1
|
Shah M, Shahab M, Ullah S, Bibi S, Rahman NU, Jamil J, Arafat Y, Al-Harrasi A, Murad W, Shao H. Exploring the aroma profile and biomedical applications of Scutellaria nuristanica Rech. F.: A new insight as a natural remedy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155928. [PMID: 39126924 DOI: 10.1016/j.phymed.2024.155928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND The Scutellaria genus has promising therapeutic capabilities as an aromatherapy. Based on that and local practices of S. nuristanica Rech. F. The essential oil was studied for the first time for its diverse biomedical applications. PURPOSE This study aimed to evaluate and validate their therapeutic capabilities by screening the essential oil ingredients and examining their antimicrobial, antioxidant, carbonic anhydrase, and antidiabetic using further In silico assessment and In vivo anti-inflammatory and analgesic capabilities to devise novel sources as natural remedies alternative to the synthetic drugs. METHODS Essential oil was obtained through hydrodistillation, and the constituents were profiled using GC-MS. The antimicrobial assessment was conducted using an agar well diffusion assay. Free radical scavenging capabilities were determined by employing DPPH and ABTS assay. The carbonic anhydrase-II was examined using colorimetric assay, while the antidiabetic significance was performed using α-Glucosidase assay. The anti-inflammatory significance was examined through carrageenan-induced paw edema, and the analgesic features of the essential oil were determined using an acetic acid-induced writhing assay. RESULTS Fifty constituents were detected in S. nuristanica essential oil (SNEO), contributing 95.93 % of the total EO, with the predominant constituents being 24-norursa-3,12-diene (10.12 %), 3-oxomanoyl oxide (9.94 %), methyl 7-abieten-18-oate (8.85 %). SNEO presented significance resistance against the Gram-positive bacterial strains (GPBSs), Bacillus atrophaeus and Bacillus subtilis, as compared to the Salmonella typhi and Klebsiella pneumoniae, Gram-negative bacterial strains (GNBSs) as well as two fungal strains Aspergillus parasiticus and Aspergillus niger associated with their respective standards. Considerable free radical scavenging capacity was observed in DPPH compared to the ABTS assay when correlated with ascorbic acid. In addition, when equated with their standards, SNEO offered considerable in vitro carbonic anhydrase II and antidiabetic capabilities. Additionally, the antidiabetic behavior of the 9 dominant compounds of SNEO was tested via In silico techniques, such as molecular docking, which assisted in the assessment of the significance of binding contacts of protein with each chemical compound and pharmacokinetic evaluations to examine the drug-like characteristics. Molecular dynamic simulations at 100 ns and binding free energy evaluations such as PBSA and GBSA models explain the molecular mechanics and stability of molecular complexes. It was also observed that SNEO depicted substantial anti-inflammatory and analgesic capabilities. CONCLUSION Hence, it was concluded that the SNEO comprises bioactive ingredients with biomedical significance, such as anti-microbial, antioxidant, CA-II, antidiabetic, anti-inflammatory, and analgesic agents. The computational validation also depicted that SNEO could be a potent source for the discovery of anti-diabetic drugs.
Collapse
Affiliation(s)
- Muddaser Shah
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China; Department of Botany, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan; Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Muhammad Shahab
- Department of Botany, University of Malakand Chakdara, Chakdara 18800, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan; Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Najeeb Ur Rahman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Johar Jamil
- Department of Microbiology, University of Swabi, Swabi, Khyber Pakhtunkhwa 23320, Pakistan
| | - Yasir Arafat
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al M0uz, Nizwa 616, Oman
| | - Waheed Murad
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Ndung'u JK, Nguta JM, Mapenay IM, Moriasi GA. A Comprehensive Review of Ethnomedicinal Uses, Phytochemistry, Pharmacology, and Toxicity of Prunus africana (Hook. F.) Kalkman from Africa. SCIENTIFICA 2024; 2024:8862996. [PMID: 38654751 PMCID: PMC11039028 DOI: 10.1155/2024/8862996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Prunus africana, a widely utilized medicinal plant in various African ethnic communities, continues to hold significant importance in traditional healing practices. Research has identified phytochemical compounds in this plant, exhibiting diverse pharmacological activities that offer potential for pharmaceutical development. Notably, P. africana is employed in treating various ailments such as wounds, diabetes mellitus, malaria, benign prostatic hyperplasia, chest pain, and prostate cancer. Its pharmacological properties are attributed to a spectrum of bioactive compounds, including tannins, saponins, alkaloids, flavonoids, terpenoids, phytosterols, and fatty acids. Multiple studies have documented the anti-inflammatory, antimicrobial, antiandrogenic, antiangiogenic, antioxidant, antidipeptidyl peptidase-4 activity, analgesic, and astringent properties of P. africana extracts. This review offers a comprehensive compilation of ethnomedicinal applications, phytochemical composition, pharmacological effects, and toxicity assessments of P. africana, serving as a foundation for future preclinical and clinical investigations. By understanding its traditional uses and chemical constituents, researchers can target specific medical conditions with greater precision, potentially expediting the development of safe and effective pharmaceuticals. Moreover, toxicity assessments provide crucial insights into the safety profile of P. africana extracts, ensuring the development of safe pharmaceuticals to treat various diseases.
Collapse
Affiliation(s)
- James K. Ndung'u
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
- Department of Pharmacy, Kenya Medical Training College, Nakuru Campus Kenya, P.O. Box 110, Nakuru, Kenya
| | - Joseph M. Nguta
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Isaac M. Mapenay
- Department of Public Health, Pharmacology, and Toxicology, University of Nairobi, P.O. Box 29053-00625, Nairobi, Kenya
| | - Gervason A. Moriasi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844-00100-GPO, Nairobi, Kenya
- Department of Medical Biochemistry, Mount Kenya University, P.O. Box 342-01000, Thika, Kenya
| |
Collapse
|
3
|
Yao H, Sun J, Chen M, Dong Y, Wang P, Xu J, Shao Q, Wang Z. The impact of non-environmental factors on the chemical variation of Radix S crophulariae. Heliyon 2024; 10:e24468. [PMID: 38304803 PMCID: PMC10831622 DOI: 10.1016/j.heliyon.2024.e24468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Radix Scrophulariae is a commonly used Chinese herb derived from the dried root of Scrophularia ningpoesis Hemsl. (S. ningpoensis). It is difficult to accurately estimate the dosage of Chinese medicinal materials used in the prescription because of the chemical variation caused by various factors. To analyze the non-environmental factors affecting the chemical variation of Radix Scrophulariae, we planted nine different cultivated varieties of S. ningpoensis in the same plantation. Based on sequence-related amplified polymorphism (SRAP), simple sequence repeats (SSR) markers and high-performance liquid chromatography (HPLC) analysis, we found that the materials from the cultivated varieties could be divided into two groups, the Zhejiang group, and the southwest China group. The genetic distance based on molecular data between the two groups was above 0.3882, and the Euclidean distance based on chemical data between the two groups was above 5.312. The correlation analysis between the genetic distance matrix based on SRAP and the Euclidean distance matrix based on 18 HPLC peaks of the whole underground part revealed that the genetic differentiation and chemical variation were positively related, r = 0.7196 (p < 0.05). The genetic background, different part of the roots and the different development of the roots are the three non-environmental factors causing the chemical variation. The coefficient of variation (C.V) of chemical composition of Radix Scrophulariae with different genetic background reached to 93.62 %, the C.V of the chemical composition of Radix Scrophulariae derived from the same variety reached to 64.21 %, the C.V of the chemical composition of Radix Scrophulariae derived from the middle part of the roots of S. ningpoensis from the same variety reached to 45.55 %. The C.V of chemical composition of Radix Scrophulairae produced in the same plantation could be controlled to 38.43 % by using the same variety of roots with the approximate mass derived from the middle part of the roots under 20 g. Our findings provided insights to decrease the chemical variation of Chinese medicinal materials by controlling non-environmental factors.
