1
|
Marchon RG, Gregório BM, Pereira-Sampaio MA, Costa WS, Sampaio FJ, De Souza DB. Effects of chronic stress on bladder morphology of rats and impact of comfort food diet as an ameliorating agent. Stress 2023; 26:2265160. [PMID: 37796089 DOI: 10.1080/10253890.2023.2265160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/23/2023] [Indexed: 10/06/2023] Open
Abstract
OBJECTIVES To investigate the effects of chronic stress on bladder morphology and the impact of food preference (standard or comfort foods) on the bladder of stressed rats. METHODS In total, 32 Wistar male rats (3 months old) were divided into four groups: control (C), stressed (S), control + comfort food (C + CF), and stressed + comfort food (S + CF). Groups C and C + CF were maintained under normal conditions, while groups S and S + CF were subjected to chronic stress by the restraint method. Groups C and S received standard rat chow, while groups C + CF and S + CF received comfort food (Froot Loops®) and standard chow. The stress stimuli were induced daily for 2 h over 8 weeks. After 8 weeks, all animals were killed, and the bladders were removed and used for histomorphometric analysis. RESULTS Body mass was similar among the groups. Stress did not promote differences regarding food intake, but animals receiving comfort food showed higher calories intake (in kcal/Kg) than animals receiving only standard chow. The C + CF and S + CF groups preferred comfort food over the standard chow; this preference was higher in the S + CF than in the C + CF group. The surface density of smooth muscle was reduced in stressed animals, while connective tissue and elastic system fiber content were increased in stressed groups. Further, epithelial height was increased in rats submitted to chronic stress. The surface density of elastic system fibers was decreased by the consumption of comfort food. CONCLUSIONS Chronic stress induces morphological modifications on the bladder wall and epithelium. These modifications may be related to lower urinary tract symptoms. Additionally, chronic stress caused a higher preference for comfort food intake which did not ameliorate or aggravate the stress-induced bladder alterations.
Collapse
Affiliation(s)
- Roger G Marchon
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bianca M Gregório
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marco A Pereira-Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Department of Morphology, Federal Fluminense University, Niterói, RJ, Brazil
| | - Waldemar S Costa
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Francisco J Sampaio
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diogo B De Souza
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Luo C, Liu J, Yang J, Xie X, Yu W, Chen H. Minimizing the variables of voiding spot assay for comparison between laboratories. PeerJ 2023; 11:e15420. [PMID: 37250709 PMCID: PMC10215753 DOI: 10.7717/peerj.15420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
The voiding spot assay (VSA) is increasingly being adopted as a standard method for assessing mouse urinary function. However, VSA outcomes are highly sensitive to housing environment and procedural parameters. Many variables exist among laboratories, including analytical software, type of daily housing cage, transportation, and the time of the day. Some of these variables, such as the time of VSA and analytical software, have been shown to result in inconsistency and incomparability of data. In this study, we evaluated whether the results of VSA can be compared across laboratories by minimizing these variables. We found that analytical tools between Fiji and MATLAB are in good agreement in the quantification of VSA parameters, especially primary voiding spot (PVS) parameters. Unexpectedly, we found that mice housed in different daily home cages did not alter voiding patterns in a standard VSA cage. Nonetheless, we still recommend acclimation when performing VSA in unfamiliar cages. Notably, mice are highly sensitive to transportation and the time in the morning versus afternoon, which can induce significant changes in voiding patterns. Therefore, a standardized period among laboratories and allowing 2-3 days of rest for mice acclimation after transportation are necessary for VSA. Finally, we performed VSA using identical procedural parameters in two laboratories from two geographical locations to compare the results of VSA and concluded that it is possible to generate limited comparable VSA data, such as PVS volume.
