1
|
Hiura LC, Lazaro VA, Ophir AG. Paternal absence and increased caregiving independently and interactively shape the development of male prairie voles at subadult and adult life stages. Horm Behav 2024; 164:105605. [PMID: 39032207 PMCID: PMC11330720 DOI: 10.1016/j.yhbeh.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/22/2024]
Abstract
The influence of maternal caregiving is a powerful force on offspring development. The absence of a father during early life in biparental species also has profound implications for offspring development, although it is far less studied than maternal influences. Moreover, we have limited understanding of the interactive forces that maternal and paternal caregiving impart on offspring. We investigated if behaviorally upregulating maternal care compensates for paternal absence on prairie vole (Microtus ochrogaster) pup development. We used an established handling manipulation to increase levels of caregiving in father-absent and biparental families, and later measured male offspring behavioral outcomes at sub-adulthood and adulthood. Male offspring raised without fathers were more prosocial (or possibly less socially anxious) than those raised biparentally. Defensive behavior and responses to contextual novelty were also influenced by the absence of fathers, but only in adulthood. Offensive aggression and movement in the open field test changed as a function of life-stage but not parental exposure. Notably, adult pair bonding was not impacted by our manipulations. Boosting parental care produced males that moved more in the open field test. Parental handling also increased oxytocin immunoreactive cells within the supraoptic nucleus of the hypothalamus (SON), and in the paraventricular nucleus (PVN) of biparentally-reared males. We found no differences in vasopressinergic cell groups. We conclude that male prairie voles are contextually sensitive to the absence of fathers and caregiving intensity. Our study highlights the importance of considering the ways early experiences synergistically shape offspring behavioral and neural phenotypes across the lifespan.
Collapse
Affiliation(s)
- Lisa C Hiura
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Vanessa A Lazaro
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Ophir
- Department of Psychology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Bales KL. Oxytocin: A developmental journey. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100203. [PMID: 38108037 PMCID: PMC10724731 DOI: 10.1016/j.cpnec.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 12/19/2023] Open
Abstract
The neuropeptide hormone oxytocin is involved in many processes in our bodies, linking our social lives to our internal states. I started out my career studying primate families, an interest that expanded into the role of oxytocin in family-oriented behaviors such as pair bonding and parenting in prairie voles, humans, and other primates. Starting as a post-doc with Dr. C. Sue Carter, I also became interested in the role of oxytocin during development and the way that we manipulate oxytocin clinically. During that post-doc and then as a faculty member at the University of California, Davis, I have worked on a number of these questions.
Collapse
Affiliation(s)
- Karen L. Bales
- Department of Psychology, Department of Neurobiology, Physiology, and Behavior, University of California, One Shields Ave, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Carter CS. Sex, love and oxytocin: Two metaphors and a molecule. Neurosci Biobehav Rev 2022; 143:104948. [PMID: 36347382 PMCID: PMC9759207 DOI: 10.1016/j.neubiorev.2022.104948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Dozens of studies, most conducted in the last four decades, have implicated oxytocin, as well as vasopressin and their receptors, in processes that mediate selective sociality and the consequences of early experience. Oxytocin is critical for the capacity to experience emotional safety and healthy sexuality. Oxytocin also plays a central role in almost every aspect of physical and mental health, including the coordination of sociality and loving relationships with physiological reactions to challenges across the lifespan. Species, including prairie voles, that share with humans the capacity for selective social bonds have been a particularly rich source of insights into the behavioral importance of peptides. The purpose of this historical review is to describe the discovery of a central role for oxytocin in behavioral interactions associated with love, and in the capacity to use sociality to anticipate and cope with challenges across the lifespan - a process that here is called "sociostasis."