Collapse
Affiliation(s)
- Hui Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| | - Mengying Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| | - Yu Dong
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Pan Wang
- Institute of Traditional Chinese Medicine Industry Innovation of Pan'an, Pan'an, 322300, China
| | - Jianzhong Xu
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, 310023, China
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| | - Zhian Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, 310023, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang Agriculture & Forest University, Hangzhou, 311300, China
| |
Collapse
|
4
|
Rubegeta E, Makolo F, Kamatou G, Enslin G, Chaudhary S, Sandasi M, Cunningham AB, Viljoen A. The African cherry: A review of the botany, traditional uses, phytochemistry, and biological activities of Prunus africana (Hook.f.) Kalkman. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116004. [PMID: 36535336 DOI: 10.1016/j.jep.2022.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prunus africana (Hook.f.) Kalkman (Rosaceae), commonly known as "Pygeum" or "African cherry", occurs in mainland montane forests scattered across sub-Saharan Africa, Madagascar, and some surrounding islands. Traditionally, decoctions of the stem-bark are taken orally for the treatment of a wide variety of conditions, such as benign prostatic hyperplasia (BPH), stomach ache, chest pain, malaria, heart conditions, and gonorrhoea, as well as urinary and kidney diseases. The timber is used to make axe handles and for other household needs. The dense wood is also sawn for timber. AIM The fragmented information available on the ethnobotany, phytochemistry, and biological activities of the medicinally important P. africana was collated, organised, and analysed in this review, to highlight knowledge voids that can be addressed through future research. MATERIALS AND METHODS A bibliometric analysis of research output on P. africana was conducted on literature retrieved, using the Scopus® database. The trend in the publications over time was assessed and a network analysis of collaborations between countries and authors was carried out. Furthermore, a detailed review of the literature over the period 1971 to 2021, acquired through Scopus, ScienceDirect, SciFinder, Pubmed, Scirp, DOAJ and Google Scholar, was conducted. All relevant abstracts, full-text articles and various book chapters on the botanical and ethnopharmacological aspects of P. africana, written in English and German, were consulted. RESULTS A total of 455 documents published from 1971 to 2021, were retrieved using the Scopus search. Analysis of the data showed that the majority of these documents were original research articles, followed by reviews and lastly a miscellaneous group comprising conference papers, book chapters, short surveys, editorials and letters. Data were analysed for annual output and areas of intense research focus, and countries with high research output, productive institutions and authors, and collaborative networks were identified. Prunus africana is reported to exhibit anti-inflammatory, analgesic, antimicrobial, anti-oxidant, antiviral, antimutagenic, anti-asthmatic, anti-androgenic, antiproliferative and apoptotic activities amongst others. Phytosterols and other secondary metabolites such as phenols, triterpenes, fatty acids, and linear alcohols have been the focus of phytochemical investigations. The biological activity has largely been ascribed to the phytosterols (mainly 3-β-sitosterol, 3-β-sitostenone, and 3-β-sitosterol-glucoside), which inhibit the production of prostaglandins in the prostate, thereby suppressing the inflammatory symptoms associated with BPH and chronic prostatitis. CONCLUSIONS Many of the ethnobotanical assertions for the biological activity of P. africana have been confirmed through in vitro and in vivo studies. However, a disparity exists between the biological activity of the whole extract and that of single compounds isolated from the extract, which were reported to be less effective. This finding suggests that a different approach to biological activity studies should be encouraged that takes all secondary metabolites present into consideration. A robust technique, such as multivariate biochemometric data analysis, which allows for a holistic intervention to study the biological activity of a species is suggested. Furthermore, there is a need to develop rapid and efficient quality control methods for both raw materials and products to replace the time-consuming and laborious methods currently in use.
Collapse
Affiliation(s)
- Emmanuel Rubegeta
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Felix Makolo
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Guy Kamatou
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Gill Enslin
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Sushil Chaudhary
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Maxleene Sandasi
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Anthony B Cunningham
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Pietermaritzburg, 3200, South Africa
| | - Alvaro Viljoen
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa; SAMRC Herbal Drugs Unit, Faculty of Science, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
5
|
Shahrajabian MH, Sun W. The Importance of Traditional Chinese Medicine in the Intervention and Treatment of HIV while Considering its Safety and Efficacy. Curr HIV Res 2023; 21:331-346. [PMID: 38047360 DOI: 10.2174/011570162x271199231128092621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 12/05/2023]
Abstract
Natural products have been considered a potential resource for the development of novel therapeutic agents, since time immemorial. It is an opportunity to discover cost-effective and safe drugs at the earliest, with the goal to hit specific targets in the HIV life cycle. Natural products with inhibitory activity against human immunodeficiency virus are terpenes, coumarins, flavonoids, curcumin, proteins, such as lectins, laccases, bromotyrosines, and ribosome-inactivating proteins. Terpenes inhibit virus fusion, lectins and flavonoids have an inhibitory impact on viral binding, curcumin and flavonoids inhibit viral DNA integration. The most important medicinal plants which have been used in traditional Chinese medicinal sciences with anti-HIV properties are Convallaria majalis, Digitalis lanata, Cassia fistula, Croton macrostachyus, Dodonaea angustifolia, Ganoderma lucidum, Trametes versicolor, Coriolus versicolor, Cordyceps sinensis, Gardenia jasminoides, Morus alba, Scutellaria baicalensis, Ophiopogon japonicus, Platycodon grandiflorus, Fritillaria thunbergii, Anemarrhena asphodeloides, Trichosanthes kirilowii, Citrus reticulata, Glycyrrhiza uralensis, Rheum officinale, Poria cocos, Rheum palmatum, Astragalus membranaceus, Morinda citrifolia, Potentilla kleiniana, Artemisia capillaris, Sargassum fusiforme, Piperis longi fructus, Stellera chamaejasme, Curcumae rhizoma, Dalbergia odorifera lignum, Arisaematis Rhizoma preparatum, and Phellodendron amurense. The information provided is gathered from randomized control experiments, review articles, and analytical studies and observations, which are obtained from different literature sources, such as Scopus, Google Scholar, PubMed, and Science Direct from July 2000 to August 2023. The aim of this review article is to survey and introduce important medicinal plants and herbs that have been used for the treatment of HIV, especially the medicinal plants that are common in traditional Chinese medicine, as research to date is limited, and more evidence is required to confirm TCM,s efficacy.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
DERESA DA, ABDİSSA Z, GURMESSA GT, ABDİSSA N. Chemical constituents of the stem bark of Prunus africana and Evaluation of their Antibacterial Activity. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1029564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7
|
Cell Culture-Based Assessment of Toxicity and Therapeutics of Phytochemical Antioxidants. Molecules 2022; 27:molecules27031087. [PMID: 35164354 PMCID: PMC8839249 DOI: 10.3390/molecules27031087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 12/13/2022] Open
Abstract
Plant-derived natural products are significant resources for drug discovery and development including appreciable potentials in preventing and managing oxidative stress, making them promising candidates in cancer and other disease therapeutics. Their effects have been linked to phytochemicals such as phenolic compounds and their antioxidant activities. The abundance and complexity of these bio-constituents highlight the need for well-defined in vitro characterization and quantification of the plant extracts/preparations that can translate to in vivo effects and hopefully to clinical use. This review article seeks to provide relevant information about the applicability of cell-based assays in assessing anti-cytotoxicity of phytochemicals considering several traditional and current methods.
