1
|
Li Q, Li R, Ge B, Luo X, Xu J, Fu L, Kong Y, Yang JY, Li S. Anticonvulsant effect of Stachydrine on pentylenetetrazole-induced kindling seizure mouse model via Notch and NMDAR signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119975. [PMID: 40374044 DOI: 10.1016/j.jep.2025.119975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/11/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Stachydrine (STA), the principal bioactive alkaloid of Leonurus japonicus (Motherwort/"Yi Mu Cao"), may derive its ethnopharmacological relevance for epilepsy management from the botanical origin-Motherwort's documented traditional use in treating seizures and other neurological cardiovascular diseases. AIM OF THE STUDY To validate STA's ethnomedicinal claim an anticonvulsant by mechanistically interrogating its dual modulation of Notch1-driven neuroinflammation and NMDA receptor-mediated excitotoxicity, which are two key hallmarks of chronic epileptogenesis. MATERIALS AND METHODS Male C57BL/6 mice were divided into three groups to evaluate the neuroprotective and an anticonvulsant effects of STA in the PTZ-induced seizure model: Control group, PTZ group, and PTZ + STA group. Behavioral seizure scoring and cognitive tests were integrated with EEG recordings to assess neuronal synchronization. Molecular mechanisms were dissected via hippocampal immunohistochemistry and Western blotting. RESULTS Our results showed that daily oral administration of STA for a duration of 25 days significantly reduced seizure scores. EEG recordings indicated that STA treatment resulted in a notable reduction in both total brainwave power and firing amplitude within the groups receiving STA. Furthermore, STA administration provided cognitive protection against kindling-associated deficits, as demonstrated by improved alteration behavior and recognition index in Y-maze and object recognition tests. STA administration reduced neuronal loss and glial cell activation. Additionally, significant downregulation of NMDA receptor subunits, CAMK2, caspase-3, Notch1, and Hes1 expression levels was observed following STA administration. CONCLUSION These findings suggest that STA provides neuroprotection against PTZ-induced epilepsy by modulating the Notch and NMDA receptor pathways, thus addressing neuroinflammation and apoptosis resulting from excitotoxicity.
Collapse
Affiliation(s)
- Qifa Li
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Ruipeng Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Biying Ge
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Xiaoqin Luo
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jing Xu
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Lei Fu
- Functional Laboratory, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Yue Kong
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China
| | - Jin-Yi Yang
- Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, Dalian, 116001, China.
| | - Shao Li
- Department of Physiology, College of Basic Medical Sciences, Liaoning Provincial Key Laboratory of Cerebral Diseases, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
2
|
Li J, Niu L, Huang H, Li Q, Xie C, Yang C. Anti-inflammatory labdane diterpenoids from the aerial parts of Leonurus sibiricus. PHYTOCHEMISTRY 2024; 217:113927. [PMID: 37956887 DOI: 10.1016/j.phytochem.2023.113927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
Eleven undescribed labdane diterpenoids, sibiricusins K-U, and seven known analogues were obtained from the MeOH extract of the aerial parts of Leonurus sibiricus. The structures of the compounds were established by detailed spectroscopic data analysis, single-crystal X-ray diffraction analysis and ECD calculations. Among them, sibiricusins L-N featured a rare α, β-unsaturated-γ-lactam moiety. Fourteen of the isolates were evaluated for their anti-inflammatory effect on the production of NO in LPS-induced RAW264.7 cells through Griess assay. Sibiricusin O displayed the strongest activity with an IC50 value of 9.0 ± 1.7 μM.