Collapse
Affiliation(s)
- C Sue Carter
- Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA; Kinsey Institute, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
4
|
Rogers FD, Freeman SM, Anderson M, Palumbo MC, Bales KL. Compositional variation in early-life parenting structures alters oxytocin and vasopressin 1a receptor development in prairie voles (Microtus ochrogaster). J Neuroendocrinol 2021; 33:e13001. [PMID: 34189787 PMCID: PMC8486352 DOI: 10.1111/jne.13001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/27/2022]
Abstract
Paternal absence can significantly alter bio-behavioural development in many biparental species. This effect has generally been demonstrated by comparing the development of offspring reared under biparental care with those reared by a single mother. However, studies employing this design conflate two significant modifications to early-life experience: removal of father-specific qualities and the general reduction of offspring-directed care. In the socially monogamous prairie vole (Microtus ochrogaster), the experience of paternal absence without substitution during development inhibits partner preference formation in adulthood, a hallmark of social monogamy, in females and males. Employing alloparents as substitutes for fathers, our previous work demonstrated that paternal absence affects pair-bond formation in female offspring via reduced quantity of care, although it affects pair-bond formation in male offspring by means of a missing paternal quality (or qualities). Here, we present evidence that paternal absence (with and without alloparental substitution) may alter the ontogeny of neural oxytocin receptor (OXTR) and/or vasopressin 1a receptor (AVPR1a) distribution in male and female prairie voles. Compared to biparentally reared controls (BPC), male offspring reared in mother only (MON) and maternal-plus-alloparental (MPA) conditions show lower densities of OXTR in the central amygdala; and MPA males show lower densities of OXTR in the caudate putamen and nucleus accumbens. Early-life experience was not associated with differences in AVPR1a density in males. However, MON and MPA females show greater densities of AVPR1a in the medial amygdala than BPC; and MPA females show greater densities of AVPR1a in the ventromedial nucleus of the hypothalamus. We also demonstrate with corticosterone concentrations that MON and MPA offspring are not differentially susceptible to a stressor (ie, social isolation) than BPC offspring. These findings suggest that paternal absence, although likely not a salient early-life stressor, has neuroendocrine consequences for offspring, some of which may affect partner preference formation.
Collapse
Affiliation(s)
- Forrest D Rogers
- Psychology Graduate Program, University of California, Davis, CA, USA
- Department of Psychology, University of California, Davis, CA, USA
| | - Sara M Freeman
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
- Department of Biology, Utah State University, Logan, UT, USA
| | - Marina Anderson
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| | - Michelle C Palumbo
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA
- California National Primate Research Center, Davis, CA, USA
| |
Collapse
|
5
|
Finton CJ, Ophir AG. Prairie vole offspring only prefer mothers over fathers when mothers are a unique resource, yet fathers are the primary source of variation in parental care. Behav Processes 2020; 171:104022. [PMID: 31866260 PMCID: PMC6980778 DOI: 10.1016/j.beproc.2019.104022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/15/2023]
Abstract
In biparental species, each parent represents a semi-independent source of variable caregiving. The nature of care may differ between parents, and the type of care offspring seek is likely to change across development. We asked if caregiving differed between prairie vole (Microtus ochrogaster) mothers and fathers, and which parent pups prefer over development. We categorized parents as high- or low-contact based on daily recordings of grooming and brooding behavior. Pups were tested for their preferences between parents on postnatal days 10, 14, 18, 22, and 26. We expected individual parents would vary in the amount of care they gave, with pups preferring the parent that gives the most care and/or that most meets their needs at each developmental timepoint. Mothers spent more time in contact with pups than fathers. Mothers were consistent in the amount of care they gave, whereas fathers were variable caregivers. Pups never preferred fathers over mothers, but only demonstrated a preference for mothers before weaning. Lastly, the amount of contact did not influence pup preferences. Our data indicate that mothers are consistent sources of caregiving relative to fathers, and pups show little evidence of attachment to a specific parent beyond meeting its own immediate needs.
Collapse
|
6
|
Bottom RT, Krubitzer LA, Huffman KJ. Early postnatal gene expression in the developing neocortex of prairie voles (Microtus ochrogaster) is related to parental rearing style. J Comp Neurol 2020; 528:3008-3022. [PMID: 31930725 DOI: 10.1002/cne.24856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/10/2022]
Abstract
The earliest and most prevalent sensory experience includes tactile, thermal, and olfactory stimulation delivered to the young via contact with the mother, and in some mammals, the father. Prairie voles (Microtus ochrogaster), like humans, are biparental and serve as a model for understanding the impact of parent/offspring interactions on the developing brain. Prairie voles also exhibit natural variation in the level of tactile stimulation delivered by the parents to the offspring, and this has been well documented and quantified. Previous studies revealed that adult prairie vole offspring who received either high (HC) or low (LC) tactile contact from their parents have differences in the size of cortical fields and the connections of somatosensory cortex. In the current investigation, we examined gene expression, intraneocortical connectivity, and cortical thickness in newborn voles to appreciate when differences in HC and LC offspring begin to emerge. We observed differences in developmentally regulated genes, as well as variation in prelimbic and anterior cingulate cortical thickness at postnatal Day 1 (P1) in HC and LC voles. Results from this study suggest that parenting styles, such as those involving high or low physical contact, impact the developing neocortex via very early sensory experience as well as differences in epigenetic modifications that may emerge in HC and LC voles.