Collapse
|
8
|
Komakech R, Yim NH, Shim KS, Jung H, Byun JE, Lee J, Okello D, Matsabisa MG, Erhabor JO, Oyenihi O, Omujal F, Agwaya M, Kim YG, Park JH, Kang Y. Root Extract of a Micropropagated Prunus africana Medicinal Plant Induced Apoptosis in Human Prostate Cancer Cells (PC-3) via Caspase-3 Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8232851. [PMID: 35116070 PMCID: PMC8807049 DOI: 10.1155/2022/8232851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 11/17/2022]
Abstract
Prostate cancer is one of the major causes of cancer-related deaths among men globally. Medicinal plants have been explored as alternative treatment options. Herein, we assessed the in vitro cytotoxic effects of 70% ethanolic root extracts of six-month-old micropropagated Prunus africana (PIR) on PC-3 prostate cancer cells as an alternative to the traditionally used P. africana stem-bark extract (PWS) treatment. In vitro assays on PC-3 cells included annexin-V and propidium iodide staining, DAPI staining, and caspase-3 activity analysis through western blotting. PC-3 cells were exposed to PWS and PIR at different concentrations, and dose-dependent antiprostate cancer effects were observed. PC-3 cell viability was determined using CCK-8 assay, which yielded IC50 values of 52.30 and 82.40 μg/mL for PWS and PIR, respectively. Annexin-V and PI staining showed dose-dependent apoptosis of PC-3 cells. Significant (p < 0.001) percent of DAPI-stained apoptotic PC-3 cells were observed in PWS, PIR, and doxorubicin treatment compared with the negative control. PWS treatment substantially elevated cleaved caspase-3 levels in PC-3 cells compared with the PIR treatment. These results provide evidence for the antiprostate cancer potential of PIR and sets a basis for further research to enhance future utilization of roots of young micropropagated P. africana for prostate cancer treatment as an alternative to stem bark. Moreover, micropropagation approach may help provide the required raw materials and hence reduce the demand for P. africana from endangered wild population.
Collapse
Affiliation(s)
- Richard Komakech
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Ki-Shuk Shim
- Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Jae-Eun Byun
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Biochemistry, School of Life Sciences, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Denis Okello
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Motlalepula Gilbert Matsabisa
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Joseph O. Erhabor
- IKS Research Group, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, Free State, South Africa
- Phytomedicine Unit, Department of Plant Biology and Biotechnology, University of Benin, PMB 1154, Benin City, Nigeria
| | - Omolola Oyenihi
- IKS Research Group, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, Free State, South Africa
| | - Francis Omujal
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Moses Agwaya
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Yong-goo Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Jeong Hwan Park
- KM Data Division, Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Youngmin Kang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- University of Science & Technology (UST), Korean Convergence Medicine Major KIOM, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Republic of Korea
| |
Collapse
|
9
|
Csikós E, Horváth A, Ács K, Papp N, Balázs VL, Dolenc MS, Kenda M, Kočevar Glavač N, Nagy M, Protti M, Mercolini L, Horváth G, Farkas Á. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules 2021; 26:7141. [PMID: 34885733 PMCID: PMC8659259 DOI: 10.3390/molecules26237141] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/08/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is one of the most common urinary diseases affecting men, generally after the age of 50. The prevalence of this multifactorial disease increases with age. With aging, the plasma level of testosterone decreases, as well as the testosterone/estrogen ratio, resulting in increased estrogen activity, which may facilitate the hyperplasia of the prostate cells. Another theory focuses on dihydrotestosterone (DHT) and the activity of the enzyme 5α-reductase, which converts testosterone to DHT. In older men, the activity of this enzyme increases, leading to a decreased testosterone/DHT ratio. DHT may promote prostate cell growth, resulting in hyperplasia. Some medicinal plants and their compounds act by modulating this enzyme, and have the above-mentioned targets. This review focuses on herbal drugs that are most widely used in the treatment of BPH, including pumpkin seed, willow herb, tomato, maritime pine bark, Pygeum africanum bark, rye pollen, saw palmetto fruit, and nettle root, highlighting the latest results of preclinical and clinical studies, as well as safety issues. In addition, the pharmaceutical care and other therapeutic options of BPH, including pharmacotherapy and surgical options, are discussed, summarizing and comparing the advantages and disadvantages of each therapy.
Collapse
Affiliation(s)
- Eszter Csikós
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Adrienn Horváth
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary;
| | - Kamilla Ács
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Viktória Lilla Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Marija Sollner Dolenc
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (M.S.D.); (M.K.)
| | - Maša Kenda
- University of Ljubljana, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia; (M.S.D.); (M.K.)
| | - Nina Kočevar Glavač
- University of Ljubljana, Department of Pharmaceutical Biology, Faculty of Pharmacy, SI-1000 Ljubljana, Slovenia;
| | - Milan Nagy
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University in Bratislava, SK-832-32 Bratislava, Slovakia;
| | - Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.P.); (L.M.)
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy; (M.P.); (L.M.)
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | - Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary; (E.C.); (K.Á.); (N.P.); (V.L.B.); (G.H.)
| | | |
Collapse
|
10
|
Mugula BB, Kiboi SK, Kanya JI, Egeru A, Okullo P, Curto M, Meimberg H. Knowledge Gaps in Taxonomy, Ecology, Population Distribution Drivers and Genetic Diversity of African Sandalwood ( Osyris lanceolata Hochst. & Steud.): A Scoping Review for Conservation. PLANTS (BASEL, SWITZERLAND) 2021; 10:1780. [PMID: 34579313 PMCID: PMC8465005 DOI: 10.3390/plants10091780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
The increasing demand for ornamental, cosmetic and pharmaceutical products is driving exploitation of plant species globally. Sub-Saharan Africa harbours unique and valuable plant resources and is now a target of plant resource depletion. African Sandalwood (Osyris lanceolata), a multi-purpose and drought-tolerant species, has seen increased exploitation for the last thirty years and is now declared endangered. Initiatives to conserve O. lanceolata are not yet successful in Africa due to poor understanding of the species. This review surveys relevant research on the ecology, taxonomy, population dynamics, genetic diversity and ethnobotany of O. lanceolata, and highlights gaps in the literature for further research. A scoping review of grey literature, scholarly papers and reports was applied with pre-determined criteria to screen relevant information. Review findings indicate O. lanceolata is a globally distributed species with no identified center of origin. In Africa, it ranges from Algeria to Ethiopia and south to South Africa; in Europe it occurs in the Iberian Peninsula and Balearic Islands; in Asia from India to China, and also on Socotra. The species has a confusing taxonomy, with unresolved issues in nomenclature, country range distribution, extensive synonymisation and variation in growth form (shrub or tree). The species population is reported to be declining in Africa, but information on population dynamics across its entire range of distribution is anecdotal. Additionally, ecological factors influencing spatial distribution and survival of the species remain unknown. A variety of uses are reported for O. lanceolata globally, including: cultural; medicinal and food; dye; perfumery; timber; ethnoveterinary and phytoremediation. Key research areas and implications for conservation of O. lanceolata in Sub-Saharan Africa are proposed.
