1
|
Yu J, Zhang Y, Yao H, Zhang Z, Yang X, Zhu W, Xu J. ERβ activation improves nonylphenol-induced depression and neurotransmitter secretion disruption via the TPH2/5-HT pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116521. [PMID: 38850708 DOI: 10.1016/j.ecoenv.2024.116521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
The aim of this study is to investigate the role of estrogen receptor β (ERβ) in nonylphenol (NP) - induced depression - like behavior in rats and its impact on the regulation of the TPH2/5-HT pathway. In the in vitro experiment, rat basophilic leukaemia cells (RBL-2H3) cells were divided into the four groups: blank group, NP group (20 μM), ERβ agonist group (0.01 μM), and NP+ERβ agonist group (20 μM+0.01 μM). For the in vivo experiment, 72 adult male Sprague-Dawley rats were randomly divided into following six groups: the Control, NP (40 mg/kg) group, ERβ agonist (2 mg/kg, Diarylpropionitrile (DPN)) group, ERβ inhibitor (0.1 mg/kg, 4-(2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl) phenol (PHTPP)) group, NP+ERβ agonist (40 mg/kg NP + 2 mg/kg DPN) group, and NP+ERβ inhibitor (40 mg/kg NP + 0.1 mg/kg PHTPP) group, with 12 rats in each group. Each rat in drug group were given NP by gavage and/or received a single intraperitoneal injection of DPN 2 mg/kg or PHTPP 0.1 mg/kg. Both in vivo and in vitro, NP group showed a decrease in the expression levels of ERβ, tryptophan hydroxylase (TPH1), and tryptophan hydroxylase-2 (TPH2) genes and proteins, and reduced levels of DA, NE, and 5-hydroxytryptophan (5-HT) neurotransmitters. RBL-2H3 cells showed signs of cell shrinkage, with rounded cells, increased suspension and more loosely arranged cells. The effectiveness of the ERβ agonist stimulation exhibited an increase exceeding 60% in RBL-2H3 cells. The application of ERβ agonist resulted in an alleviation the aforementioned alterations. ERβ agonist activated the TPH2/5-HT signaling pathways. Compared to the control group, the NP content in the brain tissue of the NP group was significantly increased. The latency to eat for the rats was longer and the amount of food consumed was lower, and the rats had prolonged immobility time in the behavioral experiment of rats. The expression levels of ERβ, TPH1, TPH2, 5-HT and 5-HITT proteins were decreased in the NP group, suggesting NP-induced depression-like behaviours as well as disturbances in the secretion of serum hormones and monoamine neurotransmitters. In the NP group, the midline raphe nucleus showed an elongated nucleus with a dark purplish-blue colour, nuclear atrophy, displacement and pale cytoplasm. ERβ might ameliorate NP-induced depression-like behaviors, and secretion disorders of serum hormones and monoamine neurotransmitters via activating TPH2/5-HT signaling pathways.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yujie Zhang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Hao Yao
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Ziping Zhang
- Department of Clinical Laboratory, Zunyi Medical and Pharmaceutical College, Zunyi 563006, PR China
| | - Xiao Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Wei Zhu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
2
|
Sun Q, Li G, Zhao F, Dong M, Xie W, Liu Q, Yang W, Cui R. Role of estrogen in treatment of female depression. Aging (Albany NY) 2024; 16:3021-3042. [PMID: 38309292 PMCID: PMC10911346 DOI: 10.18632/aging.205507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 02/05/2024]
Abstract
Depression is a neurological disorder that profoundly affects human physical and mental health, resulting in various changes in the central nervous system. Despite several prominent hypotheses, such as the monoaminergic theory, hypothalamic-pituitary-adrenal (HPA) axis theory, neuroinflammation, and neuroplasticity, the current understanding of depression's pathogenesis remains incomplete. Importantly, depression is a gender-dimorphic disorder, with women exhibiting higher incidence rates than men. Given estrogen's pivotal role in the menstrual cycle, it is reasonable to postulate that its fluctuating levels could contribute to the pathogenesis of depression. Estrogen acts by binding to a diversity of receptors, which are widely distributed in the central nervous system. An abundance of research has established that estrogen and its receptors play a crucial role in depression, spanning pathogenesis and treatment. In this comprehensive review, we provide an in-depth analysis of the fundamental role of estrogen and its receptors in depression, with a focus on neuroinflammation, neuroendocrinology, and neuroplasticity. Furthermore, we discuss potential mechanisms underlying the therapeutic effects of estrogen in the treatment of depression, which may pave the way for new antidepressant drug development and alternative treatment options.
Collapse
Affiliation(s)
- Qihan Sun
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Guangquan Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Mengmeng Dong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Wei Yang
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
3
|
Ning B, Wang Z, He J, Wu Q, Deng Q, Yang Q, Gao J, Fu W, Deng Y, Wu B, Huang X, Mei J, Jiang F, Fu W. The rapid antidepressant effect of acupuncture on two animal models of depression by inhibiting M1-Ach receptors regulates synaptic plasticity in the prefrontal cortex. Brain Res 2024; 1822:148609. [PMID: 37783259 DOI: 10.1016/j.brainres.2023.148609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND It is unclear whether acupuncture has a rapid antidepressant effect and what is the main mechanism. METHODS In this study, forced swimming stress test (FST) in mice were divided into five groups: control group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Chronic unpredictable mild stress (CUMS) model rats were divided into six groups: naïve (non-CUMS) group, CUMS group, acupuncture group, scopolamine group, arecoline group, and acupuncture + arecoline group. Twenty-four hours after the end of treatment, FST was conducted in mice and rats. The expression of M1-AchR, AMPA receptors (GluR1 and GluR2), BDNF, mTOR, p-mTOR, synapsin I, and PSD95 in the prefrontal cortex was determined by western blot. The spine density of neurons in the prefrontal cortex was detected by golgi staining. RESULTS The results showed that acupuncture reduced the immobility time of FST in two depression models. Acupuncture inhibited the expression of M1-AchR and promoted the expression of GluR1, GluR2, BDNF, p-mTOR, synapsin I, PSD95, and increased the density of neuron dendritic spine in the prefrontal cortex. CONCLUSIONS The rapid antidepressant effect of acupuncture may be activating the "glutamate tide" - AMPA receptor activation - BDNF release - mTORC1 pathway activation through inhibiting the expression of M1-AchR in the prefrontal cortex, thereby increasing the expression of synaptic proteins and regulating synaptic plasticity.
Collapse
Affiliation(s)
- Baile Ning
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifang Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangshan He
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyue Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wen Fu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingxin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xichang Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jilin Mei
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fan Jiang
- The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Wenbin Fu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Guo H, Guo J, Gao Z, Luo F, Zhang E. The role of amygdala-ventral pallidum pathway in depression-like behaviors in male mice. J Neurosci Res 2024; 102:e25258. [PMID: 37814992 DOI: 10.1002/jnr.25258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/22/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023]
Abstract
The basolateral amygdala (BLA) appears to serve an important function in the pathophysiology of depression. Depressive symptoms, such as anhedonia are largely caused by dysfunction in the brain's reward system, in which the ventral pallidum (VP) participates in by controlling dopamine release. However, the role of the BLA-VP pathway in the development of depression remains poorly understood. To investigate this pathway, we employed the Chronic Unpredictable Mild Stress (CUMS) mouse model, in which we injected retroAAV expressing GFP-Cre into the VP and AAV expressing hM4Di-mCherry into the BLA. We then used CNO to activate the Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) for all behavioral tests. The CUMS procedure resulted in significant depression symptoms such as decreased sucrose preference, limited weight gain, decreased immobile latency, and increased immobile time in the forced swim and tail suspension tests. Inhibition of the BLA-VP glutamatergic projections reversed these depression-like behaviors. We found that suppressing the BLA-VP circuitry had beneficial effects on CUMS-induced depression-like behaviors such as anorexia, anhedonia, and despair. Specifically, upon suppression of glutamatergic projections in the BLA-VP circuitry, these depression-like behaviors were significantly alleviated, which highlights the vital role of this circuitry in the development of depression. Furthermore, the beneficial effects of suppressing this circuitry seem to be associated with the brain's reward system, warranting further investigation.