Collapse
Affiliation(s)
- Jiahang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Lihang Niu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Hong Huang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Qing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China; Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
| |
Collapse
|
3
|
Cao X, Wang X, Zhang Y, Xu D, Song X, Yu J, Bao J, Zhang J, Zhang H. New di-spirocyclic labdane diterpenoids from the aerial parts of Leonurus japonicus. Chin J Nat Med 2023; 21:551-560. [PMID: 37517822 DOI: 10.1016/s1875-5364(23)60446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 08/01/2023]
Abstract
Phytochemical investigation on the ethanol extract of a well-known medicinal herb Leonurus japonicus, led to the separation of 18 labdane type diterpenoids (1-18). Through comprehensive spectroscopic analyses and quantum chemical calculations, these compounds were structurally characterized as six new interesting 5,5,5-di-spirocyclic ones (1-6), two new (7 and 8) and six known (13-18) interesting 6,5,5-di-spirocyclic ones, a new rare 14,15-dinor derivative (9), and three new ones incorporating a γ-lactone unit (10-12). An in vitro neuroprotective assay in RSC96 cells revealed that compounds 7 and 12 exhibited neuroprotective activity in a concentration-dependent way, comparable to the reference drug N-acetylcysteine.
Collapse
Affiliation(s)
- Xinxin Cao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xinxin Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Yu Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Defeng Xu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Xiuqing Song
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jinhai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Junsheng Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China.
| |
Collapse
|
4
|
Wei QH, Cao XX, Xu DF, Wang ST, Zhang JS, Zhang H. Anti-inflammatory labdane diterpenoids from the aerial parts of Leonurus japonicus. PHYTOCHEMISTRY 2023; 210:113646. [PMID: 36958706 DOI: 10.1016/j.phytochem.2023.113646] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Twenty-two labdane-type diterpenoids, including ten pairs of 15-epimers and a pair of 13,15-epimers, were obtained from the aerial parts of a well-known medicinal plant Leonurus japonicus Houtt. While these epimers were separated by chiral HPLC, their structures were established mainly via spectroscopic methods especially NMR, X-ray crystallography and ECD techniques. Among them, seventeen compounds, encompassing three pairs of solvolysis artefacts likely due to the use of ethanol as extracting solvent, were reported for the first time in the current work. Our preliminary anti-inflammatory screening demonstrated that seven diterpenoids displayed noteworthy inhibitory effect on the NO production in LPS-induced RAW264.7 cells. In addition, the release of pro-inflammatory factors TNF-α, IL-1β and IL-6, as well as the expression of iNOS and COX-2 proteins, was also suppressed by the unreported 15,16-epoxy-6β-hydroxy-15α-methoxy-7,16-dioxolabd-8,13-diene. Further investigation into the preliminary anti-inflammatory mechanism of this compound indicated that it could block the activation of NF-κB signaling pathway.
Collapse
Affiliation(s)
- Quan-Hao Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xin-Xin Cao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - De-Feng Xu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Shu-Ting Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jun-Sheng Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
5
|
Zhao T, Zhang X, Nong XH, Zhou XM, Chai RR, Li XB, Chen GY. Zeylleucapenoids A-D, Highly Oxygenated Diterpenoids with Anti-Inflammatory Activity from Leucas zeylanica (L.) R. Br. Molecules 2023; 28:molecules28114472. [PMID: 37298948 DOI: 10.3390/molecules28114472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Four previously undescribed highly oxygenated diterpenoids (1-4), zeylleucapenoids A-D, characterized by halimane and labdane skeletons, were isolated from the aerial parts of Leucas zeylanica. Their structures were elucidated primarily via NMR experiments. The absolute configuration of 1 was established using theoretical ECD calculations and X-ray crystallographic analysis, whereas those for 2-4 were assigned using theoretical ORD calculations. Zeylleucapenoids A-D were tested for anti-inflammatory activity against nitric oxide (NO) production in RAW264.7 macrophages, of which only 4 showed significant efficacy with an IC50 value of 38.45 μM. Further, active compound 4 was also evaluated for the inhibition of the release of pro-inflammatory cytokines TNF-α and IL-6 and was found to have a dose-dependent inhibitory effect, while it showed nontoxic activity for zebrafish embryos. A subsequent Western blotting experiment revealed that 4 inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, molecular docking analysis indicated that the possible mechanism of action for 4 may be bind to targets via hydrogen and hydrophobic bond interactions.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xuan Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xu-Hua Nong