Collapse
Affiliation(s)
- Ben Belden Mugula
- School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (S.K.K.); (J.I.K.)
- Department of Life and Physical Sciences, School of Natural Sciences, Bugema University, Kampala P.O. Box 6529, Uganda
| | - Samuel Kuria Kiboi
- School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (S.K.K.); (J.I.K.)
| | - James Ireri Kanya
- School of Biological Sciences, College of Biological and Physical Sciences, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya; (S.K.K.); (J.I.K.)
| | - Anthony Egeru
- College of Environmental and Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Paul Okullo
- National Agricultural Research Organization (NARO), Entebbe P.O. Box 295, Uganda;
| | - Manuel Curto
- Department of Integrative Biology and Biodiversity Research, Institute of Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Gregor Mendel-Straße 33, A-1180 Vienna, Austria; (M.C.); (H.M.)
- MARE-Marine and Environmental Sciences Centre, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Harald Meimberg
- Department of Integrative Biology and Biodiversity Research, Institute of Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Gregor Mendel-Straße 33, A-1180 Vienna, Austria; (M.C.); (H.M.)
| |
Collapse
|
11
|
|
12
|
Chinsembu KC. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2018.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Belinda NS, Swaleh S, Mwonjoria KJ, Wilson MN. Antioxidant activity, total phenolic and flavonoid content of selected Kenyan medicinal plants, sea algae and medicinal wild mushrooms. ACTA ACUST UNITED AC 2019. [DOI: 10.5897/ajpac2018.0775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
14
|
Thompson RQ, Katz D, Sheehan B. Chemical comparison of Prunus africana bark and pygeum products marketed for prostate health. J Pharm Biomed Anal 2019; 163:162-169. [DOI: 10.1016/j.jpba.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 11/26/2022]
|
15
|
Duborija-Kovacevic N, Tomic Z. Kidney, skeletal muscle and myocardium as potential target sites of Pygeum africanum toxicity in Wistar rats. Rev Int Androl 2018; 17:8-14. [PMID: 30691591 DOI: 10.1016/j.androl.2017.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 10/09/2017] [Accepted: 12/30/2017] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Extract of Pygeum africanum (PAE) is commonly used herbal medication in the treatment of benign prostatic hyperplasia. In Montenegro and neighboring countries, PAE is primarily advertised as dietary supplement in the treatment of erectile dysfunction. The purpose of this study was to broaden the current cognition concerning its safety profile. MATERIAL AND METHODS Twenty-four adult male Wistar rats were used. The first control group (O) received water and second control group (OO) received olive oil for 30 days. The third and fourth groups (PA5 and PA10) were treated with PAE dissolved in olive oil (50 and 100mg/kg p.o. daily). The behavior of animals was observed continuously, bodyweight gain (BWG) was calculated weekly and the weight of selected organs was measured at the end of experiment. Total protein and glutathione content of the liver were analyzed. Standard biochemical analyses were also performed. RESULTS BWG was higher in PA5 compared to both controls at all measuring intervals. Liver weight/body weight ratio was significantly higher in PA10 in comparison with O. Prostate weight/body weight ratio was lower in both PA5 and PA10 compared to OO, achieving statistical significance in PA5. The value of creatinine was higher in PA5 and PA10 compared to both control groups, but achieving statistical significance in PA10 only. LDH was also increased in PA5 and PA10 compared to both controls. CONCLUSIONS Both dosage regimens of PAE, particularly PA10, caused some toxicological effects in Wistar rats after one month of application. Kidney, skeletal muscle and/or myocardium are suspected as target sites of PA toxicity most likely. In order to provide more reliable conclusion it is necessary to conduct an additional research on the basis of these findings.
Collapse
Affiliation(s)
- Natasa Duborija-Kovacevic
- Department of Pharmacology and Clinical Pharmacology, Medical School of the University of Montenegro, Podgorica, Montenegro.
| | - Zdenko Tomic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Medical School of the University in Novi Sad, Novi Sad, Serbia
| |
Collapse
|
16
|
Prinsloo G, Marokane CK, Street RA. Anti-HIV activity of southern African plants: Current developments, phytochemistry and future research. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:133-155. [PMID: 28807850 PMCID: PMC7125770 DOI: 10.1016/j.jep.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The African continent is home to a large number of higher plant species used over centuries for many applications, which include treating and managing diseases such as HIV. Due to the overwhelming prevalence and incidence rates of HIV, especially in sub-Saharan Africa, it is necessary to develop new and affordable treatments. AIM OF THE STUDY The article provides an extensive overview of the status on investigation of plants from the southern African region with ethnobotanical use for treating HIV or HIV-related symptoms, or the management of HIV. The review also provide an account of the in vitro assays, anti-viral activity and phytochemistry of these plants. MATERIALS AND METHODS Peer-reviewed articles investigating plants with ethnobotanical information for the treatment or management of HIV or HIV-related symptoms from the southern African region were acquired from Science Direct, PubMed central and Google Scholar. The selection criteria was that (1) plants should have a record of traditional/popular use for infectious or viral diseases, HIV treatment or symptoms similar to HIV infection, (2) if not traditionally/popularly used, plants should be closely related to plants with popular use and HIV activity identified by means of in vitro assays, (3) plants should have been identified scientifically, (4) should be native to southern African region and (5) anti-HIV activity should be within acceptable ranges. RESULTS Many plants in Africa and specifically the southern African region have been used for the treatment of HIV or HIV related symptoms and have been investigated suing various in vitro techniques. In vitro assays using HIV enzymes such as reverse transcriptase (RT), integrase (IN) and protease (PR), proteins or cell-based assays have been employed to validate the use of these plants with occasional indication of the selectivity index (SI) or therapeutic index (TI), with only one study, that progressed to in vivo testing. The compounds identified from plants from southern Africa is similar to compounds identified from other regions of the world, and the compounds have been divided into three groups namely (1) flavonoids and flavonoid glycosides, (2) terpenoids and terpenoid glycosides and (3) phenolic acids and their conjugated forms. CONCLUSIONS An investigation of the plants from southern Africa with ethnobotanical use for the treatment of HIV, management of HIV or HIV-related symptoms, therefore provide a very good analysis of the major assays employed and the anti-viral compounds and compound groups identified. The similarity in identified anti-viral compounds worldwide should support the progression from in vitro studies to in vivo testing in development of affordable and effective anti-HIV agents for countries with high infection and mortality rates due to HIV/AIDS.
