1
|
Raje KR, Williams MT, Vorhees CV. Comparison of Sprague Dawley with Long Evans rats on a battery of widely used neurobehavioral tests. Physiol Behav 2025; 294:114860. [PMID: 40010534 PMCID: PMC11998991 DOI: 10.1016/j.physbeh.2025.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
Genetic knockout (KO) models are valuable tools for understanding biological functions and disease mechanisms. KO models in rats have fallen behind those in mice which limits advances in areas where rats have advantages because they can perform more complex cognitive tasks. Two widely used rat strains are Sprague Dawley (SD) and Long Evans (LE). Creating conditional KO models requires crossing Floxed and Cre lines with the constructs of interest but if they are on different genetic backgrounds, offspring will differ not only on the targeted gene but on genes of the differing background strains. We evaluated strain differences in SD and LE rats for behaviors that included: open-field locomotor activity in familiar and novel contexts, acoustic and tactile startle, egocentric and allocentric learning and memory, conditioned freezing, and working memory. Strain differences were found on open-field activity, startle prepulse inhibition, swimming, Cincinnati water maze (CWM), conditioned freezing, and 72 h home-cage activity. However, in the Morris water maze (MWM), performance was comparable between strains during acquisition and reversal, with LE rats performing slightly better in a third, shift phase with the platform in a third location. These data provide information on similarities and differences between SD and LE rats that may be useful to know when these strains are used to create conditional KO models or in regulatory safety studies.
Collapse
Affiliation(s)
- Kimaya R Raje
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Michael T Williams
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Charles V Vorhees
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Pediatrics, University of Cincinnati College of Medicine and Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
2
|
Bonauto SM, Brunke OR, Vassoler FM, Weera MM. Predator odor stress produces sex- and subpopulation-specific increases in alcohol drinking, anxiety-like behavior, and lateral hypothalamic Crh expression. Neuropharmacology 2025; 276:110511. [PMID: 40374160 DOI: 10.1016/j.neuropharm.2025.110511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Traumatic stress leads to maladaptive avoidance behaviors and alcohol misuse in some people. In rats, predator odor ("traumatic") stress produces persistent avoidance of stress-paired contexts and escalated alcohol self-administration in some animals (Avoiders) but not others (Non-Avoiders), mirroring the individual differences in stress responsivity and alcohol misuse seen in humans. Here, we measured post-stress free-choice and aversion-resistant alcohol drinking, anxiety-related behavior, and lateral hypothalamus Crh, Crhr1, Crhr2, and Crhbp gene expression in male and female Avoiders, Non-Avoiders, and unstressed Controls. Male but not female Avoider rats escalated their free-choice alcohol intake after stress, and greater avoidance predicted greater aversion-resistant alcohol drinking. Using ultrasonic vocalizations (USVs) as a measure of affect, we found that Non-Avoider males emitted more low frequency USVs (<32 kHz) preceding, during, and following predator odor stress. Finally, quantification of Crh, Crhr1, Crhr2, and Crhbp gene expression in the LH revealed that male Avoider rats had elevated Crh expression than Non-Avoiders and Controls, and that greater LH Crh expression correlated with more avoidance behavior and more alcohol drinking. In females, greater expression of Crh, Crhr1, Crhr2, and Crhbp in the LH all predicted less anxiety-like behavior. Collectively, these results show that the relationship between stress, alcohol drinking, anxiety-like behavior, and the LH CRH system is sex- and subpopulation-specific.
Collapse
Affiliation(s)
- S M Bonauto
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA; Department of Psychology, Tufts University, Medford, MA
| | - O R Brunke
- Department of Psychology, Tufts University, Medford, MA
| | - F M Vassoler
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA; Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - M M Weera
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA; Department of Psychology, Tufts University, Medford, MA.
