relationship between acylated ghrelin levels and the neural response to food stimuli in individuals with hyperphagic and hypophagic MDD in remission. METHODS Women with hyperphagic MDD (n = 10), hypophagic MDD (n = 18), and healthy controls (HC; n = 18) underwent fMRI scanning during which they viewed images of food. The fMRI session was followed by a standardized meal, appetite ratings, and serial blood draws. RESULTS In individuals with hyperphagic MDD, greater change in acylated ghrelin in response to a meal was associated with increased BOLD response to high-calorie food in the bilateral ventral tegmental area and left hypothalamus. In contrast, negative associations were observed between acylated ghrelin AUC and BOLD activity in the right hypothalamus in the hypophagic MDD group. LIMITATIONS Unbalanced group sizes with a relatively small sample in the hyperphagic MDD group. CONCLUSIONS In the absence of differences in absolute ghrelin levels between the hyperphagic MDD and HC groups, results in hyperphagic MDD might suggest a ghrelinergic signaling mechanism for increased appetite during an MDD episode in this group. Our findings shed light on interactions between appetite hormones and mesolimbic circuitry which could contribute to development of therapeutic targets for opposing appetite phenotypes in depression.
Collapse
|
23
|
Slow Down: Behavioural and Physiological Effects of Reducing Eating Rate. Nutrients 2018; 11:nu11010050. [PMID: 30591684 PMCID: PMC6357517 DOI: 10.3390/nu11010050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Slowing eating rate appears to be an effective strategy for reducing food intake. This feasibility study investigated the effect of eating rate on post-meal responses using functional magnetic resonance imaging (fMRI), plasma gastrointestinal hormone concentrations, appetite ratings, memory for recent eating, and snack consumption. Twenty-one participants (mean age 23 years with healthy body mass index) were randomly assigned to consume a 600 kcal meal at either a “normal” or “slow” rate (6 vs. 24 min). Immediately afterwards, participants rated meal enjoyment and satisfaction. FMRI was performed 2-h post-meal during a memory task about the meal. Appetite, peptide YY, and ghrelin were measured at baseline and every 30 min for 3 h. Participants were given an ad-libitum snack three hours post-meal. Results were reported as effect sizes (Cohen’s d) due to the feasibility sample size. The normal rate group found the meal more enjoyable (effect size = 0.5) and satisfying (effect size = 0.6). Two hours post-meal, the slow rate group reported greater fullness (effect size = 0.7) and more accurate portion size memory (effect sizes = 0.4), with a linear relationship between time taken to make portion size decisions and the BOLD response in satiety and reward brain regions. Ghrelin suppression post-meal was greater in the slow rate group (effect size = 0.8). Three hours post-meal, the slow rate group consumed on average 25% less energy from snacks (effect size = 0.5). These data offer novel insights about mechanisms underlying how eating rate affects food intake and have implications for the design of effective weight-management interventions.
Collapse
|
24
|
Exogenous ghrelin administration increases alcohol self-administration and modulates brain functional activity in heavy-drinking alcohol-dependent individuals. Mol Psychiatry 2018; 23:2029-2038. [PMID: 29133954 DOI: 10.1038/mp.2017.226] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
Abstract
Preclinical evidence suggests that ghrelin, a peptide synthesized by endocrine cells of the stomach and a key component of the gut-brain axis, is involved in alcohol seeking as it modulates both central reward and stress pathways. However, whether and how ghrelin administration may impact alcohol intake in humans is not clear. For, we believe, the first time, this was investigated in the present randomized, crossover, double-blind, placebo-controlled, human laboratory study. Participants were non-treatment-seeking alcohol-dependent heavy-drinking individuals. A 10-min loading dose of intravenous ghrelin/placebo (3 mcg kg-1) followed by a continuous ghrelin/placebo infusion (16.9 ng/kg/min) was administered. During a progressive-ratio alcohol self-administration experiment, participants could press a button to receive intravenous alcohol using the Computerized Alcohol Infusion System. In another experiment, brain functional magnetic resonance imaging was conducted while participants performed a task to gain points for alcohol, food or no reward. Results showed that intravenous ghrelin, compared to placebo, significantly increased the number of alcohol infusions self-administered (percent change: 24.97±10.65, P=0.04, Cohen's d=0.74). Participants were also significantly faster to initiate alcohol self-administration when they received ghrelin, compared to placebo (P=0.03). The relationships between breath alcohol concentration and subjective effects of alcohol were also moderated by ghrelin administration. Neuroimaging data showed that ghrelin increased the alcohol-related signal in the amygdala (P=0.01) and modulated the food-related signal in the medial orbitofrontal cortex (P=0.01) and nucleus accumbens (P=0.08). These data indicate that ghrelin signaling affects alcohol seeking in humans and should be further investigated as a promising target for developing novel medications for alcohol use disorder.