Collapse
Affiliation(s)
- Gerhard Prinsloo
- Department of Agriculture and Animal health, University of South Africa (UNISA), Florida Campus, Florida 1710, South Africa.
| | - Cynthia K Marokane
- Department of Agriculture and Animal health, University of South Africa (UNISA), Florida Campus, Florida 1710, South Africa.
| | - Renée A Street
- Environment and Health Research Unit, South African Medical Research Council, Durban 4041, South Africa; Department of Occupational and Environmental Health, University of KwaZulu-Natal, Durban 4001, South Africa.
| |
Collapse
|
17
|
Singla RK, Scotti L, Dubey AK. In Silico Studies Revealed Multiple Neurological Targets for the Antidepressant Molecule Ursolic Acid. Curr Neuropharmacol 2017; 15:1100-1106. [PMID: 28034283 PMCID: PMC5725542 DOI: 10.2174/1570159x14666161229115508] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 11/04/2016] [Accepted: 11/03/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Ursolic acid, a bioactive pentacyclic triterpenoid had been evaluated for its interaction with the neurological targets associated with antidepressant drugs. Current study was to mechanistically analyze the probable site of action for ursolic acid on the target proteins. METHODS Ursolic acid has been docked with monoamine oxidase isoforms: MAO-A and MAO-B, LeuT (homologue of SERT, NET, DAT) and Human C-terminal CAP1 using GRIP docking methodology. RESULTS Results revealed its non-selective antidepressant action with strong binding affinity towards LeuT and MAO-A proteins, which was found to be comparable with the reference ligands like chlorgyline, clomipramine, sertraline and deprenyl/selegiline. CONCLUSION Significant binding affinity of ursolic acid was seen with MAO-A, which indicated its potential role in other neurological disorders, for example, Alzheimer's disease and Parkinson disease besides depression.
Collapse
Affiliation(s)
- Rajeev K. Singla
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi, 110078, India
| | - Luciana Scotti
- Federal University of Paraíba, Campus I, João Pessoa-PB, Brazil
| | - Ashok K. Dubey
- Division of Biological Sciences and Engineering, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi, 110078, India
| |
Collapse
|
18
|
|
19
|
Michel P, Owczarek A, Matczak M, Kosno M, Szymański P, Mikiciuk-Olasik E, Kilanowicz A, Wesołowski W, Olszewska MA. Metabolite Profiling of Eastern Teaberry (Gaultheria procumbens L.) Lipophilic Leaf Extracts with Hyaluronidase and Lipoxygenase Inhibitory Activity. Molecules 2017; 22:molecules22030412. [PMID: 28272321 PMCID: PMC6155426 DOI: 10.3390/molecules22030412] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/02/2017] [Indexed: 12/14/2022] Open
Abstract
The phytochemical profile and anti-inflammatory activity of Gaultheria procumbens dry lipophilic leaf extracts were evaluated. Forty compounds were identified by GC-MS, representing 86.36% and 81.97% of the petroleum ether (PE) and chloroform (CHE) extracts, respectively, with ursolic acid (28.82%), oleanolic acid (10.11%), methyl benzoate (10.03%), and methyl salicylate (6.88%) dominating in CHE, and methyl benzoate (21.59%), docosane (18.86%), and octacosane (11.72%) prevailing in PE. Three components of CHE were fully identified after flash chromatography isolation and spectroscopic studies as (6S,9R)-vomifoliol (4.35%), 8-demethyl-latifolin (1.13%), and 8-demethylsideroxylin (2.25%). Hyaluronidase and lipoxygenase inhibitory activity was tested for CHE (IC50 = 282.15 ± 10.38 μg/mL and 899.97 ± 31.17 μg/mL, respectively), PE (IC50 = 401.82 ± 16.12 μg/mL and 738.49 ± 15.92 μg/mL), and nine of the main constituents versus heparin (IC50 = 366.24 ± 14.72 μg/mL) and indomethacin (IC50 = 92.60 ± 3.71 μg/mL) as positive controls. With the best activity/concentration relationships, ursolic and oleanolic acids were recommended as analytical markers for the extracts and plant material. Seasonal variation of both markers following foliar development was investigated by UHPLC-PDA. The highest levels of ursolic (5.36-5.87 mg/g DW of the leaves) and oleanolic (1.14-1.26 mg/g DW) acids were observed between August and October, indicating the optimal season for harvesting.
Collapse
Affiliation(s)
- Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
- Correspondence: ; Tel.: +48-42-677-91-69
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| | - Magdalena Matczak
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| | - Martyna Kosno
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| | - Paweł Szymański
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (P.S.); (E.M.-O.)
| | - Elżbieta Mikiciuk-Olasik
- Department of Pharmaceutical Chemistry, Drug Analyses and Radiopharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (P.S.); (E.M.-O.)
| | - Anna Kilanowicz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.K.); (W.W.)
| | - Wiktor Wesołowski
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.K.); (W.W.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego, 90-151 Lodz, Poland; (A.O.); (M.M.); (M.K.); (M.A.O.)
| |
Collapse
|
20
|
A Review of the Potential of Phytochemicals from Prunus africana (Hook f.) Kalkman Stem Bark for Chemoprevention and Chemotherapy of Prostate Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3014019. [PMID: 28286531 PMCID: PMC5327751 DOI: 10.1155/2017/3014019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/22/2017] [Indexed: 01/17/2023]
Abstract
Prostate cancer remains one of the major causes of death worldwide. In view of the limited treatment options for patients with prostate cancer, preventive and treatment approaches based on natural compounds can play an integral role in tackling this disease. Recent evidence supports the beneficial effects of plant-derived phytochemicals as chemopreventive and chemotherapeutic agents for various cancers, including prostate cancer. Prunus africana has been used for generations in African traditional medicine to treat prostate cancer. This review examined the potential roles of the phytochemicals from P. africana, an endangered, sub-Saharan Africa plant in the chemoprevention and chemotherapy of prostate cancer. In vitro and in vivo studies have provided strong pharmacological evidence for antiprostate cancer activities of P. africana-derived phytochemicals. Through synergistic interactions between different effective phytochemicals, P. africana extracts have been shown to exhibit very strong antiandrogenic and antiangiogenic activities and have the ability to kill tumor cells via apoptotic pathways, prevent the proliferation of prostate cancer cells, and alter the signaling pathways required for the maintenance of prostate cancer cells. However, further preclinical and clinical studies ought to be done to advance and eventually use these promising phytochemicals for the prevention and chemotherapy of human prostate cancer.
Collapse
|
21
|
Mbunde MVN, Innocent E, Mabiki F, Andersson PG. Ethnobotanical survey and toxicity evaluation of medicinal plants used for fungal remedy in the Southern Highlands of Tanzania. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 6:84-96. [PMID: 28163965 PMCID: PMC5289093 DOI: 10.5455/jice.20161222103956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/08/2016] [Indexed: 11/20/2022]
Abstract
Background/Aim: Some of the antifungal drugs used in the current treatments regime are responding to antimicrobial resistance. In rural areas of Southern Tanzania, indigenous people use antifungal drugs alone or together with medicinal plants to curb the effects of antibiotic resistance. This study documented ethnobotanical information of medicinal plants used for managing fungal infections in the Southern Highlands of Tanzania and further assess their safety. Materials and Methods: Ethnobotanical survey was conducted in Makete and Mufindi districts between July 2014 and December 2015 using semi-structured questionnaires followed by two focus group discussions to verify respondents’ information. Cytotoxicity study was conducted on extracts of collected plants using brine shrimp lethality test and analyzed by MS Excel 2013 program. Results: During this survey about 46 plant species belonging to 28 families of angiosperms were reported to be traditionally useful in managing fungal and other health conditions. Among these, Terminalia sericea, Aloe nutii, Aloe lateritia, Zanthoxylum chalybeum, Zanthoxylum deremense, and Kigelia africana were frequently mentioned to be used for managing fungal infections. The preparation of these herbals was mostly by boiling plant parts especially the leaves and roots. Cytotoxicity study revealed that most of the plants tested were nontoxic with LC50 > 100 which implies that most compounds from these plants are safe for therapeutic use. The dichloromethane extract of Croton macrostachyus recorded the highest with LC50 value 12.94 µg/ml. The ethnobotanical survey correlated well with documented literature from elsewhere about the bioactivity of most plants. Conclusions: The ethnobotanical survey has revealed that traditional healers are rich of knowledge to build on for therapeutic studies. Most of the plants are safe for use; and thus can be considered for further studies on drug discovery.