Collapse
Affiliation(s)
- Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jintao Guo
- School of Automation and information Engineering, Xi'an University of Technology, Xi'an, China
| | - Zihang Gao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Fei Luo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Enming Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
5
|
Jia W, Tang Q, Zou Y, Yang Y, Wu W, Xu W. Investigating the antidepressant effect of Ziyan green tea on chronic unpredictable mild stress mice through fecal metabolomics. Front Microbiol 2023; 14:1256142. [PMID: 37692389 PMCID: PMC10483239 DOI: 10.3389/fmicb.2023.1256142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Some studies have shown the effectiveness of tea in reducing depression. Gut flora dysfunction is strongly associated with depression. The mechanism by which Ziyan green tea ameliorates depression is not clear. Methods In this study, we examined the impact of Ziyan green tea on mice exhibiting symptoms similar to depression. We specifically focused on the role of intestinal flora and its metabolites. We first established a chronic unpredictable mild stress (CUMS) mouse model to induce depressive symptoms and conducted behavioural tests, biochemical tests, and pathological tissue analysis. We also investigated gut microbiota changes by 16S rRNA sequencing and measured faecal metabolites in mice using UHPLC-MS/MS. Results The results showed that Ziyan green tea intervention improved depression-like behaviour, neurobiochemical factors, and reduced levels of pro-inflammatory factors in CUMS mice. Spearman's correlation analysis showed that different microbial communities (Corynebacterium, Faecalibaculum, Enterorhabdus, Desulfovibrio) correlation with differential metabolites (Cholic acid, Deoxycholic acid, etc.) and depression-related biochemical indicators (5-HT, DA, BDNF, IL-6, and TNF-α). Discussion In conclusion, our findings suggest that both low and high-dose interventions of Ziyan green tea have positive preventive effects on CUMS mice without dose dependence, partly because they mainly affect intestinal Purine Metabolism, Bile Acid Biosynthesis and Cysteine Metabolism in CUMS mice, thus stimulating brain 5-HT, DA and BDNF, and decreasing the inflammatory factors IL-6, TNF-α, activate the composition of intestinal flora, improve the intestinal flora environment and thus promote the production of intestinal metabolites, which can be used for depression treatment. It is suggested that Ziyan green tea may achieve an antidepressant effect through the gut-microbiota-brain axis.
Collapse
Affiliation(s)
- Wenbao Jia
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Qian Tang
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yao Zou
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yang Yang
- Sichuan Yizhichun Tea Industry Co., Ltd., Muchuan, Sichuan, China
| | - Wenliang Wu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan, China
| | - Wei Xu
- College of Horticulture, Tea Refining and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Gao S, Zhang L, Wang X, Li R, Han L, Xiong X, Jiang Q, Cheng D, Xiao X, Li H, Yang J. A terrified-sound stress causes cognitive impairment in female mice by impairing neuronal plasticity. Brain Res 2023; 1812:148419. [PMID: 37217110 DOI: 10.1016/j.brainres.2023.148419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
Stress is an important environmental factor affecting mental health that cannot be ignored. Moreover, due to the great physiological differences between males and females, the effects of stress may vary by sex. Previous studies have shown that terrified-sound stress, meaning exposed mice to the recorded vocalizations in response to the electric shock by their kind to induce psychological stress, can cause cognitive impairment in male. In the study, we investigated the effects of the terrified-sound stress on adult female mice. METHODS 32 adults female C57BL/6 mice were randomly divided into control (n = 16) and stress group (n = 16). Sucrose preference test (SPT)was carried out to evaluate the depressive-like behavior. Using Open field test (OFT) to evaluate locomotor and exploratory alterations in mice. Spatial learning and memory ability were measured in Morris Water maze test (MWM), Golgi staining and western blotting showed dendritic remodeling after stress. In addition, serum hormone quantifications were performed by ELISA. RESULTS we found the sucrose preference of stress group was significantly decreased (p < 0.05) compared with control group; the escape latency of the stress group was significantly prolonged (p < 0.05), the total swimming distance and the number of target crossings(p < 0.05) were significantly increased (p < 0.05) in MWM; Endocrine hormone, Testosterone (T) (p < 0.05), GnRH (p < 0.05), FSH and LH levels was decreased; Golgi staining and western blotting showed a significant decrease in dendritic arborization, spine density and synaptic plasticity related proteins PSD95 and BDNF in the stress group. CONCLUSION Terrified-sound stress induced depressive-like behaviors, locomotor and exploratory alterations. And impaired cognitive by altering dendritic remodeling and the expression of synaptic plasticity-related proteins. However, females are resilient to terrified-sound stress from a hormonal point of view.
Collapse
Affiliation(s)
- Shanfeng Gao
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xia Wang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Rufeng Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Lin Han
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xiaofan Xiong
- Department of Tumor and Immunology in Precision Medicine Institute, Western China Science and Technology Innovation Port, Xi'an 710004, PR China
| | - Qingchen Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Daxin Cheng
- Department of Neonatology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China
| | - Xuan Xiao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Huajing Li
- Department of Otolaryngology and Head Neck, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an 710061, PR China.
| |
Collapse
|
7
|
Corbett CM, Miller EN, Loweth JA. mGlu5 inhibition in the basolateral amygdala prevents estrous cycle-dependent changes in cue-induced cocaine seeking. ADDICTION NEUROSCIENCE 2023; 5:100055. [PMID: 36778664 PMCID: PMC9915145 DOI: 10.1016/j.addicn.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Drug associated cues are a common relapse trigger for individuals recovering from cocaine use disorder. Sex and ovarian hormones influence patterns of cocaine use and relapse vulnerability, with studies indicating that females show increased cue-induced craving and relapse vulnerability compared to males. In a rodent model of cocaine craving and relapse vulnerability, cue-induced cocaine seeking behavior following weeks of withdrawal from extended-access cocaine self-administration is higher in females in the estrus stage of the reproductive (estrous) cycle (Estrus Females) compared to both Males and females in all other stages (Non-Estrus Females). However, the neuronal substrates and cellular mechanisms underlying these sex differences is not fully understood. One region that contributes to both sex differences in behavioral responding and cue-induced cocaine seeking is the basolateral amygdala (BLA), while one receptor known to play a critical role in mediating cocaine seeking behavior is metabotropic glutamate receptor 5 (mGlu5). Here we assessed the effects of BLA mGlu5 inhibition following prolonged withdrawal from cocaine self-administration on observed estrous cycle-dependent changes in cue-induced cocaine seeking behavior. We found that BLA microinjections of the mGlu5 antagonist MTEP selectively reduced the enhanced cue-induced cocaine seeking normally observed in Estrus Females while having no effect on cocaine seeking in Males and Non-Estrus Females. These findings identify a unique interaction between cocaine-exposure, estrous cycle fluctuations and BLA mGlu5-dependent transmission on cue-induced cocaine seeking behavior.
Collapse
Affiliation(s)
- Claire M. Corbett
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States,Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Emily N.D. Miller
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Jessica A. Loweth
- Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States,Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States,Corresponding author at: Department of Cell Biology and Neuroscience, Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, United States. (J.A. Loweth)
| |
Collapse
|
8
|
Wang B, Shi H, Ren L, Miao Z, Wan B, Yang H, Fan X, Gustafsson JA, Sun M, Xu X. Ahi1 regulates serotonin production by the GR/ERβ/TPH2 pathway involving sexual differences in depressive behaviors. Cell Commun Signal 2022; 20:74. [PMID: 35643536 PMCID: PMC9148486 DOI: 10.1186/s12964-022-00894-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Depression is one of the most common psychiatric diseases. The monoamine transmitter theory suggests that neurotransmitters are involved in the mechanism of depression; however, the regulation on serotonin production is still unclear. We previously showed that Ahi1 knockout (KO) mice exhibited depression-like behavior accompanied by a significant decrease in brain serotonin. METHODS In the present study, western blot, gene knockdown, immunofluorescence, dual-luciferase reporter assay, and rescue assay were used to detect changes in the Ahi1/GR/ERβ/TPH2 pathway in the brains of male stressed mice and male Ahi1 KO mice to explain the pathogenesis of depression-like behaviors. In addition, E2 levels in the blood and brain of male and female mice were measured to investigate the effect on the ERβ/TPH2 pathway and to reveal the mechanisms for the phenomenon of gender differences in depression-like behaviors. RESULTS We found that the serotonin-producing pathway-the ERβ/TPH2 pathway was inhibited in male stressed mice and male Ahi1 KO mice. We further demonstrated that glucocorticoid receptor (GR) as a transcription factor bound to the promoter of ERβ that contains glucocorticoid response elements and inhibited the transcription of ERβ. Our recent study had indicated that Ahi1 regulates the nuclear translocation of GR upon stress, thus proposing the Ahi1/GR/ERβ/TPH2 pathway for serotonin production. Interestingly, female Ahi1 KO mice did not exhibit depressive behaviors, indicating sexual differences in depressive behaviors compared with male mice. Furthermore, we found that serum 17β-estradiol (E2) level was not changed in male and female mice; however, brain E2 level significantly decreased in male but not female Ahi1 KO mice. Further, ERβ agonist LY-500307 increased TPH2 expression and 5-HT production. Therefore, both Ahi1 and E2 regulate the ERβ/TPH2 pathway and involve sexual differences in brain serotonin production and depressive behaviors. CONCLUSIONS In conclusion, although it is unclear how Ahi1 controls E2 secretion in the brain, our findings demonstrate that Ahi1 regulates serotonin production by the GR/ERβ/TPH2 pathway in the brain and possibly involves the regulation on sex differences in depressive behaviors. Video Abstract.