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xue-Ming Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ru-Ru Chai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiao-Bao Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University, Haikou 571158, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
6
|
Hu YY, Zhong RH, Guo XJ, Li GT, Zhou JY, Yang WJ, Ren BT, Zhu Y. Jinfeng pills ameliorate premature ovarian insufficiency induced by cyclophosphamide in rats and correlate to modulating IL-17A/IL-6 axis and MEK/ERK signals. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116242. [PMID: 36775079 DOI: 10.1016/j.jep.2023.116242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinfeng Pill (JFP) is a classical Chinese medicine formula and composed of 9 herbs, including Epimedium brevicornu Maxim (Yinyanghuo), Cervus elaphus Linnaeus (Lurong), Panax ginseng C.A.Mey. (Renshen), Equus asinus (EJiao), Ligustrum lucidum W.T.Aiton (Nvzhenzi), Reynoutria multiflora (Thunb.) Moldenke (Heshouwu), Curculigo orchioides Gaertn (Xianmao), Neolitsea cassia (L.) Kosterm. (Rougui) and Leonurus japonicus Houtt. (Yimucao). The formula is clinically used to regulate menstrual cycle and alleviate polycystic ovarian syndrome due to its capabilities of ovulation induction. It is therefore presumed that JFP could be used for the therapy of premature ovarian insufficiency (POI) but the assumed efficacy has not been fully substantiated in experiment. AIM OF STUDY To evaluate the effectiveness of JFP on cyclophosphamide (CTX)-induced POI and preliminarily explore its potential mechanisms of action. MATERIAL AND METHODS An experimental rat model of POI was established by using CTX induction to assess the efficacy of JFP. The potential targets of action for JFP alleviating POI were predicted by the combination of network pharmacology and transcriptomics and finally validating by RT-qPCR and Western blot. RESULTS JFP alleviated the damages of ovarian tissue induced by CTX in the rat model of POI via significantly decreasing serum levels of FSH and LH and the ratio of FSH/LH and increasing the levels of E2 and AMH, accompanied with promoting ovarian folliculogenesis and follicle maturity and reversing the depletion of follicle pool. With the analysis of network pharmacology, pathways in cancer, proteoglycans in cancer, PI3K-AKT, TNF and FoxO signaling pathways were predicted to be influenced by JFP. The results of RNA-seq further revealed that IL-17 signaling pathway was the most important pathway regulated by both CTX and JFP, following by transcriptional misregulation in cancer and proteoglycans in cancer. Combining the two analytical methods, JFP likely targeted genes associated with immune regulation, including COX-2, HSP90AA1, FOS, MMP3 and MAPK11 and pathways, including IL-17,Th17 cell differentiation and TNF signaling pathway. Finally, JFP was validated to regulate the mRNA expression of FOS, FOSB, FOSL1, MMP3, MMP13 and COX-2 and decrease the release of IL-17A and the protein expression of IL-6 and suppress the phosphorylation of MEK1/2 and ERK1/2 in CTX induced POI rats. CONCLUSION Jinfeng Pill is effective to ameliorate the symptoms of POI induced by CTX in the model of rats and its action is likely associated with suppressing IL-17A/IL-6 axis and the activity of MEK1/2-ERK1/2 signaling.
Collapse
Affiliation(s)
- Ying-Yi Hu
- Pharmacy School, Fudan University, Shanghai, 200032, China; Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Rui-Hua Zhong
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Xiang-Jie Guo
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Guo-Ting Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Jie-Yun Zhou
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Wen-Jie Yang
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Bing-Tao Ren
- Pharmacy School, Fudan University, Shanghai, 200032, China; Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Yan Zhu
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Lu YB, Luo S, Wang YX, Feng ZY, Gao K, Chen JJ. Jatrophane diterpenoids with cytotoxic activity from the whole plant of Euphorbia heliosocpia L. PHYTOCHEMISTRY 2022; 203:113420. [PMID: 36055424 DOI: 10.1016/j.phytochem.2022.113420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Eight undescribed jatrophane diterpenoids, euphohelinoids A-H, along with 11 known analogues were isolated from the whole plant of Euphorbia heliosocpia L. Among them, euphohelinoids A and B contain a rare type of jatrophane diterpenoid skeleton with a 7,8-seco scaffold. To the best of our knowledge, only two such jatrophane diterpenoids have been reported. In addition, euphohelinoids G and H belong to a rare class of jatrophane diterpene possessing a β-hydroxy group at C-11. Structure elucidation of these undescribed diterpenoids was performed by spectroscopic analysis, including NMR, HRESIMS, IR, electronic circular dichroism (ECD) and DP4+ analysis. The cytotoxicity of 17 abundant jatrophane diterpenes was evaluated against HepG2, HeLa, HL-60, and SMMC-7721 cell lines. Seven compounds presented potent cytotoxicity against the four tested cell lines with IC50 values from 8.1 to 29.7 μM. Moreover, preliminary structure-activity relationships for these jatrophane diterpenoids were discussed.