Collapse
Affiliation(s)
- Mourice Victor Nyangabo Mbunde
- Department of Natural Products Development and Formulation, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es salaam, Tanzania
| | - Ester Innocent
- Department of Biological and Pre-clinical Studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, P.O. Box 65001, Dar es salaam, Tanzania
| | - Faith Mabiki
- Department of Physical Sciences, Faculty of Science, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, The Arrhenius Laboratory, P.O. Box 10691, Stockholm, Sweden
| |
Collapse
|
22
|
Friedrich JC, Gonela A, Gonçalves Vidigal MC, Vidigal Filho PS, Sturion JA, Cardozo Junior EL. Genetic and Phytochemical Analysis to Evaluate the Diversity and Relationships of Mate (Ilex paraguariensis A.St.-Hil.) Elite Genetic Resources in a Germplasm Collection. Chem Biodivers 2016; 14. [PMID: 27701846 DOI: 10.1002/cbdv.201600177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/30/2016] [Indexed: 11/09/2022]
Abstract
The aim of this study was to evaluate the phytochemical and genetic diversity, relationships and identification of mate (Ilex paraguariensis A.St.-Hil.) elite genetic resources belonging to the Brazilian germplasm collection and mate breeding program. Mate has been studied due to the presence of phytochemical compounds, especially methylxanthines and phenolic compounds. The samples were collected from the leaves of 76 mate elite genetic resources (16 progenies × 5 localities). Total DNA was extracted from mate leaves and 20 random primers were used for DNA amplification. Methylxanthines (caffeine and theobromine) and phenolic compounds (chlorogenic, neochlorogenic, and criptochlorogenic acids) were quantified by HPLC. The genetic divergence estimated was higher within (92%) than among (8%) the different populations. Analysis of genetic distance between origins provided the formation of two groups by UPGMA cluster analysis, with higher polymorphism (94.9%). The average content of caffeine ranged from 0.01 to 1.38% and theobromine of 0.10 - 0.85% (w/w). The caffeoylquinic acids concentrations (1.43 - 5.38%) showed a gradient 3-CQA > 5-CQA > 4-CQA. The coefficient of genetic variation (CVg) was of low magnitude for all mono-caffeoylquinics acids. Significant correlations (positive and negative) were observed between the phytochemical compounds. Genetic diversity analysis performed by RAPD markers showed a greater intra-populational diversity; genetic resources with low caffeine and higher theobromine content were identified and can be used in breeding programs; the correlation between methylxanthines and phenolic compounds can be used as a good predictor in future studies.
Collapse
Affiliation(s)
- Juliana Cristhina Friedrich
- Chemistry and Pharmacology of Natural Products Laboratory, Institute of Biological, Medical and Health Sciences, Universidade Paranaense (UNIPAR), Av. Parigot de Souza 3636, Toledo, PR, 85.903-170, Brazil
| | - Adriana Gonela
- Agronomy Department, Universidade Estadual de Maringá (UEM), Av. Colombo 5790 - Vila Esperança, Maringá, PR, 87.020-900, Brazil
| | - Maria Celeste Gonçalves Vidigal
- Agronomy Department, Universidade Estadual de Maringá (UEM), Av. Colombo 5790 - Vila Esperança, Maringá, PR, 87.020-900, Brazil
| | - Pedro Soares Vidigal Filho
- Agronomy Department, Universidade Estadual de Maringá (UEM), Av. Colombo 5790 - Vila Esperança, Maringá, PR, 87.020-900, Brazil
| | - José Alfredo Sturion
- Embrapa Florestas - Brazilian Agricultural Research Corporation (EMBRAPA), Km 111, Estrada da Ribeira, Colombo, PR, 83.411-000, Brazil
| | - Euclides Lara Cardozo Junior
- Chemistry and Pharmacology of Natural Products Laboratory, Institute of Biological, Medical and Health Sciences, Universidade Paranaense (UNIPAR), Av. Parigot de Souza 3636, Toledo, PR, 85.903-170, Brazil
| |
Collapse
|
23
|
Omosa LK, Midiwo JO, Masila VM, Gisacho BM, Munayi R, Chemutai KP, Elhaboob G, Saeed MEM, Hamdoun S, Kuete V, Efferth T. Cytotoxicity of 91 Kenyan indigenous medicinal plants towards human CCRF-CEM leukemia cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:177-96. [PMID: 26721219 DOI: 10.1016/j.jep.2015.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/19/2015] [Accepted: 12/20/2015] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plants from Kenyan flora are traditionally used against many ailments, including cancer and related diseases. Cancer is characterized as a condition with complex signs and symptoms. Recently there are recommendations that ethnopharmacological usages such as immune and skin disorders, inflammatory, infectious, parasitic and viral diseases should be taken into account when selecting plants that treat cancer. AIM The present study was aimed at investigating the cytotoxicity of a plethora of 145 plant parts from 91 medicinal plants, most of which are used in the management of cancer and related diseases by different communities in Kenya, against CCRF-CEM leukemia cell line. MATERIALS AND METHODS Extracts from different plant parts (leaves, stems, stem bark, roots, root barks, aerial parts and whole herb) were obtained by cold percolation using different solvent systems, such as (1:1v/v) dichloromethane (CH2Cl2) and n-hexane (1), methanol (MeOH) and CH2Cl2 (2); neat MeOH (3), 5% H2O in MeOH (4) and with ethanol (EtOH, 5); their cytotoxicities were determined using the resazurin reduction assay against CCRF-CEM cells. RESULTS At a single concentration of 10μg/mL, 12 out of 145 extracts exhibited more than 50% cell inhibition. These include samples from the root bark of Erythrina sacleuxii (extracted with 50% n-hexane-CH2Cl2), the leaves of Albizia gummifera, and Strychnos usambarensis, the stem bark of Zanthoxylum gilletii, Bridelia micrantha, Croton sylvaticus, and Albizia schimperiana; the root bark of Erythrina burttii and E. sacleuxii (extracted with 50% CH2Cl2-MeOH), the stem bark of B. micrantha and Z. gilletii (extracted using 5% MeOH-H2O) and from the berries of Solanum aculeastrum (extracted with neat EtOH). The EtOH extract of the berries of S. aculeastrum and A. schimperiana stem bark extract displayed the highest cytotoxicity towards leukemia CCRF-CEM cells, with IC50 values of 1.36 and 2.97µg/mL, respectively. Other extracts having good activities included the extracts of the stem barks of Z. gilletii and B. micrantha and leaves of S. usambarensis with IC50 values of 9.04, 9.43 and 11.09µg/mL, respectively. CONCLUSIONS The results of this study provided information related to the possible use of some Kenyam medicinal plants, and mostly S. aculeastrum, A. schimperiana, C. sylvaticus, Z. gilletii, B. micrantha and S. usambarensis in the treatment of leukemia. The reported data helped to authenticate the claimed traditional use of these plants. However, most plants are used in combination as traditional herbal concoctions. Hence, the cytotoxicity of corresponding plant combinations should be tested in vitro to authenticate the traditional medical practitioners actual practices.