Collapse
Affiliation(s)
- Bin Wang
- Department of Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Haixia Shi
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Liyan Ren
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hao Yang
- Department of Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jan-Ake Gustafsson
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Miao Sun
- Department of Fetology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China.
| | - Xingshun Xu
- Institute of Neuroscience, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China.
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
9
|
Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling. Int J Mol Sci 2021; 22:ijms222413381. [PMID: 34948177 PMCID: PMC8704497 DOI: 10.3390/ijms222413381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Induction of BDNF-TrkB signaling is associated with the action mechanisms of conventional and fast-acting antidepressants. GSB-106, developed as a small dimeric dipeptide mimetic of BDNF, was previously shown to produce antidepressant-like effects in the mouse Porsolt test, tail suspension test, Nomura water wheel test, in the chronic social defeat stress model and in the inflammation-induced model of depression. In the present study, we evaluated the effect of chronic per os administration of GSB-106 to Balb/c mice under unpredictable chronic mild stress (UCMS). It was observed for the first time that long term GSB-106 treatment (1 mg/kg, 26 days) during ongoing UCMS procedure ameliorated the depressive-like behaviors in mice as indicated by the Porsolt test. In addition, chronic per os administration of GSB-106 resulted in an increase in BDNF levels, which were found to be decreased in the prefrontal cortex and hippocampus of mice after UCMS. Furthermore, prolonged GSB-106 treatment was accompanied by an increase in the content of pTrkB706/707 in the prefrontal cortex and by a pronounced increase in the level of pTrkB816 in both studied brain structures of mice subjected to UCMS procedure. In summary, the present data show that chronic GSB-106 treatment produces an antidepressant-like effect in the unpredictable chronic mild stress model, which is likely to be associated with the regulation of the BDNF-TrkB signaling.
Collapse
|
10
|
He FQ, Fan MY, Hui YN, Lai RJ, Chen X, Yang MJ, Cheng XX, Wang ZJ, Yu B, Yan BJ, Tian Z. Effects of treadmill exercise on anxiety-like behavior in association with changes in estrogen receptors ERα, ERβ and oxytocin of C57BL/6J female mice. IBRO Neurosci Rep 2021; 11:164-174. [PMID: 34746914 PMCID: PMC8551837 DOI: 10.1016/j.ibneur.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 10/04/2021] [Indexed: 11/28/2022] Open
Abstract
Exercise can reduce the incidence of stress-related mental diseases, such as depression and anxiety. Control group was neither exposed to CVMS nor TRE (noCVMS/noTRE). Females were tested and levels of serum17-beta-oestradiol (E2), estrogen receptors α immunoreactive neurons (ERα-IRs), estrogen receptors β immunoreactive neurons (ERβ-IRs) and oxytocin immunoreactive neurons (OT-IRs) were measured. The results showed there's increased anxiety-like behaviors for mice from CVMS/noTRE, CVMS/higher speed TRE (CVMS/HTRE) and noCVMS/HTRE groups when they were put in open field and elevated maze tests. They had lower serum E2 levels than mice from CVMS/low-moderate speed TRE (CVMS/LMTRE), noCVMS/LMTRE and noCVMS/noTRE groups. The three groups of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice had more ERα-IRs and less ERβ-IRs in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA), hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). The number of OT-IRs in PVN and SON of CVMS/noTRE, CVMS/HTRE and noCVMS/HTRE mice was also lower than that of mice from CVMS/LMTRE, noCVMS/LMTRE and noCVMS/noTRE groups. Interestingly, CVMS/LMTRE and noCVMS/LMTRE mice were similar to noCVMS/noTRE mice in that they did not show anxiety, while CVMS/HTRE and noCVMS/HTRE mice did not, which were similar to the mice in CVMS/noTRE. We propose that LMTRE instead of HTRE changes the serum concentration of E2. ERβ/ERα ratio and OT level in the brain may be responsible for the decrease in anxiety-like behavior in female mice exposed to anxiety-inducing stress conditions.
Collapse
Key Words
- BNST, bed nucleus of the stria terminalis
- CVMS, chronic variable moderate stress
- Chronic variable moderate stress (CVMS)
- E2, 17-beta-oestradiol
- ELISA, enzyme-linked immunosorbent assay
- EPM, elevated plusmazetest
- ERα-IRs, estrogen receptors αimmunoreactive neurons
- ERβ-IRs, estrogen receptor β immunoreactive neurons
- Estrogen receptor α (ERα)
- Estrogen receptor β (ERβ)
- HPA, hypothalamic–pituitary–adrenal
- HRP, horseradishperoxidase
- HTRE, higher speed TRE
- LMTRE, low-moderate speed TRE
- MeA, medial amygdaloid nucleus
- OF, open field test
- OT-IRs, Oxytocin immunoreactive neurons
- Oxytocin (OT)
- PBS, phosphatebufferedsolution
- PVN, paraventricular nucleus
- SON, supraoptic nucleus
- TRE, treadmill exercise
- Treadmill exercise (TRE)
- mPOA, medial preopticarea
Collapse
Affiliation(s)
- Feng-Qin He
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Mei-Yang Fan
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Yu-Nan Hui
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Rui-Juan Lai
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xin Chen
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Ming-Juan Yang
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Xiao-Xia Cheng
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Zi-Jian Wang
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Bin Yu
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Bing-Jie Yan
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| | - Zhen Tian
- Key Laboratory of Natural Product Development and Anticancer Innovative Drug Research in Qinling, Xi'an 710065, China.,Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an 710065, China
| |
Collapse
|
11
|
Chronic Inhibition of FAAH Reduces Depressive-Like Behavior and Improves Dentate Gyrus Proliferation after Chronic Unpredictable Stress Exposure. Behav Neurol 2021; 2021:6651492. [PMID: 33833828 PMCID: PMC8016565 DOI: 10.1155/2021/6651492] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 02/08/2023] Open
Abstract
Symptoms of depressive disorders such as anhedonia and despair can be a product of an aberrant adaptation to stress conditions. Chronic unpredictable stress model (CUS) can generate an increase in the activity of the hypothalamic-pituitary-adrenal axis (HPA) and induce a reduction of neurotrophin signaling and the proliferation of neural progenitors in the adult dentate gyrus, together with increased oxidative stress. Levels of the endocannabinoid anandamide (AEA) seem to affect these depression-by-stress-related features and could be modulated by fatty acid amide hydrolase (FAAH). We aimed to evaluate the effects of FAAH inhibitor, URB597, on depressive-like behavior and neural proliferation of mice subjected to a model of CUS. URB597 was administered intraperitoneally at a dose of 0.2 mg/kg for 14 days after CUS. Depressive-like behaviors, anhedonia, and despair were evaluated in the splash and forced swimming tests, respectively. Alterations at the HPA axis level were analyzed using the relative weight of adrenal glands and serum corticosterone levels. Oxidative stress and brain-derived neurotrophic factor (BDNF) were also evaluated. Fluorescence immunohistochemistry tests were performed for the immunoreactivity of BrdU and Sox2 colabeling for comparison of neural precursors. The administration of URB597 was able to reverse the depressive-like behavior generated in mice after the model. Likewise, other physiological responses associated with CUS were reduced in the treated group, among them, increase in the relative weight of the adrenal glands, increased oxidative stress, and decreased BDNF and number of neural precursors. Most of these auspicious responses to enzyme inhibitor administration were blocked by employing a cannabinoid receptor antagonist. In conclusion, the chronic inhibition of FAAH generated an antidepressant effect, promoting neural progenitor proliferation and BDNF expression, while reducing adrenal gland weight and oxidative stress in mice under the CUS model.