Collapse
Affiliation(s)
- Riley T Bottom
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California
| | - Leah A Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, California.,Department of Psychology, University of California, Davis, Davis, California
| | - Kelly J Huffman
- Interdepartmental Neuroscience Program, University of California, Riverside, Riverside, California.,Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
7
|
Brydges NM, Hall J, Best C, Rule L, Watkin H, Drake AJ, Lewis C, Thomas KL, Hall J. Childhood stress impairs social function through AVP-dependent mechanisms. Transl Psychiatry 2019; 9:330. [PMID: 31819033 PMCID: PMC6901493 DOI: 10.1038/s41398-019-0678-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Impaired social function is a core feature of many psychiatric illnesses. Adverse experiences during childhood increase risk for mental illness, however it is currently unclear whether stress early in life plays a direct role in the development of social difficulties. Using a rat model of pre-pubertal stress (PPS), we investigated effects on social behaviour, oxytocin and arginine vasopressin (AVP) in the periphery (plasma) and centrally in the paraventricular and supraoptic hypothalamic nuclei. We also explored social performance and AVP expression (plasma) in participants with borderline personality disorder (BPD) who experienced a high incidence of childhood stress. Social behaviour was impaired and AVP expression increased in animals experiencing PPS and participants with BPD. Behavioural deficits in animals were rescued through administration of the AVPR1a antagonist Relcovaptan (SR49059). AVP levels and recognition of negative emotions were significantly correlated in BPD participants only. In conclusion, early life stress plays a role in the precipitation of social dysfunction, and AVP mediates at least part of this effect.
Collapse
Affiliation(s)
- Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK.
| | - Jessica Hall
- National Centre for Mental Health, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Caroline Best
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Lowenna Rule
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Holly Watkin
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Catrin Lewis
- National Centre for Mental Health, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Kerrie L Thomas
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
8
|
Kinnally EL, Ceniceros L, Martinez SJ. Genetic and environmental factors in the intergenerational transmission of maternal care in rhesus macaques: Preliminary findings. Am J Primatol 2018; 80:e22939. [PMID: 30512216 DOI: 10.1002/ajp.22939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
Early life experiences reorganize the brain and behavior of the developing infant, often with lifelong consequences. There is perhaps no more potent developmental influence than the quality of parental care: it is an experience common to all mammals, and its effects have been observed across species. The effects of parental care can be particularly difficult to abolish, as levels of care are often perpetuated across generations. However, genetic relatedness between parents can obscure the true mechanism of transgenerational cycles of parental care, because in intact families, genes, and environment are confounded. We examined the transmission of maternal care quality in biologically reared (n = 21) and cross fostered (n = 6) female rhesus monkeys. Interactions between female infant subjects and their mothers were observed from subjects' birth to 12 weeks of age. Females were then observed 4-5 years later for the quality of care they displayed toward their own newborn offspring. Maternal protectiveness in the first and second generations were correlated in both biologically reared and cross-fostered females. However, other aspects of maternal care, such as aggressiveness and sensitivity, were transmitted differently depending on foster status. These data provide preliminary findings in a small sample that the intergenerational transmission of maternal care may arise from complex genetic and environmental mechanisms in rhesus monkeys.