| |
Collapse
|
3
|
Bonauto SM, Brunke OR, Vassoler FM, Weera MM. Predator odor stress produces sex- and subpopulation-specific increases in alcohol drinking, anxiety-like behavior, and lateral hypothalamic crh expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644324. [PMID: 40166236 PMCID: PMC11957151 DOI: 10.1101/2025.03.20.644324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Traumatic stress leads to maladaptive avoidance behaviors and alcohol misuse in some people. In rats, predator odor ("traumatic") stress produces persistent avoidance of stress-paired contexts and escalated alcohol self-administration in some animals (Avoiders), but not others (Non-Avoiders). This mirrors the individual differences in stress responsivity and alcohol misuse seen in humans. Here, we used a quinine-adulterated alcohol drinking procedure to model compulsive-like alcohol drinking in humans. Male and female Wistar rats were given 12 weeks of intermittent access to 20% (v/v) alcohol, followed by three weeks of limited access. Rats were then indexed for avoidance using predator odor stress exposure, and limited access drinking resumed for three additional weeks after stress. During this period, the alcohol solution was adulterated twice weekly with increasing concentrations of quinine. More Avoidant males were more resistant to quinine adulteration and Avoider males increased in non-quinine alcohol drinking. Using ultrasonic vocalizations (USVs) as a measure of affective state, we found that Non-Avoider males emitted more lower frequency USVs (<32 kHz) preceding, during, and following predator odor stress. Finally, quantification of crh, crhr1, crhr2, crhbp gene expression in the lateral hypothalamus revealed a strong positive correlation between greater crh transcripts and avoidance in males and a positive correlation between crh transcripts and less anxiety-like behaviors in females. Together, these results suggest that the intersection of stress and compulsive-like alcohol drinking is sex-specific and dependent on individual differences in stress outcomes. This work reinforces the importance of considering sex differences in stress and alcohol use disorder research.
Collapse
Affiliation(s)
- S M Bonauto
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA
- Department of Psychology, Tufts University, Medford, MA
| | - O R Brunke
- Department of Psychology, Tufts University, Medford, MA
| | - F M Vassoler
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA
| | - M M Weera
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA
- Department of Psychology, Tufts University, Medford, MA
| |
Collapse
|
4
|
Riccardi E, Mancini GF, Pisaneschi A, Morena M, Campolongo P. Sex differences in fear expression and persistence in an animal model of Post-Traumatic Stress Disorder. Neuroscience 2024; 560:371-380. [PMID: 39366450 DOI: 10.1016/j.neuroscience.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
Post-Traumatic Stress Disorder (PTSD) is a complex psychiatric condition arising from traumatic experiences, marked by abnormal fear memories. Despite women are twice as likely as men to develop PTSD, the biological mechanisms underlying this disparity remain inadequately explored, particularly in preclinical studies involving female subjects. Previous research shows that female rats exhibit active fear responses, while males display passive behaviors. Additionally, sex differences in ultrasonic vocalizations (USVs) during fear conditioning have been observed, indicating varying emotional responses. Here, we validated a traumatic stress model consisting of footshock exposure paired with social isolation - originally developed in male rats - on females for the first time, focusing on sex differences in fear memory expression, retention and extinction. Our findings reveal that only during trauma exposure, males predominantly exhibited passive responses, whereas females demonstrated more active responses, despite both sexes emitting similar numbers of alarm USVs. Females also showed lower levels of freezing and USV emissions throughout extinction sessions and displayed a higher extinction rate compared to males. Notably, only males displayed a conditioned fear response when triggered by a single mild stressor. These findings highlight sex differences in trauma responses and fear memory processes. The study emphasizes the importance of incorporating 22-kHz USV evaluations along with other behavioral metrics for a comprehensive understanding of fear memory. This research contributes to the existing literature on traumatic stress models as well as underscores the necessity of including female subjects in preclinical studies to better inform treatment and prevention strategies tailored to both sexes.
Collapse
Affiliation(s)
- Eleonora Riccardi
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy; Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Giulia Federica Mancini
- Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome 00143, Italy; Current Address: Dept. of Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | | | - Maria Morena
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy; Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy; Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome 00143, Italy.