Collapse
|
12
|
Alò R, Fazzari G, Zizza M, Avolio E, Di Vito A, Bruno R, Cuda G, Barni T, Canonaco M, Facciolo RM. Daidzein Pro-cognitive Effects Coincided with Changes of Brain Neurotensin1 Receptor and Interleukin-10 Expression Levels in Obese Hamsters. Neurotox Res 2021; 39:645-657. [PMID: 33428179 DOI: 10.1007/s12640-020-00328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
At present, concerns are pointing to "tasteful" high-fat diets as a cause of conditioning physical-social states that through alterations of some key emotional- and nutritional-related limbic circuits such as hypothalamic and amygdalar areas lead to obesity states. Feeding and energetic homeostatic molecular mechanisms are part of a complex neuronal circuit accounting for this metabolic disorder. In an attempt to exclude conventional drugs for treating obesity, daidzein, a natural glycosidic isoflavone, which mimics estrogenic neuroprotective properties against increased body weight, is beginning to be preferred. In this study, evident anxiolytic-like behaviors were detected following treatment of high-fat diet hamsters with daidzein as shown by extremely evident (p < 0.001) exploration tendencies in novel object recognition test and a notably greater amount of time spent (p < 0.01) in open arms of elevated plus maze. Moreover, the isoflavone promoted a protective role against neurodegeneration processes as shown by few, if any, amino cupric silver granules in amygdalar, hypothalamic and hippocampal neuronal fields when compared with obese hamsters. Interestingly, elevated expression levels of the anorexic neuropeptide receptor neurotensin1 in the above limbic areas of obese hamsters were extremely reduced by daidzein, especially during recovery of cognitive events. Contextually, such effects were strongly paralleled by increased levels of the anti-neuroinflammatory cytokine, interleukin-10. Our results corroborate a neuroprotective ability of this natural glycosidic isoflavone, which through its interaction with the receptor neurotensin1 and interleukin-10 pathways is correlated not only to improved feeding states, and subsequently obesity conditions, but above all to cognitive performances.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Gilda Fazzari
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Merylin Zizza
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Ennio Avolio
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| | - Anna Di Vito
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Rosalinda Bruno
- Department of Pharmacy and Science of Health and Nutrition, Polyfunctional Building, University of Calabria, Arcavacata Di Rende, 87036, Cosenza, Italy
| | - Giovanni Cuda
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Tullio Barni
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Græcia", Viale Europa, 88100, Catanzaro, Italy
| | - Marcello Canonaco
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy.
| | - Rosa Maria Facciolo
- Comparative Neuroanatomy Laboratory of Biology, Ecology and Earth Science Department (DiBEST), University of Calabria, Arcavacata Di Rende, Ponte P. Bucci 4B, 87036, Cosenza, Italy
| |
Collapse
|
13
|
Zhu Q, Yang Y, Lao Z, Zhong Y, Zhang K, Zhao S. Acute and chronic toxicity of deltamethrin, permethrin, and dihaloacetylated heterocyclic pyrethroids in mice. PEST MANAGEMENT SCIENCE 2020; 76:4210-4221. [PMID: 32596996 DOI: 10.1002/ps.5978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/12/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pyrethroids, a class of insecticides, that act on the nervous system of insects. Frequent consumption of foods with pyrethroid residues increase the risk of developmental and neurological diseases in humans. Assessing the toxicity of novel synthetic pyrethroids to mammals is also critical to the development of agrochemicals. RESULTS Using mice as models, the acute and chronic toxicity of deltamethrin, permethrin, dihaloacetylated pyrethroids to mammals was researched by gavage administration. Acute toxicity assessment displayed that the median lethal dose (LD50 ) of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 tested were greater than 500 mg/kg of weight. Furthermore, chronic toxicity assessment demonstrated that deltamethrin, permethrin caused epidermal damage near the genitals, while dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 showed no relevant symptoms. However, both the acute and chronic toxicity assessment suggested that pyrethroids exposure induced mice loss weight. Additionally, the elevated plus maze (EPM) test showed that pyrethroids caused anxiety-like behaviors and no motor defects in Kunming mice. Beside, during the sucrose preference test (SPT), 60-day pyrethroids exposure increased excitatory behaviors in mice. However, the neurochemical studies displayed that pyrethroids exposure increased the total amount of glutamate (Gln), glutamine (Glu) and γ-aminobutyric acid (GABA) in the mice's blood. CONCLUSION Pyrethroids exposure induced weight loss in mice, although the acute oral toxicity of deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 was low. However, regarding chronic toxicity, deltamethrin, permethrin and dihaloacetylated heterocyclic pyrethroids DCA-O, DCA-01, and DCA-11 induced anxiety-like behaviors, excitatory behaviors, Gln-Glu-GABA circulatory dysfunction in blood. Particularly, deltamethrin, though permethrin also had reproductive toxicity. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiuyan Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yang Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Zhiting Lao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Yingying Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
- Faculty of Biotechnology and Health, Wuyi University, Jiangmen, P. R. China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, P. R. China
| |
Collapse
|
14
|
Wetzel EA, Hanson AM, Troutfetter CL, Burkett DJ, Sem DS, Donaldson WA. Synthesis and evaluation of 17α-triazolyl and 9α-cyano derivatives of estradiol. Bioorg Med Chem 2020; 28:115670. [PMID: 32912438 PMCID: PMC10725730 DOI: 10.1016/j.bmc.2020.115670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/14/2020] [Accepted: 07/22/2020] [Indexed: 10/23/2022]
Abstract
A variety of 17α-triazolyl and 9α-cyano derivatives of estradiol were prepared and evaluated for binding to human ERβ in both a TR-FRET assay, as well as ERβ and ERα agonism in cell-based functional assays. 9α-Cyanoestradiol (5) was nearly equipotent as estradiol as an agonist for both ERβ and ERα. The potency of the 17α-triazolylestradiol analogs is considerably more variable and depends on the nature of the 4-substituent of the triazole ring. While rigid protein docking simulations exhibited significant steric clashing, induced fit docking providing more protein flexibility revealed that the triazole linker of analogs 2d and 2e extends outside of the traditional ligand binding domain with the benzene ring located in the loop connecting helix 11 to helix 12.
Collapse
Affiliation(s)
- Edward A Wetzel
- Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, United States
| | - Alicia M Hanson
- School of Pharmacy, Center for Structure-based Drug Design and Development, Concordia University Wisconsin, Mequon, WI 53097, United States
| | - Callie L Troutfetter
- School of Pharmacy, Center for Structure-based Drug Design and Development, Concordia University Wisconsin, Mequon, WI 53097, United States
| | - Daniel J Burkett
- Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, United States
| | - Daniel S Sem
- School of Pharmacy, Center for Structure-based Drug Design and Development, Concordia University Wisconsin, Mequon, WI 53097, United States
| | - William A Donaldson
- Department of Chemistry, Marquette University, P. O. Box 1881, Milwaukee, WI 53201-1881, United States.
| |
Collapse
|
15
|
Becoming Stressed: Does the Age Matter? Reviewing the Neurobiological and Socio-Affective Effects of Stress throughout the Lifespan. Int J Mol Sci 2020; 21:ijms21165819. [PMID: 32823723 PMCID: PMC7460954 DOI: 10.3390/ijms21165819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
Social and affective relations occur at every stage of our lives. Impairments in the quality of this “social world” can be exceptionally detrimental and lead to psychopathology or pathological behavior, including schizophrenia, autism spectrum disorder, affective disorders, social phobia or violence, among other things. Exposure to highly stressful or traumatic events, depending on the stage of life in which stress exposure occurs, could severely affect limbic structures, including the amygdala, and lead to alterations in social and affective behaviors. This review summarizes recent findings from stress research and provides an overview of its age-dependent effects on the structure and function of the amygdala, which includes molecular and cellular changes, and how they can trigger deviant social and affective behaviors. It is important to highlight that discoveries in this field may represent a breakthrough both for medical science and for society, as they may help in the development of new therapeutic approaches and prevention strategies in neuropsychiatric disorders and pathological behaviors.
Collapse
|
16
|
Zhang WY, Guo YJ, Wang KY, Chen LM, Jiang P. Neuroprotective effects of vitamin D and 17ß-estradiol against ovariectomy-induced neuroinflammation and depressive-like state: Role of the AMPK/NF-κB pathway. Int Immunopharmacol 2020; 86:106734. [PMID: 32604067 DOI: 10.1016/j.intimp.2020.106734] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 12/24/2022]
Abstract
Estrogen replacement therapy (ERT) has been proven to relieve menopausal-related mental disorders including depression in postmenopausal women. However, the unsafety of ERT hinders its clinical use. In this study, we would evaluate whether vitamin D (VD), a hormone with optimal safety profile, could relieve the depressive-like symptom in ovariectomized (OVX) rats. Furthermore, we would determine whether vitamin D and 17β-estradiol (E2) exert neurological function through their immunomodulatory effect in OVX rats. Middle-aged female SD rats were randomly divided into four groups, namely, control (SHAM), OVX, OVX + VD, and OVX + E2. Vitamin D (calcitriol, 100 ng/kg) and 17β-estradiol (30 μg/kg) had been daily gavaged in the OVX + VD and OVX + E2 group, respectively. After 10-week administration, vitamin D and 17β-estradiol both showed anti-depressive-like activity in the OVX rats. Using the method of immunofluorescent staining and western blot, vitamin D and 17β-estradiol were demonstrated to upregulate each other's receptors, including VDR, ERα, and ERβ in the hippocampus of OVX rats. Additionally, the upregulation of VDR, calbindin-D28k, and calbindin-D9k suggested that the vitamin D signaling system was amplified by vitamin D and 17β-estradiol. Vitamin D and 17β-estradiol showed neuroprotective effects by decreasing OVX-induced apoptosis and neuronal damage, regulating the AMPK/NF-κB signaling pathway, and reducing the proinflammatory cytokines (IL-1β, IL-6, and TNFα), as well as iNOS and COX-2 in the hippocampus of OVX rats. Collectively, the present study demonstrated that vitamin D and 17β-estradiol could upregulate each other's receptors and regulate the AMPK/NF-κB pathway to relieve the OVX-induced depressive-like state. The results could stimulate translational research towards the vitamin D potential for prevention or treatment of menopause-related depression.