Collapse
Affiliation(s)
- Chuang Luo
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Weiqun Yu
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
West EG, McDermott C, Chess-Williams R, Sellers DJ. Partial recovery of voiding function in female mice following repeated psychological stress exposure. PLoS One 2022; 17:e0266458. [PMID: 35446874 PMCID: PMC9022836 DOI: 10.1371/journal.pone.0266458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
Psychological stress causes bladder dysfunction in humans and in rodent models, with increased urinary frequency and altered contractile responses evident following repeated environmental stress exposure. However, whether these changes persist after removal of the stressor is unknown, and the aim of this study was to determine if stress-induced changes in voiding behaviour and bladder function recover following removal of the stressor. Adult female mice were allocated to three groups: Unstressed, Stressed or Stressed + Recovery. Animals in the stressed groups were exposed to water avoidance stress for 1h/day for 10-days, with unstressed animals age-matched and housed under normal conditions. For recovery studies, animals were housed without stress exposure for an additional 10-days. Voiding behaviour was assessed periodically and animals sacrificed on day 10 (Unstressed and Stressed) or day 20 (Unstressed and Stressed + Recovery). Isolated whole bladder studies were used to assess compliance, urothelial mediator release and contractile responses. Exposure to stress increased plasma corticosterone levels almost three-fold (P<0.05) but this returned to baseline during the recovery period. Contractile responses of the bladder to carbachol and KCl were also increased following stress, and again fully recovered after a 10-day stress-free period. In contrast, stress increased urinary frequency four-fold (P<0.001), but this did not return fully to baseline during the recovery period. Bladder compliance was unchanged by stress; however, it was increased in the stressed + recovery group (P<0.05). Thus, following a stress-free period there is partial recovery of voiding behaviour, with an increase in bladder compliance possibly contributing to the compensatory mechanisms.
Collapse
Affiliation(s)
- Eliza G. West
- Faculty of Health Sciences and Medicine, Centre for Urology Research, Bond University, Gold Coast, Australia
| | - Catherine McDermott
- Faculty of Health Sciences and Medicine, Centre for Urology Research, Bond University, Gold Coast, Australia
| | - Russ Chess-Williams
- Faculty of Health Sciences and Medicine, Centre for Urology Research, Bond University, Gold Coast, Australia
| | - Donna J. Sellers
- Faculty of Health Sciences and Medicine, Centre for Urology Research, Bond University, Gold Coast, Australia
- * E-mail:
| |
Collapse
|
4
|
Gao Y, Rodríguez LV. The Effect of Chronic Psychological Stress on Lower Urinary Tract Function: An Animal Model Perspective. Front Physiol 2022; 13:818993. [PMID: 35388285 PMCID: PMC8978557 DOI: 10.3389/fphys.2022.818993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic psychological stress can affect urinary function and exacerbate lower urinary tract (LUT) dysfunction (LUTD), particularly in patients with overactive bladder (OAB) or interstitial cystitis–bladder pain syndrome (IC/BPS). An increasing amount of evidence has highlighted the close relationship between chronic stress and LUTD, while the exact mechanisms underlying it remain unknown. The application of stress-related animal models has provided powerful tools to explore the effect of chronic stress on LUT function. We systematically reviewed recent findings and identified stress-related animal models. Among them, the most widely used was water avoidance stress (WAS), followed by social stress, early life stress (ELS), repeated variable stress (RVS), chronic variable stress (CVS), intermittent restraint stress (IRS), and others. Different types of chronic stress condition the induction of relatively distinguished changes at multiple levels of the micturition pathway. The voiding phenotypes, underlying mechanisms, and possible treatments of stress-induced LUTD were discussed together. The advantages and disadvantages of each stress-related animal model were also summarized to determine the better choice. Through the present review, we hope to expand the current knowledge of the pathophysiological basis of stress-induced LUTD and inspire robust therapies with better outcomes.