Collapse
Affiliation(s)
- Leonidah K Omosa
- Department of Chemistry, School of Physical Sciences, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya; Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| | - Jacob O Midiwo
- Department of Chemistry, School of Physical Sciences, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| | - Veronica M Masila
- Department of Chemistry, School of Physical Sciences, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| | - Boniface M Gisacho
- Department of Chemistry, School of Physical Sciences, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| | - Renee Munayi
- Department of Chemistry, School of Physical Sciences, University of Nairobi, P. O. Box 30197-00100, Nairobi, Kenya
| | | | - Gihan Elhaboob
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, P. O. Box 321-11115, Khartoum, Sudan
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Sami Hamdoun
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Victor Kuete
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
24
|
Cunningham A, Anoncho VF, Sunderland T. Power, policy and the Prunus africana bark trade, 1972-2015. JOURNAL OF ETHNOPHARMACOLOGY 2016; 178:323-33. [PMID: 26631758 DOI: 10.1016/j.jep.2015.11.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/24/2015] [Accepted: 11/24/2015] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE After almost 50 years of international trade in wild harvested medicinal bark from Africa and Madagascar, the example of Prunus africana holds several lessons for both policy and practice in the fields of forestry, conservation and rural development. Due to recent CITES restrictions on P. africana exports from Burundi, Kenya and Madagascar, coupled with the lifting of the 2007 European Union (EU) ban in 2011, Cameroon's share of the global P. africana bark trade has risen from an average of 38% between 1995 and 2004, to 72.6% (658.6 metric tons) in 2012. Cameroon is therefore at the center of this international policy arena. METHODS AND MATERIALS This paper draws upon several approaches, combining knowledge in working with P. africana over a 30-year period with a thorough literature review and updated trade data with "ground-truthing" in the field in 2013 and 2014. This enabled the construction of a good perspective on trade volumes (1991-2012), bark prices (and value-chain data) and the gaps between research reports and practice. Two approaches provided excellent lenses for a deeper understanding of policy failure and the "knowing-doing gap" in the P. africana case. A similar approach to Médard's (1992) analyses of power, politics and African development was taken and secondly, studies of commodity chains that assess the power relations that coalesce around different commodities (Ribot, 1998; Ribot and Peluso, 2003). RESULTS Despite the need to conserve genetically and chemically diverse P. africana, wild populations are vulnerable, even in several "protected areas" in Burundi, Cameroon, the Democratic Republic of Congo and in the forest reserves of Madagascar. Secondly, hopes of decentralized governance of this forest product are misplaced due to elite capture, market monopolies and subsidized management regimes. At the current European price, for P. africana bark (US$6 per kg) for example, the 2012 bark quota (658.675t) from Cameroon alone was worth over US$3.9 million, with the majority of this accruing to a single company. In contrast to lucrative bark exports, the livelihood benefits and financial returns to local harvesters from wild harvest are extremely low. For example, in 2012, the 48 active harvesters working within Mount Cameroon National Park (MCNP) received less than 1US$ per day from bark harvests, due to a net bark price of 0.33 US$ per kg (or 43% of the farm gate price for wild harvested bark). In addition, the costs of inventory, monitoring and managing sustainable wild harvests are far greater than the benefits to harvesters. CONCLUSION Without the current substantial international donor subsidies, sustainable harvest cannot be sustained. What is required to supply the current and future market is to develop separate, traceable P. africana bark supply chains based on cultivated stocks. On-farm production would benefit thousands of small-scale farmers cultivating P. africana, including local women, for whom wild harvesting is too onerous. This change requires CITES and EU support and would catalyze P. africana cultivation in across several montane African countries and Madagascar, increasing farm-gate prices to harvesters compared to economic returns from wild harvest.
Collapse
Affiliation(s)
- A Cunningham
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley Perth, Western Australia 6009, Australia.
| | | | - T Sunderland
- CIFOR, Jalan CIFOR, Situ Gede, Bogor, Jawa Barat, 16000 Indonesia
| |
Collapse
|
25
|
Luna-Vázquez FJ, Ibarra-Alvarado C, Rojas-Molina A, Romo-Mancillas A, López-Vallejo FH, Solís-Gutiérrez M, Rojas-Molina JI, Rivero-Cruz F. Role of Nitric Oxide and Hydrogen Sulfide in the Vasodilator Effect of Ursolic Acid and Uvaol from Black Cherry Prunus serotina Fruits. Molecules 2016; 21:78. [PMID: 26771591 PMCID: PMC6273102 DOI: 10.3390/molecules21010078] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/27/2022] Open
Abstract
The present research aimed to isolate the non-polar secondary metabolites that produce the vasodilator effects induced by the dichloromethane extract of Prunus serotina (P. serotina) fruits and to determine whether the NO/cGMP and the H2S/KATP channel pathways are involved in their mechanism of action. A bioactivity-directed fractionation of the dichloromethane extract of P. serotina fruits led to the isolation of ursolic acid and uvaol as the main non-polar vasodilator compounds. These compounds showed significant relaxant effect on rat aortic rings in an endothelium- and concentration-dependent manner, which was inhibited by NG-nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (PAG) and glibenclamide (Gli). Additionally, both triterpenes increased NO and H2S production in aortic tissue. Molecular docking studies showed that ursolic acid and uvaol are able to bind to endothelial NOS and CSE with high affinity for residues that form the oligomeric interface of both enzymes. These results suggest that the vasodilator effect produced by ursolic acid and uvaol contained in P. serotina fruits, involves activation of the NO/cGMP and H2S/KATP channel pathways, possibly through direct activation of NOS and CSE.
Collapse
Affiliation(s)
- Francisco J Luna-Vázquez
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Antonio Romo-Mancillas
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Fabián H López-Vallejo
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Mariana Solís-Gutiérrez
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Juana I Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico.
| | - Fausto Rivero-Cruz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria s/n, México D.F. 04510, Mexico.