Collapse
Affiliation(s)
- Wen-Yuan Zhang
- Department of Pharmacy, Zhongshan Affiliated Hospital of Zhongshan University, Zhongshan, China
| | - Yu-Jin Guo
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ke-Yi Wang
- Department of MRI, Zhongshan Affiliated Hospital of Zhongshan University, Zhongshan, China
| | - Lin-Mu Chen
- Department of Pharmacy, Zhongshan Affiliated Hospital of Zhongshan University, Zhongshan, China
| | - Pei Jiang
- Institute of Clinical Pharmacy and Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China.
| |
Collapse
|
17
|
Yang R, Zhang MQ, Xue Y, Yang R, Tang MM. Dietary of n-3 polyunsaturated fatty acids influence neurotransmitter systems of rats exposed to unpredictable chronic mild stress. Behav Brain Res 2019; 376:112172. [DOI: 10.1016/j.bbr.2019.112172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
|
18
|
Chen YP, Wang C, Xu JP. Chronic unpredictable mild stress induced depression-like behaviours and glutamate-glutamine cycling dysfunctions in both blood and brain of mice. PHARMACEUTICAL BIOLOGY 2019; 57:280-286. [PMID: 30990732 PMCID: PMC6484485 DOI: 10.1080/13880209.2019.1598445] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/17/2019] [Accepted: 03/18/2019] [Indexed: 05/24/2023]
Abstract
CONTEXT Currently, there is no cure or early preclinical diagnostic assay available for depression. Recently, depression has been observed in association with metabolic abnormalities of the glutamate (Glu)-glutamine (Gln) cycling, which is regulated by Glu, Gln and γ-aminobutyric acid (GABA) amino acids. OBJECTIVE The purpose of this study is to determine the changes of Glu, Gln and GABA in blood and brain of chronic unpredictable mild stress (CUMS) induced mice and to clarify the depression biomarkers in the Glu-Gln cycling. MATERIALS AND METHODS Male Kunming mice were divided into model group and control group randomly (n = 12). The depression model of mice was established by CUMS stimulation for 56 days. The liquid chromatography-fluorescence method was used for simultaneous determination of Glu, Gln and GABA in the plasma and brain of mice. o-Phthalaldehyde and β-mercaptoethanol were used as pre-column derivatization reagents. Neurotransmitters were analysed on high performance liquid chromatography (HPLC) on an HPH C18 column in combination with a fluorescence detector. RESULTS The method was simple, highly sensitive and showed excellent linearity with regression coefficients higher than 0.999, good accuracy (95-108%) and good inter-day precision (RSD <15%) for all analytes. Limit of quantification (LOQ) values were established as 0.01, 0.01 and 0.005 μg/mL for Glu, Gln and GABA. The GABA in the CUMS mouse brain (p < 0.01) was significantly increased and Gln in plasma (p < 0.01) and brain (p < 0.01) were both decreased. CONCLUSIONS Our study demonstrates that the Gln in plasma can be used as a biological marker of depression.
Collapse
Affiliation(s)
- Ya-Ping Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, PR China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Ningbo University School of Medicine, Ningbo, PR China
| | - Jiang-Ping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, PR China
| |
Collapse
|
19
|
Talarowska ME, Szemraj J, Kuan-Pin S. Expression of ESR1 and ESR2 oestrogen receptor encoding gene and personality traits - preliminary study. PRZEGLAD MENOPAUZALNY = MENOPAUSE REVIEW 2019; 18:133-140. [PMID: 31975979 PMCID: PMC6970415 DOI: 10.5114/pm.2019.90804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/03/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The main objective of the study is to examine the hypothesis claiming a correlation between personality traits measured with the use of the Minnesota Multiphasic Personality Inventory (MMPI-2) personality questionnaire and the expression of the ERα (ESR1) and ERβ (ESR2) encoding gene in patients suffering from depression. MATERIAL AND METHODS The experiment was carried out on a group of 44 individuals with depression. The Polish variant of the MMPI-2 was applied with the aim of assessing personality traits. Furthermore, the authors evaluated the expression of the genes encoding the oestrogen receptors (ERα and ERβ) at the mRNA level and protein level in the studied population. RESULTS No significant differences in the expression of ERα and ERβ encoding genes were found and confirmed in the patients with the first episode of depression and those suffering from subsequent episodes of the disease. No differences were found between women and men, either. In women a positive relationship was found between the scale of psychopathy (p = 0.04), paranoia (p = 0.01), and mania (p = 0.03) and expression for the ERα encoding gene at the mRNA level. A negative relationship was found between the mania scale and ERβ encoding gene expression at mRNA (p = 0.03) and protein (p = 0.04) levels. In males a positive relationship between anxiety as a personality trait and expression of the ERβ receptor encoding gene at mRNA level (p = 0.03) and protein level (p = 0.03) was found. CONCLUSIONS Personality traits may be linked with the expression of genes encoding oestrogen receptors (ERα and ERβ) among patients with depressive disorders.
Collapse
Affiliation(s)
- Monika E. Talarowska
- Department of Personality and Individual Differences, Institute of Psychology, University of Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Poland
| | - Su Kuan-Pin
- Department of General Psychiatry, China Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
20
|
Neonatal treatment with clomipramine modifies the expression of estrogen receptors in brain areas of male adult rats. Brain Res 2019; 1724:146443. [DOI: 10.1016/j.brainres.2019.146443] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 01/03/2023]
|
21
|
Chen B, Li J, Xie Y, Ming X, Li G, Wang J, Li M, Li X, Xiong L. Cang-ai volatile oil improves depressive-like behaviors and regulates DA and 5-HT metabolism in the brains of CUMS-induced rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 244:112088. [PMID: 31323299 DOI: 10.1016/j.jep.2019.112088] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cang-ai volatile oil (CAVO) is a traditional Chinese medicine (TCM) inhalational preparation for the treatment of some depressive and emotive disorders. AIM OF THE STUDY This research aimed to evaluate the efficiency and possible mechanism of intranasal CAVO administration on depression in chronic unpredictable mild stress (CUMS)-induced rats compared to lavender volatile oil (LVO) treatment after CUMS exposure and bilateral olfactory bulb impairment (OBI) in rats. MATERIALS AND METHODS Forty depressive-like model rats induced by CUMS were evaluated by the forced swim test (FST), open field test (OFT), and sucrose preference test (SPT). The model rats were divided into five groups: CUMS (n = 8), CAVOh + CUMS (n = 8), CAVOl + CUMS (n = 8), LVO + CUMS (n = 8), and OBI + CAVO + CUMS (n = 8). The CUMS-induced rats were treated for a period of 4 weeks. The other healthy rats were regarded as the control (CTR, n = 8) subjects. The levels of serotonin (5-HT) and dopamine (DA) and their respective metabolites homovanillic acid (HVA) and 5-hydroxyindol acetic acid (5-HIAA) were measured in brain tissue homogenates of CUMS-induced rats using enzyme-linked immunosorbent assay (ELISA). RESULTS CAVO ameliorated depressive-like behaviors (p < 0.05). The levels of DA in the CUMS group were lower than those in the CTR and CAVOh groups (**p < 0.01 and *p < 0.05). The levels of HVA were lower in the CUMS group than in the CTR, LVO, OBI + CAVOh and CAVOh groups (**p < 0.01 and *p < 0.05) and lower in the OBI + CAVOh group than in the CAVOh group (**p < 0.01). The levels of 5-HT in the CUMS group were lower than those in the CTR and CAVOh groups (**p < 0.01). The levels of 5-HIAA were lower in the CUMS and OBI + CAVOh groups than in the CTR, LVO and CAVOh groups (**p < 0.01). CONCLUSIONS CAVO can improve depressive-like behaviors concomitant with the regulation of DA and 5-HT metabolism in the brains of CUMS-induced rats.