| |
Collapse
|
5
|
Tryon SC, Sakamoto IM, Kaigler KF, Gee G, Turner J, Bartley K, Fadel JR, Wilson MA. ChAT::Cre transgenic rats show sex-dependent altered fear behaviors, ultrasonic vocalizations and cholinergic marker expression. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12837. [PMID: 36636833 PMCID: PMC9994175 DOI: 10.1111/gbb.12837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The cholinergic system is a critical regulator of Pavlovian fear learning and extinction. As such, we have begun investigating the cholinergic system's involvement in individual differences in cued fear extinction using a transgenic ChAT::Cre rat model. The current study extends behavioral phenotyping of a transgenic ChAT::Cre rat line by examining both freezing behavior and ultrasonic vocalizations (USVs) during a Pavlovian cued fear learning and extinction paradigm. Freezing, 22 kHz USVs, and 50 kHz USVs were compared between male and female transgenic ChAT::Cre+ rats and their wildtype (Cre-) littermates during fear learning, contextual and cue-conditioned fear recall, cued fear extinction, and generalization to a novel tone. During contextual and cued fear recall ChAT::Cre+ rats froze slightly more than their Cre- littermates, and displayed significant sex differences in contextual and cue-conditioned freezing, 22 kHz USVs, and 50 kHz USVs. Females showed more freezing than males in fear recall trials, but fewer 22 kHz distress calls during fear learning and recall. Females also produced more 50 kHz USVs during exposure to the testing chambers prior to tone (or shock) presentation compared with males, but this effect was blunted in ChAT::Cre+ females. Corroborating previous studies, ChAT::Cre+ transgenic rats overexpressed vesicular acetylcholine transporter immunolabeling in basal forebrain, striatum, basolateral amygdala, and hippocampus, but had similar levels of acetylcholinesterase and numbers of ChAT+ neurons as Cre- rats. This study suggests that variance in behavior between ChAT::Cre+ and wildtype rats is sex dependent and advances theories that distinct neural circuits and processes regulate sexually divergent fear responses.
Collapse
Affiliation(s)
- Sarah C. Tryon
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Iris M. Sakamoto
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Gabriella Gee
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jarrett Turner
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Katherine Bartley
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology & NeuroscienceUniversity of South Carolina School of MedicineColumbiaSouth CarolinaUSA
- Columbia VA Health Care SystemColumbiaSouth CarolinaUSA
| |
Collapse
|
6
|
Sounding the Alarm: Sex Differences in Rat Ultrasonic Vocalizations during Pavlovian Fear Conditioning and Extinction. eNeuro 2022; 9:ENEURO.0382-22.2022. [PMID: 36443006 PMCID: PMC9797209 DOI: 10.1523/eneuro.0382-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Pavlovian fear conditioning is a prevalent tool in the study of aversive learning, which is a key component of stress-related psychiatric disorders. Adult rats can exhibit various threat-related behaviors, including freezing, motor responses, and ultrasonic vocalizations (USVs). While these responses can all signal aversion, we know little about how they relate to one another. Here we characterize USVs emitted by male and female rats during cued fear acquisition and extinction, and assess the relationship between different threat-related behaviors. We found that males consistently emitted >22 kHz calls (referred to here as "alarm calls") than females, and that alarm call frequency in males, but not females, related to the intensity of the shock stimulus. Interestingly, 25% of males and 45% of females did not emit any alarm calls at all. Males that did make alarm calls had significantly higher levels of freezing than males who did not, while no differences in freezing were observed between female Alarm callers and Non-alarm callers. Alarm call emission was also affected by the predictability of the shock; when unpaired from a tone cue, both males and females started emitting alarm calls significantly later. During extinction learning and retrieval sessions, males were again more likely than females to emit alarm calls, which followed an extinction-like reduction in frequency. Collectively these data suggest sex dependence in how behavioral readouts relate to innate and conditioned threat responses. Importantly, we suggest that the same behaviors can signal sex-dependent features of aversion.