Collapse
Affiliation(s)
- Erin L Kinnally
- California National Primate Research Center, Davis, California.,Department of Psychology, University of California, Davis, California
| | - Lesly Ceniceros
- California National Primate Research Center, Davis, California
| | | |
Collapse
|
9
|
Seelke AMH, Bond JM, Simmons TC, Joshi N, Settles ML, Stolzenberg D, Rhemtulla M, Bales KL. Fatherhood alters gene expression within the MPOA. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy026. [PMID: 30568805 PMCID: PMC6305489 DOI: 10.1093/eep/dvy026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
Female parenting is obligate in mammals, but fathering behavior among mammals is rare. Only 3-5% of mammalian species exhibit biparental care, including humans, and mechanisms of fathering behavior remain sparsely studied. However, in species where it does exist, paternal care is often crucial to the survivorship of offspring. The present study is the first to identify new gene targets linked to the experience of fathering behavior in a biparental species using RNA sequencing. In order to determine the pattern of gene expression within the medial preoptic area that is specifically associated with fathering behavior, we identified genes in male prairie voles (Microtus ochrogaster) that experienced one of three social conditions: virgin males, pair bonded males, and males with fathering experience. A list of genes exhibiting different expression patterns in each comparison (i.e. Virgin vs Paired, Virgin vs Fathers, and Paired vs Fathers) was evaluated using the gene ontology enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes pathways analysis to reveal metabolic pathways associated with specific genes. Using these tools, we generated a filtered list of genes that exhibited altered patterns of expression in voles with different amounts of social experience. Finally, we used NanoString to quantify differences in the expression of these selected genes. These genes are involved in a variety of processes, with enrichment in genes associated with immune function, metabolism, synaptic plasticity, and the remodeling of dendritic spines. The identification of these genes and processes will lead to novel insights into the biological basis of fathering behavior.
Collapse
Affiliation(s)
- Adele M H Seelke
- Department of Psychology, University of California, Davis, Davis, USA
| | - Jessica M Bond
- Department of Psychology, University of California, Davis, Davis, USA
| | - Trent C Simmons
- Department of Psychology, University of California, Davis, Davis, USA
| | - Nikhil Joshi
- Bioinformatics Core Facility, University of California, Davis, Davis, USA
| | - Matthew L Settles
- Bioinformatics Core Facility, University of California, Davis, Davis, USA
| | | | - Mijke Rhemtulla
- Department of Psychology, University of California, Davis, Davis, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, USA
- California National Primate Research Center, University of California, Davis, Davis, USA
| |
Collapse
|
10
|
Social touch during development: Long-term effects on brain and behavior. Neurosci Biobehav Rev 2018; 95:202-219. [PMID: 30278194 DOI: 10.1016/j.neubiorev.2018.09.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 01/07/2023]
Abstract
In this paper, our goal is to explore what is known about the role of social touch during development. We first address the neural substrates of social touch and the role of tactile experience in neural development. We discuss natural variation in early exposure to social touch, followed by a discussion on experimental manipulations of social touch during development and "natural experiments", such as early institutionalization. We then consider the role of other developmental and experiential variables that predict social touch in adults. Throughout, we propose and consider new theoretical models of the role of social touch during development on later behavior and neurobiology.
Collapse
|
11
|
Seelke AM, Rhine MA, Khun K, Shweyk AN, Scott AM, Bond JM, Graham JL, Havel PJ, Wolden-Hanson T, Bales KL, Blevins JE. Intranasal oxytocin reduces weight gain in diet-induced obese prairie voles. Physiol Behav 2018; 196:67-77. [PMID: 30144467 DOI: 10.1016/j.physbeh.2018.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/17/2018] [Accepted: 08/19/2018] [Indexed: 12/17/2022]
Abstract
Oxytocin (OT) elicits weight loss in diet-induced obese (DIO) rodents, nonhuman primates and humans by reducing food intake and increasing energy expenditure. In addition to being important in the regulation of energy balance, OT is involved in social behaviors including parent-infant bonds, friendships, and pair bonds. However, the impact of social context on susceptibility to diet-induced obesity (DIO) and feeding behavior (including food sharing) has not been investigated in a rodent model that forms strong social bonds (i.e. prairie vole). Our goals were to determine in Prairie voles (Microtus ochrogaster) whether i) social context impacts susceptibility to DIO and ii) chronic intranasal OT reverses DIO. Voles were housed in divided cages with holes in the divider and paired with a same-sex animal with either the same food [high fat diet (HFD)/HFD, [low fat diet (LFD; chow)/chow], or the opposite food (HFD/chow or chow/HFD) for 19 weeks. HFD-fed voles pair-housed with voles maintained on the HFD demonstrated increased weight relative to pair-housed voles that were both maintained on chow. The study was repeated to determine the impact of social context on DIO susceptibility and body composition when animals are maintained on purified sugar-sweetened HFD and LFD to enhance palatability. As before, we found that voles demonstrated higher weight gain on the HFD/HFD housing paradigm, in part, through increased energy intake and the weight gain was a consequence of an increase in fat mass. However, HFD-fed animals housed with LFD-fed animals (and vice versa) showed intermediate patterns of weight gain and evidence of food sharing. Of translational importance is the finding that chronic intranasal OT appeared to reduce weight gain in DIO voles through a decrease in fat mass with no reduction in lean body mass. These effects were associated with transient reductions in food intake and increased food sharing. These findings identify a role of social context in the pathogenesis of DIO and indicate that chronic intranasal OT treatment reduces weight gain and body fat mass in DIO prairie voles, in part, by reducing food intake.