Collapse
Affiliation(s)
- Bojun Chen
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jijun Li
- Department of Integrative Medicine on Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yuhuan Xie
- Department of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xi Ming
- Department of TCM Pediatrics, Yunnan Provincail Hospital of Traditional Chinese Medicine, Kunming, 650021, China
| | - Gang Li
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Jinjin Wang
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Meng Li
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Xiaohong Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Lei Xiong
- Department of Clinical Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
22
|
He C, Wang J, Ma M, Wang H. Sexual cues influence cocaine-induced locomotion, anxiety and the immunoreactivity of oestrogen receptor alpha and tyrosine hydroxylase in both sexes. J Neuroendocrinol 2019; 31:e12720. [PMID: 31009113 DOI: 10.1111/jne.12720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023]
Abstract
Dyadic physical social interaction influences cocaine-seeking behaviour, although whether limited sexual cues (LSC) from an opposite-sex partner influence the behavioural responses to cocaine is unclear. We investigated this issue using a cylindrical wire cage containing a stimulus mouse; the subject mouse (of the opposite sex) had access to this stimulus mouse during a "binge" injection pattern (injected with cocaine or saline vehicle twice a day at 6-hour intervals). Following the second injection, locomotion and anxiety-like behaviours were examined using the open-field and elevated plus maze test, at the same time as oestrogen receptor (ER)α and tyrosine hydroxylase (TH) immunoreactivities were also examined. The data indicate that LSC enhanced cocaine-stimulated locomotion in both sexes and inhibited the levels of anxiety caused by cocaine in males only. Accompanying these changes, the interaction between LSC and cocaine altered ERα immunoreactivity in the ventral medial nuclei of the hypothalamus (VMH) and medial amygdaloid nucleus (MeA) of males, whereas such interaction effects occurred in the VMH, MeA, arcuate nucleus (AR), bed nucleus of the stria terminalis (BNST) and lateral septum (LS) of females. LSC increased cocaine-induced ERα immunoreactivity in the VMH in males and reduced cocaine-induced ERα immunoreactivity in the AR and LS in females. LSC up-regulated cocaine-induced increases in ventral tegmental area (VTA) TH immunoreactivity in females only. Our present data suggest that interactions between LSC and cocaine led to changes in ERα and TH immunoreactivity in a brain region-specific manner, which showed subtle differences in both sexes. The effects of LSC-mediated cocaine-induced locomotion and anxiety may be associated with alterations in ERα and dopamine activation.
Collapse
Affiliation(s)
- Chen He
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Jianli Wang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Ming Ma
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| | - Heng Wang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, Ningxia, China
| |
Collapse
|
23
|
Molina-Jiménez T, Jiménez-Tlapa M, Brianza-Padilla M, Zepeda RC, Hernández-González M, Bonilla-Jaime H. The neonatal treatment with clomipramine decreases sexual motivation and increases estrogen receptors expression in the septum of male rats: Effects of the apomorphine. Pharmacol Biochem Behav 2019; 180:83-91. [DOI: 10.1016/j.pbb.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
|
24
|
Lv D, Chen Y, Shen M, Liu X, Zhang Y, Xu J, Wang C. Mechanisms underlying the rapid-acting antidepressant-like effects of neuropeptide VGF (non-acronymic) C-terminal peptide TLQP-62. Neuropharmacology 2018; 143:317-326. [DOI: 10.1016/j.neuropharm.2018.09.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 09/25/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
|
25
|
Sampathi Perera K, Hanson AM, Lindeman S, Imhoff A, Lu X, Sem DS, Donaldson WA. Synthesis and evaluation of 4-cycloheptylphenols as selective Estrogen receptor-β agonists (SERBAs). Eur J Med Chem 2018; 157:791-804. [DOI: 10.1016/j.ejmech.2018.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 12/01/2022]
|
26
|
Sun J, Wang F, Hu X, Yang C, Xu H, Yao Y, Liu J. Clostridium butyricum Attenuates Chronic Unpredictable Mild Stress-Induced Depressive-Like Behavior in Mice via the Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8415-8421. [PMID: 30040410 DOI: 10.1021/acs.jafc.8b02462] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Abnormal gut microbiome has been associated with depression. The mechanism of probiotics against depression remains unclear. This study aimed to determine whether Clostridium butyricum (Cb) could attenuate chronic unpredictable mild stress-induced depressive-like behavior and its possible mechanisms. Male C57BL/6 mice were subjected to chronic unpredictable mild stress (CUMS) and were treated with Cb. Depressive-like behavior was evaluated by a series of behavioral tests. The levels of cerebral 5-hydroxytryptamine (5-HT), brain derived neurotrophic factor (BDNF), glucagon-like peptide-1 (GLP-1) receptor and intestinal were measured. Cb treatment significantly improved CUMS-induced depressive-like behavior in mice. Meanwhile, Cb treatment exhibited prominent effects, increasing 5-HT and GLP-1 and upregulating BDNF expression. Furthermore, Cb-treated mice showed increased secretion of GLP-1 and upregulated GLP-1R expression. Taken together, our results demonstrate an antidepressive effect of Cb in CUMS mice partially attributed to stimulation of intestinal GLP-1 secretion and activation of cerebral GLP-1R.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Fangyan Wang
- Department of Emergency Medicine , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , Zhejiang 325027 , China
| | - Xuezhen Hu
- Department of Pathophysiology, School of Basic Medicine Science , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Changwei Yang
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Hailing Xu
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Ye Yao
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| | - Jiaming Liu
- Department of Preventive Medicine, School of Public Health and Management , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , China
| |
Collapse
|
27
|
Song C, Liu BP, Zhang YP, Peng Z, Wang J, Collier AD, Echevarria DJ, Savelieva KV, Lawrence RF, Rex CS, Meshalkina DA, Kalueff AV. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:384-394. [PMID: 28847526 DOI: 10.1016/j.pnpbp.2017.08.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/12/2022]
Abstract
Chronic stress is the major pathogenetic factor of human anxiety and depression. Zebrafish (Danio rerio) have become a novel popular model species for neuroscience research and CNS drug discovery. The utility of zebrafish for mimicking human affective disorders is also rapidly growing. Here, we present a new zebrafish model of clinically relevant, prolonged unpredictable strong chronic stress (PUCS). The 5-week PUCS induced overt anxiety-like and motor retardation-like behaviors in adult zebrafish, also elevating whole-body cortisol and proinflammatory cytokines - interleukins IL-1β and IL-6. PUCS also elevated whole-body levels of the anti-inflammatory cytokine IL-10 and increased the density of dendritic spines in zebrafish telencephalic neurons. Chronic treatment of fish with an antidepressant fluoxetine (0.1mg/L for 8days) normalized their behavioral and endocrine phenotypes, as well as corrected stress-elevated IL-1β and IL-6 levels, similar to clinical and rodent data. The CNS expression of the bdnf gene, the two genes of its receptors (trkB, p75), and the gfap gene of glia biomarker, the glial fibrillary acidic protein, was unaltered in all three groups. However, PUCS elevated whole-body BDNF levels and the telencephalic dendritic spine density (which were corrected by fluoxetine), thereby somewhat differing from the effects of chronic stress in rodents. Together, these findings support zebrafish as a useful in-vivo model of chronic stress, also calling for further cross-species studies of both shared/overlapping and distinct neurobiological responses to chronic stress.
Collapse
Affiliation(s)
- Cai Song
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; Graduate Institute of Neural and Cognitive Science, China Medical University and Hospital, Taichung 00001, Taiwan.
| | - Bai-Ping Liu
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Yong-Ping Zhang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Zhilan Peng
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China
| | - Adam D Collier
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - David J Echevarria
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Department of Psychology, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Katerina V Savelieva
- ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA
| | - Robert F Lawrence
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Christopher S Rex
- Afraxis, Inc. 6605 Nancy Ridge Rd. Suite 224, San Diego, CA 92121, USA
| | - Darya A Meshalkina
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia
| | - Allan V Kalueff
- Institute for Marine Drugs and Nutrition, Zhanjiang City Key Laboratory, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 3452001, Guangdong, China; ZENEREI Institute and the International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA 70458, USA; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 3960002, Russia; Ural Federal University, Ekaterinburg 620002, Russia.
| |
Collapse
|
28
|
Rizzi N, Villa A, Benedusi V, Brunialti E, Cesari N, Ciana P, Maggi A. Endocrine influence on neuroinflammation: the use of reporter systems. J Neuroendocrinol 2018. [PMID: 28650102 DOI: 10.1111/jne.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Most of the ageing-associated pathologies are coupled with a strong inflammatory component that accelerates the progress of the physiopathological functional decline related to ageing. The currently available pharmacological tools for the control of neuroinflammation present several side effects that restrict their application, particularly in chronic disorders. The discovery of the potential anti-inflammatory action exerted by endogenous oestrogens, as well as the finding that activation of oestrogen receptor α results in a significant decrease of inflammation at the cellular level and in models of inflammatory diseases, prompted us to embark in a series of studies aimed at the generation of reporter systems, allowing us to (i) understand the anti-inflammatory action of oestrogens at molecular level; (ii) evaluate the extent to which the action of this steroid hormone was relevant in models of pathologies characterised by a strong inflammatory component; and (iii) investigate the efficacy of novel, synthetic oestrogens endowed with anti-inflammatory activity. Accordingly, we conceived the NFκB-luc2 reporter mouse, a model characterised by dual reporter genes for fluorescence and bioluminescence imaging under the control of a synthetic DNA able to bind the transcription factor nuclear factor kappa B, the master regulator of the expression of most of the cytokines responsible for the initial phase of acute inflammation. Here, we summarise the philosophy that has driven our research in the past years, as well as some of the results obtained so far.