Collapse
Affiliation(s)
- Yunliang Gao
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Larissa V. Rodríguez
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Larissa V. Rodríguez,
| |
Collapse
|
5
|
Mills KA, West EG, Sellers DJ, Chess-Williams R, McDermott C. Psychological stress induced bladder overactivity in female mice is associated with enhanced afferent nerve activity. Sci Rep 2021; 11:17508. [PMID: 34471159 PMCID: PMC8410840 DOI: 10.1038/s41598-021-97053-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/18/2021] [Indexed: 01/13/2023] Open
Abstract
Psychological stress has been linked to the development and exacerbation of overactive bladder symptoms, as well as afferent sensitisation in other organ systems. Therefore, we aimed to investigate the effects of water avoidance stress on bladder afferent nerve activity in response to bladder filling and pharmaceutical stimulation with carbachol and ATP in mice. Adult female C57BL/6J mice were exposed to either water avoidance stress (WAS) for 1 h/day for 10 days or normal housing conditions. Voiding behaviour was measured before starting and 24-h after final stress exposure and then animals were euthanised to measure afferent nerve activity in association with bladder compliance, spontaneous phasic activity, contractile responses, as well as release of urothelial mediators. WAS caused increased urinary frequency without affecting urine production. The afferent nerve activity at low bladder pressures (4-7 mmHg), relevant to normal physiological filling, was significantly increased after stress. Both low and high threshold nerves demonstrated enhanced activity at physiological bladder pressures. Urothelial ATP and acetylcholine release and bladder compliance were unaffected by stress as was the detrusor response to ATP (1 mM) and carbachol (1 µM). WAS caused enhanced activity of individual afferent nerve fibres in response bladder distension. The enhanced activity was seen in both low and high threshold nerves suggesting that stressed animals may experience enhanced bladder filling sensations at lower bladder volumes as well as increased pain sensations, both potentially contributing to the increased urinary frequency seen after stress.
Collapse
Affiliation(s)
- Kylie A Mills
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Eliza G West
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, 4229, Australia.
| |
Collapse
|
6
|
Van Batavia JP, Butler S, Lewis E, Fesi J, Canning DA, Vicini S, Valentino RJ, Zderic SA. Corticotropin-Releasing Hormone from the Pontine Micturition Center Plays an Inhibitory Role in Micturition. J Neurosci 2021; 41:7314-7325. [PMID: 34193553 PMCID: PMC8387110 DOI: 10.1523/jneurosci.0684-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Lower urinary tract or voiding disorders are prevalent across all ages and affect >40% of adults over 40 years old, leading to decreased quality of life and high health care costs. The pontine micturition center (PMC; i.e., Barrington's nucleus) contains a large population of neurons that localize the stress-related neuropeptide, corticotropin-releasing hormone (CRH) and project to neurons in the spinal cord to regulate micturition. How the PMC and CRH-expressing neurons in the PMC control volitional micturition is of critical importance for human voiding disorders. To investigate the specific role of CRH in the PMC, neurons in the PMC-expressing CRH were optogenetically activated during in vivo cystometry in unanesthetized mice of either sex. Optogenetic activation of CRH-PMC neurons led to increased intermicturition interval and voided volume, similar to the altered voiding phenotype produced by social stress. Female mice showed a significantly more pronounced phenotype change compared with male mice. These effects were eliminated by CRH-receptor 1 antagonist pretreatment. Optogenetic inhibition of CRH-PMC neurons led to an altered voiding phenotype characterized by more frequent voids and smaller voided volumes. Last, in a cyclophosphamide cystitis model of bladder overactivity, optogenetic activation of CRH-PMC neurons returned the voiding pattern to normal. Collectively, our findings demonstrate that CRH from PMC spinal-projecting neurons has an inhibitory function on micturition and is a potential therapeutic target for human disease states, such as voiding postponement, urinary retention, and underactive or overactive bladder.SIGNIFICANCE STATEMENT The pontine micturition center (PMC), which is a major regulator of volitional micturition, is neurochemically heterogeneous, and excitatory neurotransmission derived from PMC neurons is thought to mediate the micturition reflex. In the present study, using optogenetic manipulation of CRH-containing neurons in double-transgenic mice, we demonstrate that CRH, which is prominent in PMC-spinal projections, has an inhibitory function on volitional micturition. Moreover, engaging this inhibitory function of CRH can ameliorate bladder hyperexcitability induced by cyclophosphamide in a model of cystitis. The data underscore CRH as a novel target for the treatment of voiding dysfunctions, which are highly prevalent disease processes in children and adults.