Collapse
Affiliation(s)
- Adele M Seelke
- Department of Psychology, University of California, Davis, CA, USA
| | - Maya A Rhine
- Department of Psychology, University of California, Davis, CA, USA
| | - Konterri Khun
- Department of Psychology, University of California, Davis, CA, USA
| | - Amira N Shweyk
- Department of Psychology, University of California, Davis, CA, USA
| | | | - Jessica M Bond
- Department of Psychology, University of California, Davis, CA, USA
| | - James L Graham
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Peter J Havel
- Department of Nutrition and Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Tami Wolden-Hanson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
12
|
Rogers FD, Rhemtulla M, Ferrer E, Bales KL. Longitudinal Trajectories and Inter-parental Dynamics of Prairie Vole Biparental Care. Front Ecol Evol 2018; 6:73. [PMID: 31396513 PMCID: PMC6687084 DOI: 10.3389/fevo.2018.00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
For altricial mammalian species, early life social bonds are constructed principally between offspring and their mothers, and the mother-offspring relationship sets the trajectory for offspring bio-behavioral development. In the rare subset of monogamous and biparental species, offspring experience an expanded social network which includes a father. Accordingly, in biparental species fathers also have the potential to influence trajectories of offspring development. Previous semi-natural and laboratory study of one monogamous and biparental species, the prairie vole (Microtus ochrogaster), has given insight into the role that mothers and fathers play in shaping behavioral phenotypes of offspring. Of particular interest is the influence of biparental care in the development of monogamous behavior in offspring. Here, we first briefly review that influence. We then present novel research which describes how parental investment in prairie voles changes across sequential litters of pups, and the extent to which it is coordinated between mothers and fathers. We use approximately 6 years of archival data on prairie vole parenting to investigate trajectories and inter-parent dynamics in prairie vole parenting. We use a series of latent growth models to assess the stability of parental investment across the first 4 l. Our findings suggest that prairie voles display sexually dimorphic patterns of change in parental behavior: mothers' investment declines linearly whereas fathers' pattern of change is characterized by initial decline between litters 1 and 2 with subsequent increase from litters 2 to 4. Our findings also support a conclusion that prairie vole paternal care may be better characterized as compensatory-that is, fathers may compensate for decline in maternal investment. Opposing trends in investment between mothers and fathers ultimately imply stability in offspring investment across sequential litters. These findings, combined with previous studies, generate a hypothesis that paternal compensation could play an important role in maintaining the development of monogamous behavioral phenotypes in individual offspring and across cohorts of those offspring. Understanding longitudinal and inter-individual dynamics of complex social behaviors is critical for the informed investigation of both proximate and ultimate mechanisms that may subserve these behaviors.