Collapse
Affiliation(s)
- N Rizzi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - A Villa
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - V Benedusi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - E Brunialti
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - N Cesari
- Centro Clinico-Veterinario e Zootecnico-Sperimentale d'Ateneo, University of Milan, Lodi, Italy
| | - P Ciana
- Department of Oncology and Hemato-Oncology, Center of Excellence on Neurodegenerative Diseases, University of Milan, Milan, Italy
| | - A Maggi
- Department of Pharmacological and Biomolecular Sciences, Center of Excellence for Neurodegenerative Diseases, University of Milan, Milan, Italy
| |
Collapse
|
29
|
Dadomo H, Gioiosa L, Cigalotti J, Ceresini G, Parmigiani S, Palanza P. What is stressful for females? Differential effects of unpredictable environmental or social stress in CD1 female mice. Horm Behav 2018; 98:22-32. [PMID: 29187314 DOI: 10.1016/j.yhbeh.2017.11.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Stressful life events are a major factor in the etiology of several diseases, such as cardiovascular, inflammatory and psychiatric disorders (i.e., depression and anxiety), with the two sexes greatly differing in vulnerability. In humans and other animals, physiological and behavioral responses to stress are strongly dependent on gender, and conditions that are stressful for males are not necessarily stressful for females. Hence the need of an animal model of social chronic stress specifically designed for females. In the present study we aimed to compare the effects of two different chronic stress procedures in female mice, by investigating the impact of 4weeks of nonsocial unpredictable, physical stress by the Chronic Mild Stress paradigm (CMS; Exp.1) or of Social Instability Stress (SIS; Exp.2) on physiological, endocrine and behavioral parameters in adult female mice. CMS had a pronounced effect on females' response to novelty (i.e., either novel environment or novel social stimulus), body weight growth and hormonal profile. Conversely, 4weeks of social instability did not alter females' response to novelty nor hormonal levels but induced anhedonia. Our findings thus showed that female mice were more sensitive to nonsocial stress due to unpredictable physical environment than to social instability stressors. Neither of these stress paradigms, however, induced a consistent behavioral and physiological stress response in female mice comparable to that induced by chronic stress procedures in male mice, thus confirming the difficulties of developing a robust and validated model of chronic psychosocial stress in female mice.
Collapse
Affiliation(s)
- Harold Dadomo
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Gioiosa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Jenny Cigalotti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Graziano Ceresini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Parmigiani
- Department of Chemistry, Life Sciences and Environmental Sustainaibility, University of Parma, Parma, Italy
| | - Paola Palanza
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
30
|
Nikolova YS, Misquitta KA, Rocco BR, Prevot TD, Knodt AR, Ellegood J, Voineskos AN, Lerch JP, Hariri AR, Sibille E, Banasr M. Shifting priorities: highly conserved behavioral and brain network adaptations to chronic stress across species. Transl Psychiatry 2018; 8:26. [PMID: 29353879 PMCID: PMC5802514 DOI: 10.1038/s41398-017-0083-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
Parallel clinical and preclinical research have begun to illuminate the biological basis of stress-related disorders, including major depression, but translational bridges informing discrete mechanistic targets for intervention are missing. To address this critical need, we used structural MRI in a mouse model and in a large human sample to examine stress effects on brain structure that may be conserved across species. Specifically, we focused on a previously unexplored approach, whole-brain structural covariance, as it reflects synchronized changes in neuroanatomy, potentially due to mutual trophic influences or shared plasticity across regions. Using the unpredictable chronic mild stress (UCMS) paradigm in mouse we first demonstrate that UCMS-induced elevated behavioral emotionality correlates with increased size of the amygdala and other corticolimbic regions. We further identify focal increases in the amygdala's 'hubness' (degree and strength) set against the background of a global stress-related loss of network clustering and modularity. These macroscopic changes are supported on the molecular level by increased postsynaptic density-95 protein in the amygdala, consistent with stress-induced plastic changes and synaptic strengthening. Finally, we provide clinical evidence that strikingly similar structural network reorganization patterns exist in young adults reporting high childhood trauma and increased mood symptoms. Collectively, we provide initial translational evidence for a conserved stress-related increase in amygdala-centered structural synchrony, as measured by enhanced structural covariance, which is paralleled by a decrease in global structural synchrony. This putative trade-off reflected in increased amygdala-centered plastic changes at the expense of global structural dedifferentiation may represent a mechanistic pathway for depression and related psychopathology.
Collapse
Affiliation(s)
- Yuliya S. Nikolova
- 0000 0000 8793 5925grid.155956.bCampbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Keith A. Misquitta
- 0000 0000 8793 5925grid.155956.bCampbell Family Mental Health Research Institute of CAMH, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Brad R. Rocco
- 0000 0000 8793 5925grid.155956.bCampbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Thomas D. Prevot
- 0000 0000 8793 5925grid.155956.bCampbell Family Mental Health Research Institute of CAMH, Toronto, Canada
| | - Annchen R. Knodt
- 0000 0004 1936 7961grid.26009.3dLaboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC USA
| | - Jacob Ellegood
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Medical Biophyssics, University of Toronto, Toronto, Canada
| | - Aristotle N. Voineskos
- 0000 0000 8793 5925grid.155956.bCampbell Family Mental Health Research Institute of CAMH, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Jason P. Lerch
- 0000 0004 0473 9646grid.42327.30Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Medical Biophyssics, University of Toronto, Toronto, Canada
| | - Ahmad R. Hariri
- 0000 0004 1936 7961grid.26009.3dLaboratory of NeuroGenetics, Department of Psychology & Neuroscience, Duke University, Durham, NC USA
| | - Etienne Sibille
- 0000 0000 8793 5925grid.155956.bCampbell Family Mental Health Research Institute of CAMH, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute of CAMH, Toronto, Canada. .,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada. .,Department of Psychiatry, University of Toronto, Toronto, Canada.
| |
Collapse
|
31
|
He F, Wang Z, Guo G. Postnatal separation prevents the development of prenatal stress-induced anxiety in association with changes in oestrogen receptor and oxytocin immunoreactivity in female mandarin vole (Microtus mandarinus) offspring. Eur J Neurosci 2017; 47:95-108. [PMID: 29205599 DOI: 10.1111/ejn.13788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 11/27/2022]
Abstract
Oestrogen has both anxiogenic and anxiolytic effects because of variation in opposing action on alpha (ERα) and beta (ERβ) estrogen receptors in the medial preoptic area (mPOA), bed nucleus of the stria terminalis (BNST) and medial amygdala (MeA). Oxytocin (OT) reverses some of the anxiogenic effects of oestrogen in the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). Because anxiety disorders are twice as common in women as in men, and oestrogen and OT are more important in females, we examined interactions between prenatal restraint stress (GS) and postnatal early short-term maternal separation (MS) and female mandarin vole behaviour, estrogen receptors and OT. The results show that adult female offspring from GS/noMS mothers showed increased anxiety in open-field and elevated plus-maze tests and had lower serum 17-beta-oestradiol (E2 ) levels than female offspring from GS/MS, noGS/MS and noGS/noMS mothers. GS/noMS females had more immunoreactive neurons for ERα in several brain regions and less ERβ- and OT-immunoreactive neurons in brain areas compared to GS/MS, noGS/MS and noGS/noMS offspring. Interestingly, noGS/MS and GS/MS offspring were similar to noGS/noMS offspring in that they did not develop anxiety as adults. We propose that MS alters the serum concentration of E2 and that the ERβ/ERα ratio and OT level in the brain may be responsible for the decrease in anxiety-like behaviour in adult female offspring initially exposed to anxiety-inducing conditions via an adverse foetal environment.
Collapse
Affiliation(s)
- Fengqin He
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, 710065, China
| | - Zijian Wang
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, 710065, China
| | - Guanlin Guo
- Genetic Engineering Laboratory, College of Biological and Environmental Engineering, Xi'an University, Xi'an, Shaanxi, 710065, China
| |
Collapse
|
32
|
Schisandrin rescues depressive-like behaviors induced by chronic unpredictable mild stress via GDNF/ERK1/2/ROS and PI3K/AKT/NOX signaling pathways in mice. Psychiatry Res 2017; 257:230-237. [PMID: 28780280 DOI: 10.1016/j.psychres.2017.07.081] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/24/2022]
Abstract
The current study aimed to prove the antidepressant-like effects and the probable mechanisms of Schisandrin on depression, which induced by chronic unpredictable mild stress (CUMS) in mice. Four weeks of CUMS exposure resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there were significant downregulations of GDNF/ERK1/2/ROS and PI3K/AKT/NOX signaling pathways in the hippocampus and prefrontal cortex in depressed mice. Treatment of mice with Schisandrin (30mg/kg) and Fluoxetine (10mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by CUMS. These results suggest that Schisandrin produces an antidepressant-like effect in CUMS-induced mice, which possibly mediated, at least in part, by rectifying the signaling pathways of GDNF/ERK1/2/ROS and PI3K/AKT/NOX.
