1
|
Nan ZD, Shang Y, Zhu YD, Zhang H, Sun RR, Tian JJ, Jiang ZB, Ma XL, Bai C. Systematic review of natural coumarins in plants (2019-2024): Chemical structures and pharmacological activities. PHYTOCHEMISTRY 2025; 235:114480. [PMID: 40096902 DOI: 10.1016/j.phytochem.2025.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
Coumarins constitute one of the most substantial classes of secondary metabolites, characterised by a fundamental α-benzopyranone skeleton, which serves as an overarching nomenclature for o-hydroxycinnamyl lactone moieties. These chemical constituents are widely distributed in various plant species. Based on the nature and loci of their substituents, these compounds can be further classified into simple coumarins, furanocoumarins, pyranocoumarins, isocoumarins, biscoumarins and other coumarins. Contemporary pharmacological research has revealed that coumarins exhibit a spectrum of properties, including antibacterial, antioxidant, anticancer, anti-inflammatory and hypoglycaemic activities. Owing to their diverse of structures and pharmacological actions, coumarins are widely used in cuisine, cosmetics and pharmaceutical industries. An extensive body of scholarly literature has been produced in this domain, although a notable paucity in the compilation and updating of references has been identified since 2019. Herein, the chemical structures and pharmacological activities of coumarins reported for the first time between 2019 and 2024 were systematically summarised. In total, 220 scholarly articles involving 574 coumarins reported for the first time in plants were included in this review. In addition, the biosynthetic pathways of some common types of coumarins (simple coumarins, furanocoumarins, and pyranocoumarins) are also preliminarily summarised in this paper. Meticulously analyzing and synthesising the published literature will lay a solid foundation for further investigation and extensive utilisation of coumarin derivatives.
Collapse
Affiliation(s)
- Ze-Dong Nan
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, PR China.
| | - Ying Shang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China.
| | - Yi-Dong Zhu
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China
| | - Ru-Ru Sun
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China
| | - Jing-Jing Tian
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China
| | - Zhi-Bo Jiang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, PR China
| | - Xiao-Li Ma
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, PR China; Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, PR China
| | - Changcai Bai
- College of Pharmacy, Ningxia Medical University, No. 1160 Sheng-Li Street, Yinchuan, 750004, PR China
| |
Collapse
|
2
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
3
|
Zhu J, Dai G, Chen T, Zhou Y, Zang Y, Xu L, Jin L, Zhu J. Ailanthone suppresses cell proliferation of renal cell carcinoma partially via inhibition of EZH2. Discov Oncol 2024; 15:464. [PMID: 39298003 DOI: 10.1007/s12672-024-01347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/13/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Ailanthone (Ail) extracted from medicinal plants has played an anticancer role in multiple cancers, while there is no research about Ail in renal cell carcinoma (RCC). METHODS In the present study, we performed CCK-8 and flow cytometry to assess the effect of Ail on cell viability, apoptosis and cycle. We also performed tandem mass tags (TMT)-labeled quantitative proteomic technology and bioinformatic analysis to identify the functional pathway and proteins of Ail in RCC. RESULTS The results showed Ail could inhibit cell viability and induce cell apoptosis. Proteomic profiling identified 1732 differentially expressed proteins in cells treated with Ail, compared to the negative control group. Gene ontology function annotation and Gene Set Enrichment Analysis (GSEA) were performed to identified the involved biological processes, molecular function and pathway. Results of GSEA proved the enrichment of Deps in EZH2 targets. The comparison between Deps and EZH2 co-expressed genes revealed 44 overlapped genes and we identified 4 hub genes (CDC20, CEP55, TOP2A, and UBE2C) associated with RCC progression. The molecular docking study revealed a moderate to tight binding potential of Ail and EZH2, and western blotting showed EZH2 was suppressed after cells treated with Ail. CONCLUSION Altogether, we identified the anticancer role of Ail in RCC, including inhibition of cell proliferation and induction of apoptosis. The results also screened the key proteins mediate the function of Ail, which have laid a theoretical foundation for elucidating the applications of Ail in clinical research.