Collapse
|
25
|
Liver and intestinal protective effects of Castanea sativa Mill. bark extract in high-fat diet rats. PLoS One 2018; 13:e0201540. [PMID: 30080863 PMCID: PMC6078294 DOI: 10.1371/journal.pone.0201540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/17/2018] [Indexed: 12/20/2022] Open
Abstract
The effects of Castanea sativa Mill. have been studied in high fat diet (HFD) overweight rats. Natural Extract of Chestnut bark (Castanea sativa Mill.) (ENC®), rich in ellagitannins, has been studied in 120 male Sprague-Dawley rats, divided in four groups. Two groups were controls: regular (RD) and HDF diet. Two groups received ENC® (20 mg/kg/day): RD + ENC® and HFD + ENC®. At baseline and at 7, 14 and 21 days, weight gain, serum lipids, plasma cytokines, liver histology, microsomial enzymes and oxidation, intestinal oxidative stress and contractility were studied. HFD increased body weight, increased pro-inflammatory cytokines, induced hepatocytes microvescicular steatosis, altered microsomial, increased liver and intestinal oxidative stress, deranged intestinal contractility. In HFD-fed rats, ENC® exerted antiadipose and antioxidative activities and normalized intestinal contractility, suggesting a potential approach to overweight management associated diseases.
Collapse
|
26
|
Morris LS, Voon V, Leggio L. Stress, Motivation, and the Gut-Brain Axis: A Focus on the Ghrelin System and Alcohol Use Disorder. Alcohol Clin Exp Res 2018; 42:10.1111/acer.13781. [PMID: 29797564 PMCID: PMC6252147 DOI: 10.1111/acer.13781] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/17/2018] [Indexed: 01/04/2023]
Abstract
Since its discovery, the gut hormone, ghrelin, has been implicated in diverse functional roles in the central nervous system. Central and peripheral interactions between ghrelin and other hormones, including the stress-response hormone cortisol, govern complex behavioral responses to external cues and internal states. By acting at ventral tegmental area dopaminergic projections and other areas involved in reward processing, ghrelin can induce both general and directed motivation for rewards, including craving for alcohol and other alcohol-seeking behaviors. Stress-induced increases in cortisol seem to increase ghrelin in the periphery, suggesting a pathway by which ghrelin influences how stressful life events trigger motivation for rewards. However, in some states, ghrelin may be protective against the anxiogenic effects of stressors. This critical review brings together a dynamic and growing literature, that is, at times inconsistent, on the relationships between ghrelin, central reward-motivation pathways, and central and peripheral stress responses, with a special focus on its emerging role in the context of alcohol use disorder.
Collapse
Affiliation(s)
- Laurel S. Morris
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychology, University of Cambridge, UK
- Mood and Anxiety Disorders Program, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valerie Voon
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, UK
- Department of Psychiatry, University of Cambridge, UK
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| |
Collapse
|
27
|
Makaronidis JM, Batterham RL. Obesity, body weight regulation and the brain: insights from fMRI. Br J Radiol 2018; 91:20170910. [PMID: 29365284 DOI: 10.1259/bjr.20170910] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity constitutes a major global health threat. Despite the success of bariatric surgery in delivering sustainable weight loss and improvement in obesity-related morbidity, effective non-surgical treatments are urgently needed, necessitating an increased understanding of body weight regulation. Neuroimaging studies undertaken in people with healthy weight, overweight, obesity and following bariatric surgery have contributed to identifying the neurophysiological changes seen in obesity and help increase our understanding of the mechanisms driving the favourable eating behaviour changes and sustained weight loss engendered by bariatric surgery. These studies have revealed a key interplay between peripheral metabolic signals, homeostatic and hedonic brain regions and genetics. Findings from brain functional magnetic resonance imaging (fMRI) studies have consistently associated obesity with an increased motivational drive to eat, increased reward responses to food cues and impaired food-related self-control processes. Interestingly, new data link these obesity-associated changes with structural and connectivity changes within the central nervous system. Moreover, emerging data suggest that bariatric surgery leads to neuroplastic recovery. A greater understanding of the interactions between peripheral signals of energy balance, the neural substrates that regulate eating behaviour, the environment and genetics will be key for the development of novel therapeutic strategies for obesity. This review provides an overview of our current understanding of the pathoaetiology of obesity with a focus upon the role that fMRI studies have played in enhancing our understanding of the central regulation of eating behaviour and energy homeostasis.