Collapse
Affiliation(s)
- Jason P Van Batavia
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stephan Butler
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Eleanor Lewis
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Joanna Fesi
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Douglas A Canning
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown, University Medical Center, Washington, DC 20007
| | - Rita J Valentino
- Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stephen A Zderic
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
7
|
Shimizu T, Shimizu S, Higashi Y, Saito M. Psychological/mental stress-induced effects on urinary function: Possible brain molecules related to psychological/mental stress-induced effects on urinary function. Int J Urol 2021; 28:1093-1104. [PMID: 34387005 DOI: 10.1111/iju.14663] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022]
Abstract
Exposure to psychological/mental stress can affect urinary function, and lead to and exacerbate lower urinary tract dysfunctions. There is increasing evidence showing stress-induced changes not only at phenomenological levels in micturition, but also at multiple levels, lower urinary tract tissues, and peripheral and central nervous systems. The brain plays crucial roles in the regulation of the body's responses to stress; however, it is still unclear how the brain integrates stress-related information to induce changes at these multiple levels, thereby affecting urinary function and lower urinary tract dysfunctions. In this review, we introduce recent urological studies investigating the effects of stress exposure on urinary function and lower urinary tract dysfunctions, and our recent studies exploring "pro-micturition" and "anti-micturition" brain molecules related to stress responses. Based on evidence from these studies, we discuss the future directions of central neurourological research investigating how stress exposure-induced changes at peripheral and central levels affect urinary function and lower urinary tract dysfunctions. Brain molecules that we explored might be entry points into dissecting the stress-mediated process for modulating micturition.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Shogo Shimizu
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Youichirou Higashi
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Motoaki Saito
- Department of Pharmacology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
8
|
Prolonged chronic social defeat stress promotes less resilience and higher uniformity in depression-like behaviors in adult male mice. Biochem Biophys Res Commun 2021; 553:107-113. [PMID: 33765554 DOI: 10.1016/j.bbrc.2021.03.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022]
Abstract
Chronic social defeat stress (CSDS) is widely applied to study of depression in rodents. 10-day CSDS was a most commonly employed paradigm but with high resilience ratio (∼30%), producing potential variation in depression-like behavioral symptoms. Whether prolonged period (21 days) of CSDS would promote less resilience and reduce behavioral variability remains unknown. We applied 10-day and 21-day CSDS paradigms to induce mouse model of depression and compared their resilience ratio and behavioral phenotypes. Mice under 21-day CSDS had significantly lower resilience ratio and greater changes in behavioral indicators relative to mice under 10-day CSDS. Behavioral indicators from 21-day CSDS paradigm had higher correlations and better prediction for susceptibility which indicating higher uniformity in behavioral phenotypes. Furthermore, a subset of behavioral indicators in 21-day CSDS had high prediction efficacy and should be first applied to screen susceptibility of CSDS. Thus, our study demonstrates that 21-day CSDS is a more robust paradigm inducing reliable depression-like behaviors relative to 10-day CSDS, and should be preferentially used in rodent studies of depression.
Collapse
|
9
|
Lemos C, Salti A, Amaral IM, Fontebasso V, Singewald N, Dechant G, Hofer A, El Rawas R. Social interaction reward in rats has anti-stress effects. Addict Biol 2021; 26:e12878. [PMID: 31984611 PMCID: PMC7757251 DOI: 10.1111/adb.12878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
Abstract
Social interaction in an alternative context can be beneficial against drugs of abuse. Stress is known to be a risk factor that can exacerbate the effects of addictive drugs. In this study, we investigated whether the positive effects of social interaction are mediated through a decrease in stress levels. For that purpose, rats were trained to express cocaine or social interaction conditioned place preference (CPP). Behavioural, hormonal, and molecular stress markers were evaluated. We found that social CPP decreased the percentage of incorrect transitions of grooming and corticosterone to the level of naïve untreated rats. In addition, corticotropin-releasing factor (CRF) was increased in the bed nucleus of stria terminalis after cocaine CPP. In order to study the modulation of social CPP by the CRF system, rats received intracerebroventricular CRF or alpha-helical CRF, a nonselective antagonist of CRF receptors. The subsequent effects on CPP to cocaine or social interaction were observed. CRF injections increased cocaine CPP, whereas alpha-helical CRF injections decreased cocaine CPP. However, alpha-helical CRF injections potentiated social CPP. When social interaction was made available in an alternative context, CRF-induced increase of cocaine preference was reversed completely to the level of rats receiving cocaine paired with alpha-helical CRF. This reversal of cocaine preference was also paralleled by a reversal in CRF-induced increase of p38 MAPK expression in the nucleus accumbens shell. These findings suggest that social interaction could contribute as a valuable component in treatment of substance use disorders by reducing stress levels.