Collapse
Affiliation(s)
- Yu-Bo Lu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Shangwen Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yu-Xian Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Zi-Yun Feng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Kun Gao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.
| | - Jian-Jun Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Sitarek P, Kowalczyk T, Synowiec E, Merecz-Sadowska A, Bangay G, Princiotto S, Śliwiński T, Rijo P. An Evaluation of the Novel Biological Properties of Diterpenes Isolated from Plectranthus ornatus Codd. In Vitro and In Silico. Cells 2022; 11:cells11203243. [PMID: 36291112 PMCID: PMC9600095 DOI: 10.3390/cells11203243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plectranthus ornatus Codd, the genus Plectranthus of the Lamiaceae family, has been used as traditional medicine in Africa, India and Australia. Pharmacological studies show the use of this plant to treat digestive problems. In turn, leaves were used for their antibiotic properties in some regions of Brazil to treat skin infections. The present study examines the anti-inflammatory, antioxidant and cytotoxic effects of the halimane and labdane diterpenes (11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and 1α,6β-diacetoxy-8α,13R*-epoxy-14-labden-11-one (PLEC) and the forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from P. ornatus on lung (A549) and leukemia (CCRF-CEM) cancer cell lines, and on normal human retinal pigment epithelial (ARPE-19) cell line in vitro. Additionally, molecular docking and computational approaches were used. ADMET properties were analysed through SwissADME and proTox-II—Prediction. The results indicate that all tested compounds significantly reduced the viability of the cancer cells and demonstrated no cytotoxic effects against the non-neoplastic cell line. The apoptosis indicators showed increased ROS levels for both the tested A549 and CCRF-CEM cancer cell lines after treatment. Furthermore, computational studies found HAL to exhibit moderate antioxidant activity. In addition, selected compounds changed mitochondrial membrane potential (MMP), and increased DNA damage and mitochondrial copy number for the CCRF-CEM cancer cell line; they also demonstrated anti-inflammatory effects on the ARPE-19 normal cell line upon lipopolysaccharide (LPS) treatment, which was associated with the modulation of IL-6, IL-8, TNF-α and GM-CSF genes expression. Docking studies gave indication about the lowest binding energy for 1,6-di-O-acetylforskolin docked into IL-6, TNF-α and GM-CSF, and 1,6-di-O-acetyl-9-deoxyforskolin docked into IL-8. The ADMET studies showed drug-likeness properties for the studied compounds. Thus, halimane and labdane diterpenes isolated from P. ornatus appear to offer biological potential; however, further research is necessary to understand their interactions and beneficial properties.
Collapse
Affiliation(s)
- Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland
- Correspondence: (P.S.); (P.R.)