Collapse
Affiliation(s)
- Jianbing Zhu
- Department of Radiology, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Key Laboratory of Functional Genomic and Molecular Diagnosis of Gansu Province, Lanzhou, Gansu, China
| | - Guangcheng Dai
- Department of Urology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, Jiangsu, China
| | - Ting Chen
- Department of Pathology, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yibin Zhou
- Department of Urology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, Jiangsu, China
| | - Yachen Zang
- Department of Urology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, Jiangsu, China
| | - Lijun Xu
- Department of Urology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, Jiangsu, China
| | - Lu Jin
- Department of Urology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, Jiangsu, China.
| | - Jin Zhu
- Department of Urology, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Road, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Song Q, Duan ZK, Tan YN, Gao ZH, Liu D, Hao JL, Lin B, Huang XX, Song SJ. Isolation of four new monoterpenes from Ailanthus altissima (mill.) Swingle and their enzyme inhibitory effects. Fitoterapia 2024; 176:105984. [PMID: 38701870 DOI: 10.1016/j.fitote.2024.105984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
A phytochemical study of the ethanol extract from Ailanthus altissima (Mill.) Swingle leaves resulted in the isolation of four new monoterpenoids (1-3, 5). The structures were elucidated using HRESIMS data, NMR spectroscopic data, quantum chemical calculations for NMR and ECD, and custom DP4+ probability analysis. Additionally, the absolute configuration of sugar was determined by acid hydrolysis. Compounds 1-4 are cyclogeraniane monocyclic monoterpenes, while compound 5 contains an acyclic mycrane monoterpenes skeleton. Anti-tyrosinase, anti-acetylcholinesterase, and anti-butyrylcholinesterase activities were tested. Compound 1 showed notable anti-acetylcholinesterase activity, and compound 3 exhibited significant inhibitory effects on anti-tyrosinase activity. Furthermore, the potential binding sites of compounds 1 and 3 were predicted by molecular docking.
Collapse
Affiliation(s)
- Qi Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, People's Republic of China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, People's Republic of China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ya-Nuo Tan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, People's Republic of China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhi-Heng Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, People's Republic of China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Dai Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, People's Republic of China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jin-Le Hao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, People's Republic of China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, People's Republic of China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, People's Republic of China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang 110016, People's Republic of China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
5
|
Duan ZK, Wang X, Lian MY, Guo SS, Gao ZH, Bai M, Huang XX, Song SJ. Bioassay-Guided and DeepSAT-Driven Precise Mining of Monoterpenoid Coumarin Derivatives with Antifeedant Effects from the Leaves of Ailanthus altissima. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10958-10969. [PMID: 38703118 DOI: 10.1021/acs.jafc.4c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Demand for the exploration of botanical pesticides continues to increase due to the detrimental effects of synthetic chemicals on human health and the environment and the development of resistance by pests. Under the guidance of a bioactivity-guided approach and HSQC-based DeepSAT, 16 coumarin derivatives were discovered from the leaves of Ailanthus altissima (Mill.) Swingle, including seven undescribed monoterpenoid coumarins, three undescribed monoterpenoid phenylpropanoids, and two new coumarin derivatives. The structure and configurations of these compounds were established and validated via extensive spectroscopic analysis, acetonide analysis, and quantum chemical calculations. Biologically, 5 exhibited significant antifeedant activity toward the Plutella xylostella. Moreover, tyrosinase being closely related to the growth and development of larva, the inhibitory potentials of 5 against tyrosinase was evaluated in vitro and in silico. The bioactivity evaluation results highlight the prospect of 5 as a novel category of botanical insecticide.
Collapse
Affiliation(s)
- Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xu Wang
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, Liaoning 110016, P. R. China
| | - Mei-Ya Lian
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shan-Shan Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhi-Heng Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ming Bai
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- Basic Science Research Center Base (Pharmaceutical Science), Shandong province, Yantai University, Yantai 264005, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
6
|
Zhang M, Zheng C, Li J, Wang X, Liu C, Li X, Xu Z, Du K. Genetic diversity, population structure, and DNA fingerprinting of Ailanthus altissima var. erythrocarpa based on EST-SSR markers. Sci Rep 2023; 13:19315. [PMID: 37935877 PMCID: PMC10630516 DOI: 10.1038/s41598-023-46798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/05/2023] [Indexed: 11/09/2023] Open
Abstract
Ailanthus altissima var. erythrocarpa is an A. altissima variety with high economic, ecological and ornamental value, but there have been no reports on the development of SSR primers for it. According to the SSR primer information provided by the transcriptome of A. altissima var. erythrocarpa, 120 individuals with different redness levels were used to screen polymorphic primers. Transcriptomic analysis revealed 10,681 SSR loci, of which mononucleotide repeats were dominant (58.3%), followed by dinucleotide and trinucleotide repeats (16.6%, 15.1%) and pentanucleotide repeats (0.2%). Among 140 pairs of randomly selected primers, nineteen pairs of core primers with high polymorphism were obtained. The average number of alleles (Na), average number of effective alleles (Ne), average Shannon's diversity index (I), average observed heterozygosity (Ho), average expected heterozygosity (He), fixation index (F) and polymorphic information content (PIC) were 11.623, 4.098, 1.626, 0.516, 0.696, 0.232 and 0.671, respectively. Nineteen EST-SSR markers were used to study the genetic diversity and population structure of A. altissima var. erythrocarpa. The phylogenetic tree, PCoA, and structure analysis all divided the tested resources into two categories, clearly showing the genetic variation between individuals. The population showed high genetic diversity, mainly derived from intraspecific variation. Among nineteen pairs of primers, 4 pairs (p33, p15, p46, p92) could effectively distinguish and be used for fingerprinting of the tested materials. This study is of great significance for genetic diversity analysis and molecular-assisted breeding of A. altissima var. erythrocarpa.