Collapse
Affiliation(s)
- Cristina Lemos
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| | - Ahmad Salti
- Institute of Molecular Biology University of Innsbruck Innsbruck Austria
| | - Inês M. Amaral
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| | - Veronica Fontebasso
- Department of Pharmacology and Toxicology University of Innsbruck Innsbruck Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology University of Innsbruck Innsbruck Austria
| | - Georg Dechant
- Institute for Neuroscience Medical University Innsbruck Innsbruck Austria
| | - Alex Hofer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| | - Rana El Rawas
- Department of Psychiatry, Psychotherapy and Psychosomatics, Division of Psychiatry I Medical University Innsbruck Innsbruck Austria
| |
Collapse
|
10
|
Andersson KE, Birder L, Chermansky C, Chess-Williams R, Fry C. Are there relevant animal models to set research priorities in LUTD? ICI-RS 2019. Neurourol Urodyn 2020; 39 Suppl 3:S9-S15. [PMID: 32662562 DOI: 10.1002/nau.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/02/2019] [Indexed: 11/11/2022]
Abstract
AIM To discuss animal models of lower urinary tract disorders (LUTD) and their translational impact. METHODS Report of discussions based on presented literature-search based reviews relevant for the purpose. RESULTS Animal models can be used to investigate fundamental biological mechanisms, but also as tools to elucidate aspects of the pathogenesis of disease and to provide early evidence of any safety risk. Several different models may be required to obtain information that can have a translational impact. The term "translational research" covers not only the process of directly transferring knowledge from basic sciences to human trials to produce new drugs, devices, and treatment options for patients (T1 type translation) but also the implementation of early clinical research findings (phases I-III) into practice to improve care for patients (T2 type). Direct transfer of animal data to T2 is rarely possible, and the process often does not continue after the first trials in humans (phase I). It should be emphasized that many preclinical observations do not have (and do not need to have) immediate translational impact. CONCLUSIONS No single animal model can mimic the complexity of the human disease. Still, animal models can be useful for gaining information on LUT function in humans, for elucidating pathophysiological mechanisms, and for the definition of targets for future drugs to treat LUT disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Lori Birder
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher Chermansky
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Christopher Fry
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
West EG, Sellers DJ, Chess-Williams R, McDermott C. Voiding Behavior and Efferent Bladder Function Altered in Mice Following Social Defeat but Not Witness Trauma. Front Physiol 2020; 11:247. [PMID: 32265738 PMCID: PMC7098992 DOI: 10.3389/fphys.2020.00247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Psychological stress is associated with bladder dysfunction, however, the local bladder mechanisms affected are not well understood. This study aimed to determine how psychological stress, caused by social defeat or witness trauma, affects voiding behavior and bladder function. Pairs of male C57Bl/6J mice were placed in a custom-made plexiglass chamber with an aggressor ARC(S) mouse for 1 h/day for 10 days. The social defeat mouse was in physical contact with the aggressor, while the witness was physically separated but could observe interactions between its cage-mate and the aggressor. Age matched control pairs were used for comparison. Voiding analysis was conducted periodically over the 10 days. An ex vivo whole bladder preparation was used to assess functional changes after the period of stress. Plasma corticosterone levels were significantly increased by both social defeat and witness trauma stress when compared to unstressed controls. Voiding analysis revealed a significant decrease in voiding frequency in the social defeat group compared to control animals, indicating an altered voiding phenotype. Witness trauma did not alter voiding behavior. Bladder contractile responses to cholinergic stimulation were not significantly altered in either stress group, nor was relaxation to the beta-adrenoceptor agonist isoprenaline. However, nerve evoked contractile responses were significantly increased at all frequencies in bladders from social defeat but not witness trauma mice. Purinergic contractile responses were also significantly enhanced in this group. Social defeat also resulted in increased urothelial acetylcholine release during bladder distension, with no change in ATP release. In conclusion, functional bladder changes are dependent upon stressor type. Enhanced urothelial acetylcholine may desensitize bladder sensory nerves, which, coupled with more efficient voiding contractions due to enhanced nerve-mediated and purinergic detrusor responses, may account for the altered voiding phenotype observed. This study reports a male model of social defeat stress with reduced urinary frequency, with no voiding changes observed in the witness.