Collapse
Affiliation(s)
- Janine M Makaronidis
- 1 Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London , London , UK.,2 Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital , London , UK.,3 Bariatric Centre for Weight Management and Metabolic Surgery, National Institute of Health Research, UCLH Biomedical Research Centre , London , UK
| | - Rachel L Batterham
- 1 Department of Medicine, Centre for Obesity Research, Rayne Institute, University College London , London , UK.,2 Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital (UCLH) Bariatric Centre for Weight Management and Metabolic Surgery, University College London Hospital , London , UK.,3 Bariatric Centre for Weight Management and Metabolic Surgery, National Institute of Health Research, UCLH Biomedical Research Centre , London , UK
| |
Collapse
|
28
|
Szabó I, Hormay E, Csetényi B, Nagy B, Lénárd L, Karádi Z. Multiple functional attributes of glucose-monitoring neurons in the medial orbitofrontal (ventrolateral prefrontal) cortex. Neurosci Biobehav Rev 2018; 85:44-53. [DOI: 10.1016/j.neubiorev.2017.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
|
29
|
|
30
|
Drenowatz C, Evensen LH, Ernstsen L, Blundell JE, Hand GA, Shook RP, Hébert JR, Burgess S, Blair SN. Cross-sectional and longitudinal associations between different exercise types and food cravings in free-living healthy young adults. Appetite 2017; 118:82-89. [PMID: 28797701 DOI: 10.1016/j.appet.2017.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/28/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION An increase in energy intake due to alterations in hedonic appetite sensations may, at least in part, contribute to lower-than-expected weight loss in exercise interventions. The aim of this study was to examine cross-sectional and longitudinal associations between habitual exercise participation and food cravings in free-living young adults. METHODS A total of 417 adults (49% male, 28 ± 4 years) reported frequency and duration of walking, aerobic exercise, resistance exercise and other exercise at baseline and every 3 months over a 12-month period. Food cravings were assessed via the Control of Eating Questionnaire at baseline and 12-month follow-up. RESULTS Cross-sectional analyses revealed more frequent cravings for chocolate and a greater difficulty to resist food cravings in women compared to men (p < 0.01). Only with resistance exercise significant sex by exercise interaction effects were observed with favorable responses in men but not in women. Significant main effects were shown for walking and aerobic exercise with exercisers reporting more frequent food cravings for chocolate and fruits and greater difficulty to resist eating compared to non-exercisers (p < 0.05). Longitudinal analyses revealed significant interaction effects for other exercise (p < 0.05) with favorable results in men but not women. Furthermore, significant main effects were observed for aerobic exercise, resistance exercise and total exercise with an increase in exercise being associated with a reduced difficulty to resist food cravings (p < 0.05). DISCUSSION The association between exercise participation and hedonic appetite sensations varies by exercise type and sex. Even though exercise was associated with more frequent and greater difficulty to food cravings in the cross-sectional analyses, which may be attributed to greater energy demands, longitudinal results indicate beneficial effects of increased exercise on appetite control, particularly in men.
Collapse
Affiliation(s)
- Clemens Drenowatz
- Division of Physical Education, Educational College Vorarlberg, Feldkirch, Austria; Department of Exercise Science, University of South Carolina, Columbia, SC, United States.
| | - Line H Evensen
- K.G. Jebsen Thrombosis Research and Expertise Center, Department of Clinical Medicine, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Linda Ernstsen
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - John E Blundell
- School of Psychology, University of Leeds, Leeds, West Yorkshire, United Kingdom
| | - Gregory A Hand
- Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, United States
| | - Robin P Shook
- Department of Pediatrics, Children's Mercy Hospital and Clinics, Kansas City, MO, United States
| | - James R Hébert
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, United States; Connecting Health Innovations LLC, Columbia, SC, United States
| | | | - Steven N Blair
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
31
|
Andermann ML, Lowell BB. Toward a Wiring Diagram Understanding of Appetite Control. Neuron 2017; 95:757-778. [PMID: 28817798 DOI: 10.1016/j.neuron.2017.06.014] [Citation(s) in RCA: 381] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/02/2017] [Accepted: 06/07/2017] [Indexed: 01/26/2023]
Abstract
Prior mouse genetic research has set the stage for a deep understanding of appetite regulation. This goal is now being realized through the use of recent technological advances, such as the ability to map connectivity between neurons, manipulate neural activity in real time, and measure neural activity during behavior. Indeed, major progress has been made with regard to meal-related gut control of appetite, arcuate nucleus-based hypothalamic circuits linking energy state to the motivational drive, hunger, and, finally, limbic and cognitive processes that bring about hunger-mediated increases in reward value and perception of food. Unexpected findings are also being made; for example, the rapid regulation of homeostatic neurons by cues that predict future food consumption. The aim of this review is to cover the major underpinnings of appetite regulation, describe recent advances resulting from new technologies, and synthesize these findings into an updated view of appetite regulation.