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Ewelina Synowiec
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland
| | - Gabrielle Bangay
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Salvatore Princiotto
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Patricia Rijo
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence: (P.S.); (P.R.)
| |
Collapse
|
9
|
Wang J, Mao Y, Ma Y, Yang J, Jin B, Lin H, Tang J, Zeng W, Zhao Y, Gao W, Peters RJ, Guo J, Cui G, Huang L. Diterpene synthases from Leonurus japonicus elucidate epoxy-bridge formation of spiro-labdane diterpenoids. PLANT PHYSIOLOGY 2022; 189:99-111. [PMID: 35157086 PMCID: PMC9070827 DOI: 10.1093/plphys/kiac056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Spiro-9,13-epoxy-labdane diterpenoids are commonly found in Leonurus species, particularly in Leonurus japonicus Houtt., which is a medicinal herb of long-standing use in Asia and in which such spiro-heterocycles are present in at least 38 diterpenoids. Here, through generation of a transcriptome and functional characterization of six diterpene synthases (diTPSs) from L. japonicus, including three class II diTPSs (LjTPS1, LjTPS3, and LjTPS4) and three class I diTPSs (LjTPS5, LjTPS6, and LjTPS7), formation of the spiro-9,13-epoxy-labdane backbone was elucidated, along with identification of the relevant diTPSs for production of other labdane-related diterpenes. Similar to what has been found with diTPSs from other plant species, while LjTPS3 specifically produces the carbon-9 (C9) hydroxylated bicycle peregrinol diphosphate (PPP), the subsequently acting LjTPS6 yields a mixture of four products, largely labda-13(16),14-dien-9-ol, but with substantial amounts of viteagnusin D and the C13-S/R epimers of 9,13-epoxy-labda-14-ene. Notably, structure-function analysis identified a critical residue in LjTPS6 (I420) in which single site mutations enable specific production of the 13S epimer. Indeed, extensive mutagenesis demonstrated that LjTPS6:I420G reacts with PPP to both specifically and efficiently produce 9,13S-epoxy-labda-14-ene, providing a specialized synthase for further investigation of derived diterpenoid biosynthesis. The results reported here provide a strong foundation for future studies of the intriguing spiro-9,13-epoxy-labdane diterpenoid metabolism found in L. japonicus.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaping Mao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Ma
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jian Yang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Baolong Jin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Huixin Lin
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jinfu Tang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wen Zeng
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujun Zhao
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Gao
- Beijing Shijitan Hospital, Capital Medical University, Beijing 10038, China
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Juan Guo
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guanghong Cui
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Luqi Huang
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
10
|
Muhammad I, Luo W, Shoaib RM, Li GL, Shams Ul Hassan S, Yang ZH, Xiao X, Tu GL, Yan SK, Ma XP, Jin HZ. Guaiane-type sesquiterpenoids from Cinnamomum migao H. W. Li: And their anti-inflammatory activities. PHYTOCHEMISTRY 2021; 190:112850. [PMID: 34217042 DOI: 10.1016/j.phytochem.2021.112850] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The phytochemical assessment of Cinnamomum migao H. W. Li fruits illustrated the isolation and identification of ten undescribed guaiane-type sesquiterpenoids "miganoids A-J″ and one undescribed sesquiterpene "7(S)-(hydroxypropanyl)-3-methyl-2-(4-oxopentyl) cyclohex-2-en-1-one". The extensive analysis of HRESIMS, 1D NMR, 2D NMR, experimental circular dichroism (ECD), and calculated (ECD) analysis entirely corroborated the configuration and confirmation of these isolated compounds. Moreover, the anti-inflammatory properties of the reported compounds were established by determining the LPS induced nitric oxide production. In the current study, miganoid C is testified the most active compound with about 89% NO inhibition. Additionally, miganoids C, E, and G also exhibited moderate inhibitory effects against the pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). The IC50 values for miganoid C and miganoid G were determined as 19.4 and 14.5 μΜ against TNF-α mRNA, respectively.
Collapse
Affiliation(s)
- Ishaq Muhammad
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Wei Luo
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Rana Muhammad Shoaib
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Guang-Li Li
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang, 550200, PR China
| | - Syed Shams Ul Hassan
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zhi-Hua Yang
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang, 550200, PR China
| | - Xue Xiao
- Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Guo-Li Tu
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang, 550200, PR China
| | - Shi-Kai Yan
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Xian-Peng Ma
- Guizhou Jingcheng Pharmaceutical Co., Ltd., Guiyang, 550200, PR China.
| | - Hui-Zi Jin
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|