Collapse
Affiliation(s)
- Eliza G West
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Donna J Sellers
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Russ Chess-Williams
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| | - Catherine McDermott
- Centre for Urology Research, Faculty of Health Sciences and Medicine, Bond University, Robina, QLD, Australia
| |
Collapse
|
12
|
Hill WG, Zeidel ML, Bjorling DE, Vezina CM. Void spot assay: recommendations on the use of a simple micturition assay for mice. Am J Physiol Renal Physiol 2018; 315:F1422-F1429. [PMID: 30156116 DOI: 10.1152/ajprenal.00350.2018] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Investigators have for decades used mouse voiding patterns as end points for studying behavioral biology. It is only recently that mouse voiding patterns were adopted for study of lower urinary tract physiology. The spontaneous void spot assay (VSA), a popular micturition assessment tool, involves placing a mouse in an enclosure lined by filter paper and quantifying the resulting urine spot pattern. The VSA has advantages of being inexpensive and noninvasive, but some investigators challenge its ability to distinguish lower urinary tract function from behavioral voiding. A consensus group of investigators who regularly use the VSA was established by the National Institutes of Health in 2015 to address the strengths and weaknesses of the assay, determine whether it can be standardized across laboratories, and determine whether it can be used as a surrogate for evaluating urinary function. Here we leverage experience from the consensus group to review the history of the VSA and its uses, summarize experiments to optimize assay design for urinary physiology assessment, and make best practice recommendations for performing the assay and analyzing its results.
Collapse
Affiliation(s)
- Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Mark L Zeidel
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Dale E Bjorling
- Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin.,University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts
| | - Chad M Vezina
- University of Wisconsin-Madison/University of Massachusetts-Boston, George M. O'Brien Center for Benign Urologic Research, Madison, Wisconsin and Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
13
|
Wegner KA, Abler LL, Oakes SR, Mehta GS, Ritter KE, Hill WG, Zwaans BM, Lamb LE, Wang Z, Bjorling DE, Ricke WA, Macoska J, Marker PC, Southard-Smith EM, Eliceiri KW, Vezina CM. Void spot assay procedural optimization and software for rapid and objective quantification of rodent voiding function, including overlapping urine spots. Am J Physiol Renal Physiol 2018; 315:F1067-F1080. [PMID: 29972322 DOI: 10.1152/ajprenal.00245.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse urinary behavior is quantifiable and is used to pinpoint mechanisms of voiding dysfunction and evaluate potential human therapies. Approaches to evaluate mouse urinary function vary widely among laboratories, however, complicating cross-study comparisons. Here, we describe development and multi-institutional validation of a new tool for objective, consistent, and rapid analysis of mouse void spot assay (VSA) data. Void Whizzard is a freely available software plugin for FIJI (a distribution of ImageJ) that facilitates VSA image batch processing and data extraction. We describe its features, demonstrate them by evaluating how specific VSA method parameters influence voiding behavior, and establish Void Whizzard as an expedited method for VSA analysis. This study includes control and obese diabetic mice as models of urinary dysfunction to increase rigor and ensure relevance across distinct voiding patterns. In particular, we show that Void Whizzard is an effective tool for quantifying nonconcentric overlapping void spots, which commonly confound analyses. We also show that mouse genetics are consistently more influential than assay design parameters when it comes to VSA outcomes. None of the following procedural modifications to reduce overlapping spots masked these genetic-related differences: reduction of VSA testing duration, water access during the assay period, placement of a wire mesh cage bottom on top of or elevated over the filter paper, treatment of mesh with a hydrophobic spray, and size of wire mesh opening. The Void Whizzard software and rigorous validation of VSA methodological parameters described here advance the goal of standardizing mouse urinary phenotyping for comprehensive urinary phenome analyses.