Collapse
|
7
|
Tivey EKL, Martin JE, Brown SM, Bombail V, Lawrence AB, Meddle SL. Sex differences in 50 kHz call subtypes emitted during tickling-induced playful behaviour in rats. Sci Rep 2022; 12:15323. [PMID: 36097035 PMCID: PMC9468157 DOI: 10.1038/s41598-022-19362-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
'Tickling' induces positive affective states in laboratory rats as evidenced by the production of 50-kHz ultrasonic vocalisations (USVs), although this has mostly been investigated in males. Juvenile rats emit distinctive 50-kHz USV subtypes. Frequency-modulated (FM) 50-kHz USVs are thought to be associated with positive affect and flat 50-kHz USVs with social communication. FM and flat USVs are produced by both sexes during tickling, but it is unclear whether these calls are produced in relation to particular play-related behaviours, and whether USV subtypes are used in a sexually dimorphic manner during tickling. We tested the hypotheses that FM USVs are associated with tickle-induced play behaviours in a sex-specific way, and that flat USVs are associated with non-play activities. Rats were allocated to one of two treatment groups: tickling (tickled, n = 16/sex) or no hand contact (control, n = 16/sex). Play behaviours (hopping, darting and hand approaches) and FM and flat USVs emitted during the testing session were quantified for each rat, with the frequency of FM and flat USVs made in anticipation of, and during, each behaviour analysed. In females, play behaviours were associated with more flat USVs than in males (before and during; p < 0.001), irrespective of treatment. FM USVs were paired with hopping and darting (before and during; p < 0.001), and in anticipation of hand approaches (p < 0.001) in both tickled females and males compared to controls (both sexes) suggesting that FM USVs are linked with play behaviour. The higher call rate of flat USVs paired with play behaviour in females suggests that there may be sex differences in the role of flat USVs during play. This result is evidence of sex differences in tickle-induced behaviours and has implications for our understanding of the function of different USVs in juvenile female and male rats.
Collapse
Affiliation(s)
- Emma K L Tivey
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK.
| | - Jessica E Martin
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Sarah M Brown
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Vincent Bombail
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Alistair B Lawrence
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
- Animal and Veterinary Sciences, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Simone L Meddle
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Impacts of a perinatal exposure to manganese coupled with maternal stress in rats: Tests of untrained behaviors. Neurotoxicol Teratol 2022; 91:107088. [PMID: 35278630 PMCID: PMC9133146 DOI: 10.1016/j.ntt.2022.107088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Manganese (Mn), an element that naturally occurs in the environment, has been shown to produce neurotoxic effects on the developing young when levels exceed physiological requirements. To evaluate the effects of this chemical in combination with non-chemical factors pregnant Long-Evans rats were treated with 0, 2, or 4 mg/mL Mn in their drinking water from gestational day (GD) 7 to postnatal day (PND) 22. Half of the dams received a variable stress protocol from GD13 to PND9, that included restraint, small cage with reduced bedding, exposure to predator odor, intermittent intervals of white noise, lights on for 24 h, intermittent intervals of lights on during dark cycle and cages with grid floors and reduced bedding. One male and one female offspring from each litter were tested to assess untrained behavior. Ultrasonic vocalizations (USV) were recorded from PND13 pups while they were isolated from the litter. Locomotor activity (MA) was measured in figure-eight mazes at PND 17, 29, and 79 (different set of rats at each time point). Social approach (SA) was tested at PND48. Acoustic startle response (ASR) and pre-pulse inhibition (PPI) were measured starting at PND58. At PND53 a sweetness preference for a chocolate flavored milk solution was assessed. There were sex related differences on several parameters for the USVs. There was also a Mn by stress by sex interaction with the females from the 4 mg/mL stressed dams having more frequency modulated (FM) call elements than the 4 mg/mL non-stressed group. There was an effect of Mn on motor activity but only at PND29 with the 2 mg/mL group having higher counts than the 0 mg/mL group. The social approach test showed sex differences for both the habituation and test phase. There was an effect of Mn, with the 4 mg/mL males having a greater preference for the stimulus rat than did the 0 mg/mL males. There was also a stress by sex interaction. The ASR and PPI had only a sex effect. Thus, with only the FM call elements having a Mn by stress effect, and the PND29 MA and SA preference index having a Mn effect but at different doses requires further investigation.