Collapse
Affiliation(s)
- Mark L Andermann
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
32
|
Simon JJ, Wetzel A, Sinno MH, Skunde M, Bendszus M, Preissl H, Enck P, Herzog W, Friederich HC. Integration of homeostatic signaling and food reward processing in the human brain. JCI Insight 2017; 2:92970. [PMID: 28768906 DOI: 10.1172/jci.insight.92970] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Food intake is guided by homeostatic needs and by the reward value of food, yet the exact relation between the two remains unclear. The aim of this study was to investigate the influence of different metabolic states and hormonal satiety signaling on responses in neural reward networks. METHODS Twenty-three healthy participants underwent functional magnetic resonance imaging while performing a task distinguishing between the anticipation and the receipt of either food- or monetary-related reward. Every participant was scanned twice in a counterbalanced fashion, both during a fasted state (after 24 hours fasting) and satiety. A functional connectivity analysis was performed to investigate the influence of satiety signaling on activation in neural reward networks. Blood samples were collected to assess hormonal satiety signaling. RESULTS Fasting was associated with sensitization of the striatal reward system to the anticipation of food reward irrespective of reward magnitude. Furthermore, during satiety, individual ghrelin levels were associated with increased neural processing during the expectation of food-related reward. CONCLUSIONS Our findings show that physiological hunger stimulates food consumption by specifically increasing neural processing during the expectation (i.e., incentive salience) but not the receipt of food-related reward. In addition, these findings suggest that ghrelin signaling influences hedonic-driven food intake by increasing neural reactivity during the expectation of food-related reward. These results provide insights into the neurobiological underpinnings of motivational processing and hedonic evaluation of food reward. TRIAL REGISTRATION ClinicalTrials.gov NCT03081585. FUNDING This work was supported by the German Competence Network on Obesity, which is funded by the German Federal Ministry of Education and Research (FKZ 01GI1122E).
Collapse
Affiliation(s)
- Joe J Simon
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Anne Wetzel
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Maria Hamze Sinno
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Mandy Skunde
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany; Internal Medicine VI and Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany; Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; and German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Paul Enck
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Hospital, Tübingen, Germany
| | - Wolfgang Herzog
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Centre for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
33
|
The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci Biobehav Rev 2017; 80:457-475. [PMID: 28669754 DOI: 10.1016/j.neubiorev.2017.06.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 06/08/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
Abstract
The brain-gut-axis is an interdependent system affecting neural functions and controlling our eating behaviour. In recent decades, neuroimaging techniques have facilitated its investigation. We systematically looked into functional and neurochemical brain imaging studies investigating how key molecules such as ghrelin, glucagon-like peptide-1 (GLP-1), peptide tyrosine-tyrosine (PYY), cholecystokinin (CCK), leptin, glucose and insulin influence the function of brain regions regulating appetite and satiety. Of the 349 studies published before July 2016 identified in the database search, 40 were included (27 on healthy and 13 on obese subjects). Our systematic review suggests that the plasma level of ghrelin, the gut hormone promoting appetite, is positively correlated with activation in the pre-frontal cortex (PFC), amygdala and insula and negatively correlated with activation in subcortical areas such as the hypothalamus. In contrast, the plasma levels of glucose, insulin, leptin, PYY, GLP-1 affect the same brain regions conversely. Our study integrates previous investigations of the gut-brain matrix during food-intake and homeostatic regulation and may be of use for future meta-analyses of brain-gut interactions.
Collapse
|
34
|
Douglas Braymer H, Zachary H, Schreiber AL, Primeaux SD. Lingual CD36 and nutritional status differentially regulate fat preference in obesity-prone and obesity-resistant rats. Physiol Behav 2017; 174:120-127. [PMID: 28302572 DOI: 10.1016/j.physbeh.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/20/2017] [Accepted: 03/11/2017] [Indexed: 11/16/2022]
Abstract
Lingual fatty acid receptors (i.e. CD36) mediate the orosensory perception of fat/fatty acids and may contribute to the susceptibility to develop obesity. The current study tested the hypothesis that fat/fatty acid preference in obesity-prone (OP, Osborne-Mendel) and obesity-resistant (OR, S5B/Pl) rats is mediated by nutritional status and lingual CD36. To determine if nutritional status affected linoleic acid (LA) preference in OP and OR rats, rats were either fasted overnight or fed a high fat diet (60% kcal from fat). In OR rats, fasting increased the preference for higher concentrations of LA (1.0%), while consumption of a high fat diet decreased LA preference. In OP rats, fasting increased the preference for lower concentrations of LA (0.25%), however high fat diet consumption did not alter LA preference. To determine if lingual CD36 mediated the effects of an overnight fast on LA preference, the expression of lingual CD36 mRNA was assessed and the effect of lingual application of CD36 siRNA on LA preference was determined. Fasting increased lingual CD36 mRNA expression in OR rats, but failed to alter lingual CD36 mRNA in OP rats. Following an overnight fast, application of lingual CD36 siRNA led to a decrease in LA preference in OR, but not OP rats. Lingual application of CD36 siRNA was also used to determine if lingual CD36 mediated the intake and preference for a high fat diet in OP and OR rats. CD36 siRNA decreased the preference and intake of high fat diet in OR rats, but not OP rats. The results from this study suggest that the dysregulation of lingual CD36 in OP rats is a potential factor leading to increased fat intake and fat preference and an enhanced susceptibility to develop obesity.