Collapse
Affiliation(s)
- Kyle A Wegner
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Molecular and Environmental Toxicology Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Lisa L Abler
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Steven R Oakes
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Guneet S Mehta
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - K Elaine Ritter
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Warren G Hill
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts
| | - Bernadette M Zwaans
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - Laura E Lamb
- Department of Urology, Beaumont Health System, Royal Oak, Michigan.,Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Zunyi Wang
- Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan
| | - Dale E Bjorling
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Surgical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - William A Ricke
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Urology, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jill Macoska
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Biology, University of Massachusetts Boston , Boston, Massachusetts
| | - Paul C Marker
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Division of Pharmaceutical Sciences, University of Wisconsin-Madison , Madison, Wisconsin
| | - E Michelle Southard-Smith
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University , Nashville, Tennessee
| | - Kevin W Eliceiri
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison , Madison, Wisconsin
| | - Chad M Vezina
- George M. O'Brien Center for Benign Urologic Research, University of Wisconsin-Madison, Wisconsin, and University of Massachusetts Boston, Massachusetts.,Department of Comparative Biosciences, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
14
|
DeVallance E, Riggs D, Jackson B, Parkulo T, Zaslau S, Chantler PD, Olfert IM, Bryner RW. Effect of chronic stress on running wheel activity in mice. PLoS One 2017; 12:e0184829. [PMID: 28926614 PMCID: PMC5604985 DOI: 10.1371/journal.pone.0184829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022] Open
Abstract
Acute and chronic stress have been reported to have differing effects on physical activity in rodents, but no study has examined a chronic stress protocol that incorporates stressors often experienced by rodents throughout a day. To examine this, the effects of the Unpredictable Chronic Mild Stress (UCMS) protocol on voluntary running wheel activity at multiple time points, and/or in response to acute removal of chronic stress was determined. Twenty male Balb/c mice were given access and accustomed to running wheels for 4 weeks, after which they were randomized into 2 groups; exercise (EX, n = 10) and exercise with chronic stress using a modified UCMS protocol for 7 hours/day (8:00 a.m.-3:00p.m.), 5 days/week for 8 weeks (EXS, n = 10). All mice were given access to running wheels from approximately 3:30 p.m. to 7:30 a.m. during the weekday, however during weekends mice had full-time access to running wheels (a time period of no stress for the EXS group). Daily wheel running distance and time were recorded. The average running distance, running time, and work each weekday was significantly lower in EXS compared to EX mice, however, the largest effect was seen during week one. Voluntary wheel running deceased in all mice with increasing age; the pattern of decline appeared to be similar between groups. During the weekend (when no stress was applied), EXS maintained higher distance compared to EX, as well as higher daily distance, time, and work compared to their weekday values. These results indicate that mild chronic stress reduces total spontaneous wheel running in mice during the first week of the daily stress induction and maintains this reduced level for up to 8 consecutive weeks. However, following five days of UCMS, voluntary running wheel activity rebounds within 2–3 days.
Collapse
Affiliation(s)
- Evan DeVallance
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, West Virginia, United States of America
| | - Dale Riggs
- Department of Surgery, WVU School of Medicine, Morgantown, West Virginia, United States of America
| | - Barbara Jackson
- Department of Surgery, WVU School of Medicine, Morgantown, West Virginia, United States of America
| | - Travis Parkulo
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, West Virginia, United States of America
| | - Stanley Zaslau
- Department of Surgery, WVU School of Medicine, Morgantown, West Virginia, United States of America
| | - Paul D. Chantler
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, West Virginia, United States of America
| | - I. Mark Olfert
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, West Virginia, United States of America
| | - Randy W. Bryner
- Division of Exercise Physiology, WVU School of Medicine, Morgantown, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
15
|
|