| |
Collapse
|
26
|
Yineger H, Schmidt DJ, Teketay D, Zalucki J, Hughes JM. Gene dispersal inference across forest patches in an endangered medicinal tree: comparison of model-based approaches. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Haile Yineger
- Australian Rivers Institute; School of Environment; Griffith University; 170 Kessels Road Nathan QLD 4111 Australia
| | - Daniel J. Schmidt
- Australian Rivers Institute; School of Environment; Griffith University; 170 Kessels Road Nathan QLD 4111 Australia
| | - Demel Teketay
- Department of Crop Science and Production; Botswana College of Agriculture; Private Bag 0027 Gaborone Botswana
| | - Jacinta Zalucki
- Environmental Futures Centre; School of Environment; Griffith University; 170 Kessels Road Nathan QLD 4111 Australia
| | - Jane M. Hughes
- Australian Rivers Institute; School of Environment; Griffith University; 170 Kessels Road Nathan QLD 4111 Australia
| |
Collapse
|
27
|
Bodeker G, van 't Klooster C, Weisbord E. Prunus africana (Hook.f.) Kalkman: the overexploitation of a medicinal plant species and its legal context. J Altern Complement Med 2014; 20:810-22. [PMID: 25225776 DOI: 10.1089/acm.2013.0459] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The linkage between herbal medicines and the sustainability of medical plants from which they are manufactured is increasingly being understood and receiving attention through international accords and trade labeling systems. However, little attention is paid to the fair trade aspects of this sector, including the issue of benefit-sharing agreements with traditional societies whose knowledge and resources are being exploited for commercial herbal medicine development and production. This article examines the case of Prunus africana (Hook.f.) Kalkman, from equatorial Africa. While the conservation and cultivation dimension of the trade in P. africana has been much discussed in literature, no research appears to have focused on the traditional resource rights and related ethical dimensions of this trade in traditional medicine of Africa. Serving as a cautionary tale for the unbridled exploitation of medicinal plants, the history of P. africana extraction is considered here in the context of relevant treaties and agreements existing today. These include the Nagoya Protocol, a supplementary agreement to the Convention on Biological Diversity, the Trade-Related Aspects of Intellectual Property Rights agreement from the World Trade Organization, and two African regional frameworks: the Swakopmund Protocol and the Organisation Africaine de la Propriété Intellectuelle Initiative. In the context of strengthening medicinal plant research in Africa, a novel international capacity-building project on traditional medicines for better public health in Africa will be discussed, illustrating how access and benefit sharing principles might be incorporated in future projects on traditional medicines.
Collapse
Affiliation(s)
- Gerard Bodeker
- 1 Department of Primary Care Health Sciences, Division of Medical Sciences, University of Oxford , Oxford, United Kingdom
| | | | | |
Collapse
|
28
|
Russell JR, Hedley PE, Cardle L, Dancey S, Morris J, Booth A, Odee D, Mwaura L, Omondi W, Angaine P, Machua J, Muchugi A, Milne I, Kindt R, Jamnadass R, Dawson IK. tropiTree: an NGS-based EST-SSR resource for 24 tropical tree species. PLoS One 2014; 9:e102502. [PMID: 25025376 PMCID: PMC4099372 DOI: 10.1371/journal.pone.0102502] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/18/2014] [Indexed: 01/24/2023] Open
Abstract
The development of genetic tools for non-model organisms has been hampered by cost, but advances in next-generation sequencing (NGS) have created new opportunities. In ecological research, this raises the prospect for developing molecular markers to simultaneously study important genetic processes such as gene flow in multiple non-model plant species within complex natural and anthropogenic landscapes. Here, we report the use of bar-coded multiplexed paired-end Illumina NGS for the de novo development of expressed sequence tag-derived simple sequence repeat (EST-SSR) markers at low cost for a range of 24 tree species. Each chosen tree species is important in complex tropical agroforestry systems where little is currently known about many genetic processes. An average of more than 5,000 EST-SSRs was identified for each of the 24 sequenced species, whereas prior to analysis 20 of the species had fewer than 100 nucleotide sequence citations. To make results available to potential users in a suitable format, we have developed an open-access, interactive online database, tropiTree (http://bioinf.hutton.ac.uk/tropiTree), which has a range of visualisation and search facilities, and which is a model for the efficient presentation and application of NGS data.
Collapse
Affiliation(s)
- Joanne R. Russell
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
| | - Peter E. Hedley
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
| | - Linda Cardle
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
| | - Siobhan Dancey
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
- College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jenny Morris
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
| | - Allan Booth
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
| | - David Odee
- Headquarters, Kenya Forestry Research Institute, Nairobi, Kenya
- Centre for Ecology & Hydrology at Edinburgh, Centre for Ecology & Hydrology, Penicuik, Scotland, United Kingdom
| | - Lucy Mwaura
- Headquarters, World Agroforestry Centre, Nairobi, Kenya
| | - William Omondi
- Headquarters, Kenya Forestry Research Institute, Nairobi, Kenya
| | - Peter Angaine
- Headquarters, Kenya Forestry Research Institute, Nairobi, Kenya
| | - Joseph Machua
- Headquarters, Kenya Forestry Research Institute, Nairobi, Kenya
| | - Alice Muchugi
- Headquarters, World Agroforestry Centre, Nairobi, Kenya
| | - Iain Milne
- Information and Computational Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
| | - Roeland Kindt
- Headquarters, World Agroforestry Centre, Nairobi, Kenya
| | | | - Ian K. Dawson
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Scotland, United Kingdom
- Headquarters, World Agroforestry Centre, Nairobi, Kenya
- * E-mail:
| |
Collapse
|
29
|
Fatty acid and phytosterol content of commercial saw palmetto supplements. Nutrients 2013; 5:3617-33. [PMID: 24067389 PMCID: PMC3798925 DOI: 10.3390/nu5093617] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/16/2013] [Accepted: 08/20/2013] [Indexed: 12/01/2022] Open
Abstract
Saw palmetto supplements are one of the most commonly consumed supplements by men with prostate cancer and/or benign prostatic hyperplasia (BPH). Some studies have found significant improvements in BPH and lower urinary tract symptoms (LUTS) with saw palmetto supplementation, whereas others found no benefits. The variation in the efficacy in these trials may be a result of differences in the putative active components, fatty acids and phytosterols, of the saw palmetto supplements. To this end, we quantified the major fatty acids (laurate, myristate, palmitate, stearate, oleate, linoleate) and phytosterols (campesterol, stigmasterol, β-sitosterol) in 20 commercially available saw palmetto supplements using GC-FID and GC-MS, respectively. Samples were classified into liquids, powders, dried berries, and tinctures. Liquid saw palmetto supplements contained significantly higher (p < 0.05) concentrations of total fatty acids (908.5 mg/g), individual fatty acids, total phytosterols (2.04 mg/g), and individual phytosterols, than the other supplement categories. Powders contained significantly higher (p < 0.05) concentrations of total fatty acids than tinctures, which contain negligible amounts of fatty acids (46.3 mg/g) and phytosterols (0.10 mg/g). Our findings suggest that liquid saw palmetto supplements may be the best choice for individuals who want to take a saw palmetto supplement with the highest concentrations of both fatty acids and phytosterols.
Collapse
|
30
|
Vinceti B, Loo J, Gaisberger H, van Zonneveld MJ, Schueler S, Konrad H, Kadu CAC, Geburek T. Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables. PLoS One 2013; 8:e59987. [PMID: 23544118 PMCID: PMC3609728 DOI: 10.1371/journal.pone.0059987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 02/25/2013] [Indexed: 12/04/2022] Open
Abstract
Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set of georeferenced molecular marker data (chloroplast and nuclear microsatellites) from 32 populations in 9 African countries. Two approaches for the selection of priority populations for conservation were used, differing in the way they optimize representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (S1) was aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions, the second method (S2) at optimizing representativeness of the genetic diversity found throughout the species' range. Populations in East African countries (especially Kenya and Tanzania) were found to be of great conservation value, as suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate change, and whether they are located within the boundaries of protected areas. The range of the species has been affected by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the regional and national scale is recommended, in order to strengthen P. africana conservation efforts.
Collapse
|