Collapse
Affiliation(s)
- H Douglas Braymer
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Hannah Zachary
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States
| | - Allyson L Schreiber
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States
| | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States.
| |
Collapse
|
35
|
Goodyear K, Lee MR, Schwandt ML, Hodgkinson CA, Leggio L. Hepatic, lipid and genetic factors associated with obesity: crosstalk with alcohol dependence? World J Biol Psychiatry 2017; 18:120-128. [PMID: 27905213 PMCID: PMC5382351 DOI: 10.1080/15622975.2016.1249952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Alcohol dependence represents a leading cause of mortality and morbidity. Understanding the variables that contribute to this diagnosis and its severity is critical. An overlap between factors that may predispose people to become obese and those that may increase the risk of alcohol dependence may exist. However, data in the literature are not conclusive. Therefore, this study aimed to identify the association between alcohol dependence and obesity-related factors, including biochemical and genetic factors. METHODS In a case-control study with 829 participants, factors involved with metabolism and obesity were assessed, including biochemical lipid and liver markers, and the fat mass and obesity-associated (FTO) single nucleotide polymorphism (SNP) rs8050136. RESULTS Increased triglycerides, having one or two minor A alleles for rs8050136 and being a smoker were associated with increased risk of alcohol dependence, while increased low-density lipoprotein cholesterol was associated with decreased risk. In addition, having abnormal gamma-glutamyl transferase and being female were factors associated with an increased severity of alcohol dependence. CONCLUSIONS Our preliminary findings suggest a link between alcohol dependence and obesity-related biochemical and genetic factors. Future studies are needed to better understand if these factors may play a predictive role and/or may act as biomarkers for treatment response.
Collapse
Affiliation(s)
- Kimberly Goodyear
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, MD, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA
| | - Mary R. Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, MD, USA
| | - Melanie L. Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Colin A. Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, MD, USA,Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA,Corresponding author: Lorenzo Leggio, M.D., Ph.D., M.Sc., Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, 10 Center Drive (10CRC/15330), Bethesda, MD 20892-1108, Telephone: 301-435-9398,
| |
Collapse
|
36
|
Micturition Drive is Associated with Decreased Brain Response to Palatable Milkshake in the Human Anterior Insular Cortex. CHEMOSENS PERCEPT 2016. [DOI: 10.1007/s12078-016-9215-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Kroemer NB, Burrasch C, Hellrung L. To work or not to work: Neural representation of cost and benefit of instrumental action. PROGRESS IN BRAIN RESEARCH 2016; 229:125-157. [PMID: 27926436 DOI: 10.1016/bs.pbr.2016.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By definition, instrumental actions are performed in order to obtain certain goals. Nevertheless, the attainment of goals typically implies obstacles, and response vigor is known to reflect an integration of subjective benefit and cost. Whereas several brain regions have been associated with cost/benefit ratio decision-making, trial-by-trial fluctuations in motivation are not well understood. We review recent evidence supporting the motivational implications of signal fluctuations in the mesocorticolimbic system. As an extension of "set-point" theories of instrumental action, we propose that response vigor is determined by a rapid integration of brain signals that reflect value and cost on a trial-by-trial basis giving rise to an online estimate of utility. Critically, we posit that fluctuations in key nodes of the network can predict deviations in response vigor and that variability in instrumental behavior can be accounted for by models devised from optimal control theory, which incorporate the effortful control of noise. Notwithstanding, the post hoc analysis of signaling dynamics has caveats that can effectively be addressed in future research with the help of two novel fMRI imaging techniques. First, adaptive fMRI paradigms can be used to establish a time-order relationship, which is a prerequisite for causality, by using observed signal fluctuations as triggers for stimulus presentation. Second, real-time fMRI neurofeedback can be employed to induce predefined brain states that may facilitate benefit or cost aspects of instrumental actions. Ultimately, understanding temporal dynamics in brain networks subserving response vigor holds the promise for targeted interventions that could help to readjust the motivational balance of behavior.
Collapse
Affiliation(s)
- N B Kroemer
- Technische Universität Dresden, Dresden, Germany.
| | - C Burrasch
- Technische Universität Dresden, Dresden, Germany; University of Lübeck, Lübeck, Germany
| | - L Hellrung
- Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
38
|
Hargrave SL, Jones S, Davidson TL. The Outward Spiral: A vicious cycle model of obesity and cognitive dysfunction. Curr Opin Behav Sci 2016; 9:40-46. [PMID: 26998507 DOI: 10.1016/j.cobeha.2015.12.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chronic failure to suppress intake during states of positive energy balance leads to weight gain and obesity. The ability to use context - including interoceptive satiety states - to inhibit responding to previously rewarded cues appears to depend on the functional integrity of the hippocampus. Recent evidence implicates energy dense Western diets in several types of hippocampal dysfunction, including reduced expression of neurotrophins and nutrient transporters, increased inflammation, microglial activation, and blood brain barrier permeability. The functional consequences of such insults include impairments in an animal's ability to modulate responding to a previously reinforced cues. We propose that such deficits promote overeating, which can further exacerbate hippocampal dysfunction and thus initiate a vicious cycle of both obesity and progressive cognitive decline.