Collapse
Affiliation(s)
- Manman Zhang
- Hebei Agricultural University, Baoding, 071000, Hebei, China
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
| | - Conghui Zheng
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Jida Li
- Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Xueyong Wang
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Chunpeng Liu
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Xiangjun Li
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China
| | - Zhenhua Xu
- Hebei Technical Innovation Center for Forest Improved Variety, Shijiazhuang, 050061, Hebei, China.
- Hebei Academy of Forestry and Grassland Sciences, Shijiazhuang, 050061, Hebei, China.
| | - Kejiu Du
- Hebei Agricultural University, Baoding, 071000, Hebei, China.
| |
Collapse
|
7
|
Duan ZK, Guo SS, Ye L, Gao ZH, Liu D, Yao GD, Song SJ, Huang XX. Discovery of Michael reaction acceptors from the leaves of Ailanthus altissima by a modified tactic. PHYTOCHEMISTRY 2023; 215:113858. [PMID: 37709157 DOI: 10.1016/j.phytochem.2023.113858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Structural characteristics-guided investigation of Ailanthus altissima (Mill.) Swingle resulted in the isolation and identification of seven undescribed potential Michael reaction acceptors (1-7). Ailanlactone A (1) possesses an unusual 1,7-epoxy-11,12-seco quassinoid core. Ailanterpene B (6) was a rare guaianolide-type sesquiterpene with a 5/6/6/6-fused skeleton. Their structures were determined through extensive analysis of physiochemical and spectroscopic data, quantum chemical calculations, and single crystal X-ray crystallographic technology using Cu Kα radiation. The cytotoxic activities of isolates on HepG2 and Hep3B cells were evaluated in vitro. Encouragingly, ailanaltiolide K (4) showed significant cytotoxicity against Hep3B cells with IC50 values of 1.41 ± 0.21 μM, whose covalent binding mode was uncovered in silico.
Collapse
Affiliation(s)
- Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shan-Shan Guo
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Li Ye
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zhi-Heng Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Dai Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province China; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province China; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
8
|
Nhoek P, Ahn S, Pel P, Kim YM, Huh J, Kim HW, Noh M, Chin YW. Alkaloids and Coumarins with Adiponectin-Secretion-Promoting Activities from the Leaves of Orixa japonica. JOURNAL OF NATURAL PRODUCTS 2023; 86:138-148. [PMID: 36529937 DOI: 10.1021/acs.jnatprod.2c00844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fractionation of a methanol extract of Orixa japonica leaves led to the identification of five new quinoline alkaloids (1, 2, 4, 8, and 9), three new coumarins (15, 17, and 19), and 20 known compounds. The structures were determined by analysis of 1D and 2D NMR spectroscopic data. The absolute configuration of 19 was proposed by electronic circular dichroism calculation. Among the compounds tested in the phenotypic screening to measure adiponectin secretion in human bone marrow mesenchymal stem cells, metabolites 4 and 12 stimulated adiponectin secretions with EC50 values of 13.8 and 25.8 μM, respectively. Further PPARγ binding assay and molecular modeling suggested that compounds 4 and 12 are selective PPARγ agonists.
Collapse
Affiliation(s)
- Piseth Nhoek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjin Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Pisey Pel
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Mi Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jungmoo Huh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Gyeonggi-do 10326, Republic of Korea
| | - Minsoo Noh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Young-Won Chin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Gao ZH, Duan ZK, Ma ZT, Ye L, Yao GD, Huang XX, Song SJ. Chouchunsteride A-D, four new steroids from the leaves of Ailanthus altissima (Mill.) Swingle. Steroids 2022; 188:109117. [PMID: 36181833 DOI: 10.1016/j.steroids.2022.109117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/18/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
Four new steroids, chouchunsteride A-D (1-4), together with four known steroids (5-8), were isolated from the leaves of Ailanthus altissima (Mill.) Swingle. Their structures were elucidated based on spectroscopic data analysis, while the relative and absolute configurations were determined via acetonide analysis and quantum chemical ECD calculations. All isolated steroids were evaluated for their cytotoxic activity against two hepatoma carcinoma cell lines (HepG2, Hep3B). Among them, 1 exhibited the most potent cytotoxicity against HepG2 cells with an IC50 value of 4.03 μM.