Collapse
|
33
|
Li C, Li M, Yu H, Shen X, Wang J, Sun X, Wang Q, Wang C. Neuropeptide VGF C-Terminal Peptide TLQP-62 Alleviates Lipopolysaccharide-Induced Memory Deficits and Anxiety-like and Depression-like Behaviors in Mice: The Role of BDNF/TrkB Signaling. ACS Chem Neurosci 2017; 8:2005-2018. [PMID: 28594546 DOI: 10.1021/acschemneuro.7b00154] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Peripheral inflammatory responses affect central nervous system (CNS) function, manifesting in symptoms of memory deficits, depression, and anxiety. Previous studies have revealed that neuropeptide VGF (nonacronymic) C-terminal peptide TLQP-62 rapidly reinforces brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB) signaling, regulating memory consolidation and antidepressant-like action. However, whether it is beneficial for lipopolysaccharide (LPS)-induced neuropsychiatric dysfunction in mice is unknown. Herein, we explored the involvement of BDNF/TrkB signaling and biochemical alterations in inflammatory or oxidative stress markers in the alleviating effects of TLQP-62 on LPS-induced neuropsychiatric dysfunction. The mice were treated with TLQP-62 (2 μg/side) via intracerebroventricular (i.c.v.) injection 1 h before LPS (0.5 mg/kg, i.p.) administration. Our results showed that a single treatment with LPS (0.5 mg/kg, i.p) is sufficient to produce recognition memory deficits (in the novel object recognition test), depression-like behavior (in the forced swim test and sucrose preference test), and anxiety-like behavior (in the elevated zero maze). However, pretreatment with TLQP-62 prevented LPS-induced behavioral dysfunction, neuroinflammatory, and oxidative responses. In addition, our results further demonstrated that a reduction in BDNF expression mediated by BDNF-shRNA lentivirus significantly blocked the effects of TLQP-62, suggesting the critical role of BDNF/TrkB signaling in the neuroprotective effects of TLQP-62 in the mice. In conclusion, TLQP-62 could be a therapeutic approach for neuropsychiatric disorders, which are closely associated with neuroinflammation and oxidative stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chuang Wang
- Li
Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research
Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
34
|
Lee TJ, Kinzig KP. Reprint of "Repeated adolescent activity-based anorexia influences central estrogen signaling and adulthood anxiety-like behaviors in rats". Physiol Behav 2017; 178:179-186. [PMID: 28341321 DOI: 10.1016/j.physbeh.2017.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/28/2016] [Accepted: 12/17/2016] [Indexed: 11/18/2022]
Abstract
Anorexia nervosa (AN) typically presents in adolescence and is highly comorbid with anxiety and depression, which often persist after elimination of AN symptomology. The activity-based anorexia (ABA) paradigm allows for evaluation of behavioral and neuroendocrine consequences of AN-like behaviors, including voluntary anorexia, hyperactivity, and disruption of the hypothalamic-pituitary-gonadal (HPG) and the hypothalamic pituitary adrenal (HPA) axis. Because ABA in adolescent females results in increased anxiety-like behavior in adulthood and the estrogen signaling system has been shown to play a role in anxiety and food intake, we investigated the role of ovarian hormones in adolescent ABA-treated rats, and long-term effects of mid- and late adolescent ABA exposure on behavior and estrogen signaling. While previous research demonstrated that two bouts of ABA during adolescence resulted in decreased time in the open arm of the elevated plus maze (EPM) and increased activity of the HPA axis in response to a novel stressor, here we show that one bout of ABA in mid-or late-adolescence did not result in the same behavioral outcome. Two exposures to ABA during adolescence were necessary to produce long-term anxiety-like behavior on the EPM. Finally, removal of ovarian hormones by ovariectomy (OVX) prior to puberty did not attenuate long-term behavioral consequences of ABA in adolescence, and estrogen receptor β (ERβ) expression level in the amygdala of ABA rats was significantly lower than control subjects. Taken together, these studies identify enduring effects of ABA in adolescent females that may be mediated by ABA-induced changes to CNS ERβ signaling that increase anxiety-like behaviors.
Collapse
Affiliation(s)
- Tien-Jui Lee
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| | - Kimberly P Kinzig
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
35
|
Belujon P, Grace AA. Dopamine System Dysregulation in Major Depressive Disorders. Int J Neuropsychopharmacol 2017; 20:1036-1046. [PMID: 29106542 PMCID: PMC5716179 DOI: 10.1093/ijnp/pyx056] [Citation(s) in RCA: 482] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022] Open
Abstract
Anhedonia is considered a core feature of major depressive disorder, and the dopamine system plays a pivotal role in the hedonic deficits described in this disorder. Dopaminergic activity is complex and under the regulation of multiple brain structures, including the ventral subiculum of the hippocampus and the basolateral amygdala. Whereas basic and clinical studies demonstrate deficits of the dopaminergic system in depression, the origin of these deficits likely lies in dysregulation of its regulatory afferent circuits. This review explores the current information regarding the afferent modulation of the dopaminergic system and its relevance to major depressive disorder, as well as some of the system-level effects of novel antidepressants such as agomelatine and ketamine.
Collapse
Affiliation(s)
- Pauline Belujon
- INSERM, U1084, Poitiers, France (Dr Belujon); University of Poitiers, U1084, Poitiers, France (Dr Belujon); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Grace),Correspondence: Pauline Belujon, PhD, University of Poitiers, Laboratory of Experimental and Clinical Neurosciences, 1 rue Georges Bonnet, 86073 Poitiers, France ()
| | - Anthony A Grace
- INSERM, U1084, Poitiers, France (Dr Belujon); University of Poitiers, U1084, Poitiers, France (Dr Belujon); Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Grace)
| |
Collapse
|
36
|
Ranjbar H, Radahmadi M, Reisi P, Alaei H. Effects of electrical lesion of basolateral amygdala nucleus on rat anxiety-like behaviour under acute, sub-chronic, and chronic stresses. Clin Exp Pharmacol Physiol 2017; 44:470-479. [DOI: 10.1111/1440-1681.12727] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/24/2016] [Accepted: 12/30/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Hoda Ranjbar
- Department of Physiology; School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Maryam Radahmadi
- Department of Physiology; School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Parham Reisi
- Department of Physiology; School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| | - Hojjatallah Alaei
- Department of Physiology; School of Medicine; Isfahan University of Medical Sciences; Isfahan Iran
| |
Collapse
|
37
|
Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol Stress 2017; 6:78-93. [PMID: 28229111 PMCID: PMC5314424 DOI: 10.1016/j.ynstr.2016.08.002] [Citation(s) in RCA: 611] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/19/2016] [Accepted: 08/20/2016] [Indexed: 12/31/2022] Open
Abstract
Now 30 years old, the chronic mild stress (CMS) model of depression has been used in >1300 published studies, with a year-on-year increase rising to >200 papers in 2015. Data from a survey of users show that while a variety of names are in use (chronic mild/unpredictable/varied stress), these describe essentially the same procedure. This paper provides an update on the validity and reliability of the CMS model, and reviews recent data on the neurobiological basis of CMS effects and the mechanisms of antidepressant action: the volume of this research may be unique in providing a comprehensive account of antidepressant action within a single model. Also discussed is the use of CMS in drug discovery, with particular reference to hippocampal and extra-hippocampal targets. The high translational potential of the CMS model means that the neurobiological mechanisms described may be of particular relevance to human depression and mechanisms of clinical antidepressant action.
Collapse
|
38
|
Lee TJ, Kinzig KP. Repeated adolescent activity-based anorexia influences central estrogen signaling and adulthood anxiety-like behaviors in rats. Physiol Behav 2017; 171:199-206. [PMID: 28069464 DOI: 10.1016/j.physbeh.2016.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/28/2016] [Accepted: 12/17/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Tien-Jui Lee
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| | - Kimberly P Kinzig
- Department of Psychological Sciences, Purdue University, 703 Third Street, West Lafayette, IN 47907, United States.
| |
Collapse
|
39
|
Propofol alleviates electroconvulsive shock-induced memory impairment by modulating proBDNF/mBDNF ratio in depressive rats. Brain Res 2016; 1642:43-50. [DOI: 10.1016/j.brainres.2016.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 12/15/2022]
|
40
|
Dendritic Spines in Depression: What We Learned from Animal Models. Neural Plast 2016; 2016:8056370. [PMID: 26881133 PMCID: PMC4736982 DOI: 10.1155/2016/8056370] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023] Open
Abstract
Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.
Collapse
|