Collapse
Affiliation(s)
- Sara L Hargrave
- Center for Behavioral Neuroscience, Department of Psychology. American University. Washington, DC 20016, USA
| | - Sabrina Jones
- Center for Behavioral Neuroscience, Department of Psychology. American University. Washington, DC 20016, USA
| | - Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology. American University. Washington, DC 20016, USA
| |
Collapse
|
39
|
Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity. Physiol Behav 2016; 162:37-45. [PMID: 27085908 DOI: 10.1016/j.physbeh.2016.04.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward.
Collapse
|
40
|
Food reward in active compared to inactive men: Roles for gastric emptying and body fat. Physiol Behav 2016; 160:43-9. [PMID: 27072508 DOI: 10.1016/j.physbeh.2016.04.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/26/2016] [Accepted: 04/06/2016] [Indexed: 11/23/2022]
Abstract
Habitual exercise could contribute to weight management by altering processes of food reward via the gut-brain axis. We investigated hedonic processes of food reward in active and inactive men and characterised relationships with gastric emptying and body fat. Forty-four men (active: n=22; inactive: n=22, BMI range 21-36kg/m(2); percent fat mass range 9-42%) were studied. Participants were provided with a standardised fixed breakfast and an ad libitum lunch meal 5h later. Explicit liking, implicit wanting and preference among high-fat, low-fat, sweet and savoury food items were assessed immediately post-breakfast (fed state) and again pre-lunch (hungry state) using the Leeds Food Preference Questionnaire. Gastric emptying was assessed by (13)C-octanoic acid breath test. Active individuals exhibited a lower liking for foods overall and a greater implicit wanting for low-fat savoury foods in the fed state, compared to inactive men. Differences in the fed state remained significant after adjusting for percent fat mass. Active men also had a greater increase in liking for savoury foods in the interval between breakfast and lunch. Faster gastric emptying was associated with liking for savoury foods and with an increase in liking for savoury foods in the postprandial interval. In contrast, greater implicit wanting for high-fat foods was associated with slower gastric emptying. These associations were independent of each other, activity status and body fat. In conclusion, active and inactive men differ in processes of food reward. The rate of gastric emptying may play a role in the association between physical activity status and food reward, via the gut-brain axis.
Collapse
|
41
|
Berland C, Cansell C, Hnasko TS, Magnan C, Luquet S. Dietary triglycerides as signaling molecules that influence reward and motivation. Curr Opin Behav Sci 2016; 9:126-135. [PMID: 28191490 DOI: 10.1016/j.cobeha.2016.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The reinforcing and motivational aspects of food are tied to the release of the dopamine in the mesolimbic system (ML). Free fatty acids from triglyceride (TG)-rich particles are released upon action of TG-lipases found at high levels in peripheral oxidative tissue (muscle, heart), but also in the ML. This suggests that local TG-hydrolysis in the ML might regulate food seeking and reward. Indeed, evidence now suggests that dietary TG directly target the ML to regulate amphetamine-induced locomotion and reward seeking behavior. Though the cellular mechanisms of TG action are unresolved, TG act in part through ML lipoprotein lipase, upstream of dopamine 2 receptor (D2R), and show desensitization in conditions of chronically elevated plasma TG as occur in obesity. TG sensing in the ML therefore represents a new mechanism by which chronic consumption of dietary fat might lead to adaptations in the ML and dysregulated feeding behaviors.
Collapse
Affiliation(s)
- Chloé Berland
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France; Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health, München/Neuherberg, Germany; Div. of Metabolic Diseases, Dept. of Medicine, Technische Universität München, Germany
| | - Céline Cansell
- Université de Nice Sophia Antipolis, IPMC, Sophia Antipolis, F-06560, France; CNRS, IPMC, Sophia Antipolis, F-06560, France
| | - Thomas S Hnasko
- Department of Neurosciences, University of California, San Diego, La Jolla CA, USA
| | - Christophe Magnan
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Serge Luquet
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| |
Collapse
|
42
|
Kroemer NB, Sun X, Veldhuizen MG, Babbs AE, de Araujo IE, Small DM. Weighing the evidence: Variance in brain responses to milkshake receipt is predictive of eating behavior. Neuroimage 2016; 128:273-283. [DOI: 10.1016/j.neuroimage.2015.12.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/26/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022] Open
|
43
|
Sun X, Veldhuizen MG, Babbs AE, Sinha R, Small DM. Perceptual and Brain Response to Odors Is Associated with Body Mass Index and Postprandial Total Ghrelin Reactivity to a Meal. Chem Senses 2016; 41:233-48. [PMID: 26826114 DOI: 10.1093/chemse/bjv081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2015] [Indexed: 12/11/2022] Open
Abstract
Animal studies have shown that olfactory sensitivity is greater when fasted than when fed. However, human research has generated inconsistent results. One possible explanation for these conflicting findings is metabolic health. Many metabolic peptides, including ghrelin, are moderated by adiposity and influence olfaction and olfactory-guided behaviors. We tested whether the effect of a meal on the perceived intensity of suprathreshold chemosensory stimuli is influenced by body mass index and/or metabolic response to a meal. We found that overweight or obese (n = 13), but not healthy weight (n = 20) subjects perceived odors, but not flavored solutions, as more intense when hungry than when sated. This effect was correlated with reduced postprandial total ghrelin suppression (n = 23) and differential brain response to odors in the cerebellum, as measured with functional magnetic resonance imaging. In contrast, it was unrelated to circulating leptin, glucose, insulin, triglycerides, or free fatty acids; or to odor pleasantness or sniffing (n = 24). These findings demonstrate that the effect of a meal on suprathreshold odor intensity perception is associated with metabolic measures such as body weight and total ghrelin reactivity, supporting endocrine influences on olfactory perception.