Collapse
Affiliation(s)
- Forrest D. Rogers
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Mijke Rhemtulla
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Emilio Ferrer
- Department of Psychology, University of California, Davis, Davis, CA, United States
| | - Karen L. Bales
- Department of Psychology, University of California, Davis, Davis, CA, United States
- California National Primate Research Center, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Spencer KA. Developmental stress and social phenotypes: integrating neuroendocrine, behavioural and evolutionary perspectives. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0242. [PMID: 28673918 DOI: 10.1098/rstb.2016.0242] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2017] [Indexed: 01/19/2023] Open
Abstract
The social world is filled with different types of interactions, and social experience interacts with stress on several different levels. Activation of the neuroendocrine axis that regulates the response to stress can have consequences for innumerable behavioural responses, including social decision-making and aspects of sociality, such as gregariousness and aggression. This is especially true for stress experienced during early life, when physiological systems are developing and highly sensitive to perturbation. Stress at this time can have persistent effects on social behaviours into adulthood. One important question remaining is to what extent these effects are adaptive. This paper initially reviews the current literature investigating the complex relationships between the hypothalamic-pituitary-adrenal (HPA) axis and other neuroendocrine systems and several aspects of social behaviour in vertebrates. In addition, the review explores the evidence surrounding the potential for 'social programming' via differential development and activation of the HPA axis, providing an insight into the potential for positive effects on fitness following early life stress. Finally, the paper provides a framework from which novel investigations could work to fully understand the adaptive significance of early life effects on social behaviours.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, South Street, St Andrews KY16 9JP, UK
| |
Collapse
|
14
|
Perkeybile AM, Bales KL. Intergenerational transmission of sociality: the role of parents in shaping social behavior in monogamous and non-monogamous species. J Exp Biol 2017; 220:114-123. [PMID: 28057834 PMCID: PMC5278619 DOI: 10.1242/jeb.142182] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Social bonds are necessary for many mammals to survive and reproduce successfully. These bonds (i.e. pair-bonds, friendships, filial bonds) are characterized by different periods of development, longevity and strength. Socially monogamous species display certain behaviors not seen in many other mammals, such as adult pair-bonding and male parenting. In our studies of prairie voles (Microtus ochrogaster) and titi monkeys (Callicebus cupreus), we have examined the neurohormonal basis of these bonds. Here, we discuss the evidence from voles that aspects of adolescent and adult social behavior are shaped by early experience, including changes to sensory systems and connections, neuropeptide systems such as oxytocin and vasopressin, and alterations in stress responses. We will compare this with what is known about these processes during development and adulthood in other mammalian species, both monogamous and non-monogamous, and how our current knowledge in voles can be used to understand the development of and variation in social bonds. Humans are endlessly fascinated by the variety of social relationships and family types displayed by animal species, including our own. Social relationships can be characterized by directionality (either uni- or bi-directional), longevity, developmental epoch (infant, juvenile or adult) and strength. Research on the neurobiology of social bonds in animals has focused primarily on 'socially monogamous' species, because of their long-term, strong adult affiliative bonds. In this Review, we attempt to understand how the ability and propensity to form these bonds (or lack thereof), as well as the display of social behaviors more generally, are transmitted both genomically and non-genomically via variation in parenting in monogamous and non-monogamous species.
Collapse
Affiliation(s)
- Allison M Perkeybile
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
- The Kinsey Institute, Indiana University, Bloomington, IN 47405, USA
| | - Karen L Bales
- Department of Psychology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
15
|
Arias Del Razo R, Bales KL. Exploration in a dispersal task: Effects of early experience and correlation with other behaviors in prairie voles (Microtus ochrogaster). Behav Processes 2016; 132:66-75. [PMID: 27720755 DOI: 10.1016/j.beproc.2016.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Socially monogamous prairie voles (Microtus ochrogaster) display remarkable individual variation in social behaviors, which has been associated with differences in early life experience and neuropeptide receptor densities. These differences are also seen in the wild, where approximately 70% of young voles remain in their natal group as non-breeding alloparents, while the other 30% disperse. We investigated whether natural variation in early parental care could contribute to offspring's willingness to "disperse" (willingness to explore) in a laboratory context. Behavioral differences between dispersers and residents could also provide a way to interpret individual variation in other behaviors commonly observed under laboratory conditions. Breeder pairs ranked as high, medium or low-contact, according to the amount of early parental care they provided to offspring, were used to produce and rear experimental subjects. Effects of early parental care on the offspring's willingness to disperse were seen at post-natal day 21, with high-contact offspring spending more time in the start cage and low-contact offspring spending more time exploring. Variations in parental care were also associated with differences in juvenile and adult behaviors that could potentially encourage philopatry or dispersal behavior in the wild. High-contact offspring displayed less anxiety-like behavior compared to low-contact animals. Low-contact offspring displayed the lowest amount of alloparental care. High-contact offspring spent more time in side-by-side contact with a potential partner compared to medium and low-contact offspring. These results suggest that variations in early parental care can impact weanlings' exploratory behavior, but that philopatry is not driven by high anxiety.