Collapse
|
9
|
Berz AC, Wöhr M, Schwarting RKW. Response Calls Evoked by Playback of Natural 50-kHz Ultrasonic Vocalizations in Rats. Front Behav Neurosci 2022; 15:812142. [PMID: 35095442 PMCID: PMC8797927 DOI: 10.3389/fnbeh.2021.812142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 01/10/2023] Open
Abstract
Rats are highly social animals known to communicate with ultrasonic vocalizations (USV) of different frequencies. Calls around 50 kHz are thought to represent a positive affective state, whereas calls around 22 kHz are believed to serve as alarm or distress calls. During playback of natural 50-kHz USV, rats show a reliable and strong social approach response toward the sound source. While this response has been studied in great detail in numerous publications, little is known about the emission of USV in response to natural 50-kHz USV playback. To close this gap, we capitalized on three data sets previously obtained and analyzed USV evoked by natural 50-kHz USV playback in male juvenile rats. We compared different rat stocks, namely Wistar (WI) and Sprague-Dawley (SD) and investigated the pharmacological treatment with the dopaminergic D2 receptor antagonist haloperidol. These response calls were found to vary broadly inter-individually in numbers, mean peak frequencies, durations and frequency modulations. Despite the large variability, the results showed no major differences between experimental conditions regarding call likelihood or call parameters, representing a robust phenomenon. However, most response calls had clearly lower frequencies and were longer than typical 50-kHz calls, i.e., around 30 kHz and lasting generally around 0.3 s. These calls resemble aversive 22-kHz USV of adult rats but were of higher frequencies and shorter durations. Moreover, blockade of dopamine D2 receptors did not substantially affect the emission of response calls suggesting that they are not dependent on the D2 receptor function. Taken together, this study provides a detailed analysis of response calls toward playback of 50-kHz USV in juvenile WI and SD rats. This includes calls representing 50-kHz USV, but mostly calls with lower frequencies that are not clearly categorizable within the so far known two main groups of USV in adult rats. We discuss the possible functions of these response calls addressing their communicative functions like contact or appeasing calls, and whether they may reflect a state of frustration. In future studies, response calls might also serve as a new read-out in rat models for neuropsychiatric disorders, where acoustic communication is impaired, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Annuska C. Berz
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- *Correspondence: Annuska C. Berz,
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
- Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Rainer K. W. Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
10
|
Tryon SC, Sakamoto IM, Kellis DM, Kaigler KF, Wilson MA. Individual Differences in Conditioned Fear and Extinction in Female Rats. Front Behav Neurosci 2021; 15:740313. [PMID: 34489657 PMCID: PMC8418198 DOI: 10.3389/fnbeh.2021.740313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
The inability to extinguish a traumatic memory is a key aspect of post-traumatic stress disorder (PTSD). While PTSD affects 10–20% of individuals who experience a trauma, women are particularly susceptible to developing the disorder. Despite this notable female vulnerability, few studies have investigated this particular resistance to fear extinction observed in females. Similar to humans, rodent models of Pavlovian fear learning and extinction show a wide range of individual differences in fear learning and extinction, although female rodents are considerably understudied. Therefore, the present study examined individual differences in fear responses, including freezing behavior and ultrasonic vocalizations (USVs), of female Long–Evans rats during acquisition of fear conditioning and cued fear extinction. Similar to prior studies in males, female rats displayed individual variation in freezing during cued fear extinction and were divided into extinction competent (EC) and extinction resistant (ER) phenotypes. Differences in freezing between ER and EC females were accompanied by shifts in rearing during extinction, but no darting was seen in any trial. Freezing behavior during fear learning did not differ between the EC and ER females. Vocalizations emitted in the 22 and 50 kHz ranges during fear learning and extinction were also examined. Unlike vocalizations seen in previous studies in males, very few 22 kHz distress vocalizations were emitted by female rats during fear acquisition and extinction, with no difference between ER and EC groups. Interestingly, all female rats produced significant levels of 50 kHz USVs, and EC females emitted significantly more 50 kHz USVs than ER rats. This difference in 50 kHz USVs was most apparent during initial exposure to the testing environment. These results suggest that like males, female rodents show individual differences in both freezing and USVs during fear extinction, although females appear to vocalize more in the 50 kHz range, especially during initial periods of exposure to the testing environment, and emit very few of the 22 kHz distress calls that are typically observed in males during fear learning or extinction paradigms. Overall, these findings show that female rodents display fear behavior repertoires divergent from males.