Collapse
Affiliation(s)
- Xue Sun
- Yale Interdepartmental Neuroscience Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA, The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA,
| | - Maria G Veldhuizen
- The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA, Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA and
| | - Amanda E Babbs
- The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA
| | - Rajita Sinha
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA and
| | - Dana M Small
- Yale Interdepartmental Neuroscience Program, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA, The John B. Pierce Laboratory, 290 Congress Avenue, New Haven, CT 06519, USA, Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT 06511, USA and Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| |
Collapse
|
44
|
Cansell C, Luquet S. Triglyceride sensing in the reward circuitry: A new insight in feeding behaviour regulation. Biochimie 2016; 120:75-80. [PMID: 26159487 DOI: 10.1016/j.biochi.2015.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
|
45
|
Westwater ML, Fletcher PC, Ziauddeen H. Sugar addiction: the state of the science. Eur J Nutr 2016; 55:55-69. [PMID: 27372453 PMCID: PMC5174153 DOI: 10.1007/s00394-016-1229-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/20/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE As obesity rates continue to climb, the notion that overconsumption reflects an underlying 'food addiction' (FA) has become increasingly influential. An increasingly popular theory is that sugar acts as an addictive agent, eliciting neurobiological changes similar to those seen in drug addiction. In this paper, we review the evidence in support of sugar addiction. METHODS We reviewed the literature on food and sugar addiction and considered the evidence suggesting the addictiveness of highly processed foods, particularly those with high sugar content. We then examined the addictive potential of sugar by contrasting evidence from the animal and human neuroscience literature on drug and sugar addiction. RESULTS We find little evidence to support sugar addiction in humans, and findings from the animal literature suggest that addiction-like behaviours, such as bingeing, occur only in the context of intermittent access to sugar. These behaviours likely arise from intermittent access to sweet tasting or highly palatable foods, not the neurochemical effects of sugar. CONCLUSION Given the lack of evidence supporting it, we argue against a premature incorporation of sugar addiction into the scientific literature and public policy recommendations.
Collapse
Affiliation(s)
- Margaret L. Westwater
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, CB2 3EB UK ,Department of Psychiatry, Addenbrooke’s Hospital, University of Cambridge, Herchel Smith Building, Cambridge, CB2 0SZ UK
| | - Paul C. Fletcher
- Department of Psychiatry, Addenbrooke’s Hospital, University of Cambridge, Herchel Smith Building, Cambridge, CB2 0SZ UK ,Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK ,Cambridgeshire and Peterborough Foundation Trust, Cambridge, CB21 5EF UK
| | - Hisham Ziauddeen
- Department of Psychiatry, Addenbrooke’s Hospital, University of Cambridge, Herchel Smith Building, Cambridge, CB2 0SZ UK ,Wellcome Trust MRC Institute of Metabolic Science, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ UK ,Cambridgeshire and Peterborough Foundation Trust, Cambridge, CB21 5EF UK ,Box 189, Herchel Smith Building, West Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB21 5DS UK
| |
Collapse
|
46
|
Ibarra-Reynoso LDR, Pisarchyk L, Pérez-Luque EL, Garay-Sevilla ME, Malacara JM. Dietary restriction in obese children and its relation with eating behavior, fibroblast growth factor 21 and leptin: a prospective clinical intervention study. Nutr Metab (Lond) 2015; 12:31. [PMID: 26379757 PMCID: PMC4570615 DOI: 10.1186/s12986-015-0027-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/31/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is significant problem involving eating behavior and peripheral metabolic conditions. The effect of carbohydrate and fat restriction on appetite regulation, fibroblast growth factor 21 (FGF21) and leptin in children has not been defined. Our objective was to compare the effect of both diets. METHODS One hundred and twenty children with body mass index (BMI) higher than the equivalent of 30 kg/m(2) for an adult, as corrected for gender and age were randomly assigned to (n = 60) a low-carbohydrate (L-CHO) diet or (n = 60) a low-fat (L-F) diet for 2 months. Fifty-three (88.3 %) subjects on the low-carbohydrate-diet and 45 (75 %) on the low-fat diet completed the study. Anthropometric measures, leptin and FGF21 levels were measured before and after the intervention. Comparison of the data for both of the diet groups was carried out using the t-test for independent variables. Intragroup comparisons before and after of each of the dietary treatments were performed using ANOVA for repeated measures. Factors associated with FGF21, leptin levels and satiety, were analyzed by multiple regression. RESULTS After both of the diets, weight, leptin, food responsiveness, and enjoyment of food significantly decreased and high density lipoprotein cholesterol (HDL) increased, but FGF21 decreased. Before and after both of the interventions FGF21 was associated with triglycerides. Before the diet, satiety was associated with lower screen time (p < 0.04) and insulin levels (p < 0.05). CONCLUSIONS Both dietary restrictions improved the metabolic and hormonal parameters of obese children. FGF21 is an indicator of a beneficial metabolic response in younger children. After 2 months an adaptation of the eating behavior to food restriction was observed.