Collapse
Affiliation(s)
| | - Karen L Bales
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
16
|
Seelke A, Yuan SM, Perkeybile A, Krubitzer L, Bales K. Early experiences can alter the size of cortical fields in prairie voles ( Microtus ochrogaster). ENVIRONMENTAL EPIGENETICS 2016; 2:dvw019. [PMID: 27818789 PMCID: PMC5094187 DOI: 10.1093/eep/dvw019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
The neocortex of the prairie vole is composed of three well-defined sensory areas and one motor area: primary somatosensory, visual, auditory areas and the primary motor area respectively. The boundaries of these cortical areas are identifiable very early in development, and have been thought to resist alteration by all but the most extreme physical or genetic manipulations. Here we assessed the extent to which the boundaries of sensory/motor cortical areas can be altered by exposing young prairie voles (Microtus ochrogaster) to a chronic stimulus, high or low levels of parental contact, or an acute stimulus, a single dose of saline, oxytocin (OT), or oxytocin antagonist on the day of birth. When animals reached adulthood, their brains were removed, the cortex was flattened, cut parallel to the pial surface, and stained for myelin to identify the architectonic boundaries of sensory and motor areas. We measured the overall proportion of cortex that was myelinated, as well as the proportion of cortex devoted to the sensory and motor areas. Both the chronic and acute manipulations were linked to significant alterations in areal boundaries of cortical fields, but the areas affected differed with different conditions. Thus, differences in parental care and early exposure to OT can both change cortical organization, but their effects are not identical. Furthermore, the effects of both manipulations were sexually dimorphic, with a greater number of statistically significant differences in females than in males. These results indicate that early environmental experience, both through exposure to exogenous neuropeptides and parental contact, can alter the size of cortical fields.
Collapse
Affiliation(s)
- A.M.H. Seelke
- Psychology Department, University of California - Davis, Davis, CA, USA
| | - S.-M. Yuan
- Psychology Department, University of California - Davis, Davis, CA, USA
| | | | - L.A. Krubitzer
- Psychology Department, University of California - Davis, Davis, CA, USA
- Center for Neuroscience, University of California - Davis, Davis, CA, USA
| | - K.L. Bales
- Psychology Department, University of California - Davis, Davis, CA, USA
| |
Collapse
|
17
|
Initial investigation of three selective and potent small molecule oxytocin receptor PET ligands in New World monkeys. Bioorg Med Chem Lett 2016; 26:3370-3375. [PMID: 27209233 DOI: 10.1016/j.bmcl.2016.04.097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 02/01/2023]
Abstract
The neuropeptide oxytocin is part of a neuroendocrine system that has physiological effects ranging from ensuring uterine myometrial contractions at parturition and post-partum mammary gland milk ejection to the modulation of neural control of social relationships. This initial study was performed to investigate the potential use of positron emission tomography (PET) for localizing oxytocin receptors in two New World primates. Three biomarkers for PET (1-3) that are known to have high affinity and selectivity for the human oxytocin receptor were investigated in the common marmoset (Callithrix jacchus) via PET imaging. Brain penetration, and uptake in the salivary gland area were both observed with biomarkers 2 and 3. No brain penetration was observed with 1, but uptake was observed more specifically in several peripheral endocrine glands compared to 2 or 3. Biomarker 2, which displayed the best brain penetration of the three biomarkers in the marmoset, was then investigated in the monogamous coppery titi monkey (Callicebus cupreus) in a brain scan and a limited full body scan. No significant brain penetration of 2 was observed in the titi monkey, but significant uptake was observed in various locations throughout the periphery. Metabolism of 2 was suspected to have been significant based upon HPLC analysis of blood draws, but parent compound was still present near the end of the scan. Follow-up investigations will focus on next generation biomarkers bearing improved binding characteristics and brain penetrability as well as investigating tissue in regions where biomarker uptake was observed.
Collapse
|