Collapse
Affiliation(s)
- Sarah C Tryon
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Iris M Sakamoto
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Devin M Kellis
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States.,Columbia VA Health Care System, Columbia, SC, United States
| |
Collapse
|
11
|
Kogo H, Maeda N, Kiyokawa Y, Takeuchi Y. Rats do not consider all unfamiliar strains to be equivalent. Behav Processes 2021; 190:104457. [PMID: 34216685 DOI: 10.1016/j.beproc.2021.104457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
Humans show distinct social behaviours when we recognise social similarity in opponents that are members of the same social group. However, little attention has been paid to the role of social similarity in non-human animals. In the Wistar subject rats, the presence of an unfamiliar Wistar rat mitigated stress responses, suggesting the importance of social similarity in this stress-buffering phenomenon. We subsequently found that the presence of unfamiliar Sprague-Dawley (SD) or Long-Evans (LE) rats, but not an unfamiliar Fischer 344 (F344) rat, similarly mitigated stress responses in the subject rats. It is therefore possible that the subject rats recognised social similarity to unfamiliar SD and LE rats. In this study, we demonstrated that the Wistar subject rats were capable of categorizing unfamiliar rats based on their strain, and that the Wistar subjects showed a preference for unfamiliar Wistar, SD, and LE rats over F344 rats. However, the subject rats did not show a preference among Wistar, SD, and LE rats. In addition, the results were not due to an aversion to F344 rats, and preference was not affected when anaesthetised rats were presented to the subject rats. The findings suggested that rats recognise social similarity to certain unfamiliar strains of rats.
Collapse
Affiliation(s)
- Hiroki Kogo
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naori Maeda
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasushi Kiyokawa
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| | - Yukari Takeuchi
- Laboratory of Veterinary Ethology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
12
|
Brudzynski SM. Biological Functions of Rat Ultrasonic Vocalizations, Arousal Mechanisms, and Call Initiation. Brain Sci 2021; 11:brainsci11050605. [PMID: 34065107 PMCID: PMC8150717 DOI: 10.3390/brainsci11050605] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 01/21/2023] Open
Abstract
This review summarizes all reported and suspected functions of ultrasonic vocalizations in infant and adult rats. The review leads to the conclusion that all types of ultrasonic vocalizations subserving all functions are vocal expressions of emotional arousal initiated by the activity of the reticular core of the brainstem. The emotional arousal is dichotomic in nature and is initiated by two opposite-in-function ascending reticular systems that are separate from the cognitive reticular activating system. The mesolimbic cholinergic system initiates the aversive state of anxiety with concomitant emission of 22 kHz calls, while the mesolimbic dopaminergic system initiates the appetitive state of hedonia with concomitant emission of 50 kHz vocalizations. These two mutually exclusive arousal systems prepare the animal for two different behavioral outcomes. The transition from broadband infant isolation calls to the well-structured adult types of vocalizations is explained, and the social importance of adult rat vocal communication is emphasized. The association of 22 kHz and 50 kHz vocalizations with aversive and appetitive states, respectively, was utilized in numerous quantitatively measured preclinical models of physiological, psychological, neurological, neuropsychiatric, and neurodevelopmental investigations. The present review should help in understanding and the interpretation of these models in biomedical research.
Collapse
Affiliation(s)
- Stefan M Brudzynski
- Department of Psychology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
13
|
Early Life Maternal Separation and Maternal Behaviour Modulate Acoustic Characteristics of Rat Pup Ultrasonic Vocalizations. Sci Rep 2019; 9:19012. [PMID: 31831757 PMCID: PMC6908621 DOI: 10.1038/s41598-019-54800-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/15/2019] [Indexed: 02/06/2023] Open
Abstract
Early separation of preterm infants from their mothers has adverse, long-term neurodevelopmental consequences. We investigated the effects of daily maternal separation (MS) of rat pups from postnatal days 2-10 (PND2-10) on neurobehavioural responses to brief isolation at PND12 compared with pups receiving controlled handling without MS. Ultrasonic vocalizations (USV) were measured at PND12 during two, 3-minute isolations occurring immediately before and after a 3-minute maternal reunion. There were no significant differences in acoustic characteristics between MS and control animals in the first isolation. However, in the second isolation, MS pups produced a greater proportion of high (~60 kHz) vs low (~40 kHz) frequency calls. During this isolation, control pups made longer and louder low frequency calls compared to the first isolation, whereas MS pups did the opposite. Maternal behaviour of control and MS mothers modulated pup acoustic characteristics in opposite directions; higher maternal care was associated with more low frequency calls in control pups but more high frequency calls in MS pups. We hypothesize that MS results in USV emission patterns reflective of a greater stress response to isolation. This translational model can be used to identify mechanisms and interventions that may be exploited to overcome the negative, long-term effects of MS.
Collapse
|