Collapse
Affiliation(s)
| | - Liudmila Pisarchyk
- Department of Medical Sciences, University of Guanajuato, Campus León. 20 de Enero 929. Col Obregón, León Gto, México 37320
| | - Elva Leticia Pérez-Luque
- Department of Medical Sciences, University of Guanajuato, Campus León. 20 de Enero 929. Col Obregón, León Gto, México 37320
| | - Ma Eugenia Garay-Sevilla
- Department of Medical Sciences, University of Guanajuato, Campus León. 20 de Enero 929. Col Obregón, León Gto, México 37320
| | - Juan Manuel Malacara
- Department of Medical Sciences, University of Guanajuato, Campus León. 20 de Enero 929. Col Obregón, León Gto, México 37320
| |
Collapse
|
47
|
Rolls ET. Functions of the anterior insula in taste, autonomic, and related functions. Brain Cogn 2015; 110:4-19. [PMID: 26277487 DOI: 10.1016/j.bandc.2015.07.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
Abstract
The anterior insula contains the primary taste cortex, in which neurons in primates respond to different combinations providing a distributed representation of different prototypical tastes, oral texture including fat texture, and oral temperature. These taste neurons do not represent food reward value, in that feeding to satiety does not reduce their responses to zero, in contrast to the next stage of processing, the orbitofrontal cortex, where food reward value is represented. Corresponding results are found with fMRI in humans. A more ventral part of the anterior insula is implicated using fMRI in autonomic-visceral functions. 'Salient' stimuli, including rewarding, punishing, non-rewarding, and novel stimuli may activate this viscero-autonomic system, via inputs received from regions that represent these stimuli such as the orbitofrontal and anterior cingulate cortex. More posteriorly in the insula, there is an oral somatosensory region, and posterior to this somatosensory regions that respond to touch to the body. These taste and somatosensory representations in the insula provide representations that are about the external world (touch), are intermediate (oral taste and texture), and are about internal signals related to visceral and autonomic function. This functionality needs to be taken into account when considering activations of the insula found in cognitive tasks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
| |
Collapse
|
48
|
Basolateral amygdala response to food cues in the absence of hunger is associated with weight gain susceptibility. J Neurosci 2015; 35:7964-76. [PMID: 25995480 DOI: 10.1523/jneurosci.3884-14.2015] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In rodents, food-predictive cues elicit eating in the absence of hunger (Weingarten, 1983). This behavior is disrupted by the disconnection of amygdala pathways to the lateral hypothalamus (Petrovich et al., 2002). Whether this circuit contributes to long-term weight gain is unknown. Using fMRI in 32 healthy individuals, we demonstrate here that the amygdala response to the taste of a milkshake when sated but not hungry positively predicts weight change. This effect is independent of sex, initial BMI, and total circulating ghrelin levels, but it is only present in individuals who do not carry a copy of the A1 allele of the Taq1A polymorphism. In contrast, A1 allele carriers, who have decreased D2 receptor density (Blum et al., 1996), show a positive association between caudate response and weight change. Regardless of genotype, however, dynamic causal modeling supports unidirectional gustatory input from basolateral amygdala (BLA) to hypothalamus in sated subjects. This finding suggests that, as in rodents, external cues gain access to the homeostatic control circuits of the human hypothalamus via the amygdala. In contrast, during hunger, gustatory inputs enter the hypothalamus and drive bidirectional connectivity with the amygdala. These findings implicate the BLA-hypothalamic circuit in long-term weight change related to nonhomeostatic eating and provide compelling evidence that distinct brain mechanisms confer susceptibility to weight gain depending upon individual differences in dopamine signaling.
Collapse
|
49
|
Neri Calixto M, Ayllón Alvarez D, Vieyra Reyes P, Hernández-González M, Jiménez-Garcés C, Flores Ocampo P. Influencia de grelina y leptina sobre alteraciones psiquiátricas en sujetos con obesidad. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.mei.2015.02.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Rolls ET. Taste, olfactory, and food reward value processing in the brain. Prog Neurobiol 2015; 127-128:64-90. [DOI: 10.1016/j.pneurobio.2015.03.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 03/03/2015] [Accepted: 03/15/2015] [Indexed: 01/10/2023]
|