Collapse
Affiliation(s)
- Zhi-Heng Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Zhen-Tao Ma
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Li Ye
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province, Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
10
|
Chemical constituents from Daphne giraldii and their cytotoxicities and inhibitory activities against acetylcholinesterase. Fitoterapia 2022; 163:105327. [DOI: 10.1016/j.fitote.2022.105327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 02/08/2023]
|
11
|
Phytochemical investigation on the leaves of Picrasma quassioides (D.Don) Benn. and the chemophenetics significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Lv TM, Guo R, Yan ZY, Du YQ, Lin B, Huang XX, Song SJ. Structure elucidation of a new terpenylated coumarin with the combination of CASE algorithms and DFT/NMR approach. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:982-991. [PMID: 32820653 DOI: 10.1080/10286020.2020.1804377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
One new terpenylated coumarin ailanthuscoumarin was isolated from the root barks of Ailanthus altissima (Mill.) Swingle. The high oxidation of the compound led to the difficulty of structure elucidation by 2D-NMR spectra. Its structure was determined with the aid of computer-assisted structure elucidation (CASE) expert systems and Gauge-independent atomic orbital (GIAO) NMR calculations. The absolute configuration of ailanthuscoumarin was determined by the comparison between the experimental and calculated electronic circular dichroism (ECD) spectra. The anti-hepatoma activity of ailanthuscoumarin against two human hepatoma cells (Hep3B, HepG2) was also reported.
Collapse
Affiliation(s)
- Tian-Ming Lv
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhi-Yang Yan
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye-Qing Du
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiao-Xiao Huang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shao-Jiang Song
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
13
|
Li X, Li Y, Ma S, Zhao Q, Wu J, Duan L, Xie Y, Wang S. Traditional uses, phytochemistry, and pharmacology of Ailanthus altissima (Mill.) Swingle bark: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114121. [PMID: 33862103 DOI: 10.1016/j.jep.2021.114121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried bark of Ailanthus altissima (Mill.) Swingle (BAA), commonly designated as "Chunpi" in Chinese, is extensively used as a common traditional medicine in China, Korea, and India. It has been used to treat multiple ailments, including asthma, epilepsy, spermatorrhea, bleeding, and ophthalmic diseases, for thousands of years. AIM OF THE REVIEW To present a comprehensive and constructive review on the phytochemistry, pharmacology, pharmacokinetics, traditional uses, quality control, and toxicology of BAA; to aid the assessment of the therapeutic potential of BAA; to guide researchers working on the development of novel therapeutic agents. MATERIALS AND METHODS Information related to BAA (from 1960 to 2020) was retrieved from a wide variety of electronic databases, such as PubMed, Web of Science, China Knowledge Resource Integrated Database, ScienceDirect, SciFinder, and Google Scholar. Additional information and materials were acquired from Chinese Medicine Monographs, the 2020 edition of the Chinese Pharmacopoeia, and several web sources, such as the official website of The Plant List and Flora of China. Additionally, perspectives for future investigations and applications of BAA were extensively explored. RESULTS Approximately 221 chemical compounds, including alkaloids, quassinoids, phenylpropanoids, triterpenoids, volatile oils, and other compounds, have been isolated and characterized from BAA; among these, the quassinoid ailanthone is the most typical. The crude extracts and active compounds of BAA have been reported to exert a wide range of pharmacological activities, such as antitumor, anti-inflammatory, antiviral, herbicidal, and insecticidal activities. Although BAA is safe when administered at a conventional dose, at higher doses, it exhibits toxicity due to the presence of quassinoids. Thus, more studies are required to evaluate the efficacy and safety of BAA. CONCLUSION Modern pharmacological studies have revealed that BAA, as a valuable medicinal resource, possesses the potential to treat a wide variety of ailments, especially, cancer and gastrointestinal inflammation. These studies present a wide range of perspectives for the development of new drugs related to BAA. However, only a few traditional uses are associated with the reported pharmacological activities of BAA and have been confirmed by preclinical and clinical studies. Moreover, the pharmacokinetics, toxicology, and quality control of BAA should be considered indispensable research topics.
Collapse
Affiliation(s)
- Xiang Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Yao Li
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Shanbo Ma
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Qianqian Zhao
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Junsheng Wu
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Linrui Duan
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Yanhua Xie
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China
| | - Siwang Wang
- Northwest University Faculty of Life and Health Science, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|
14
|
Marcarino MO, Cicetti S, Zanardi MM, Sarotti AM. A critical review on the use of DP4+ in the structural elucidation of natural products: the good, the bad and the ugly. A practical guide. Nat Prod Rep 2021; 39:58-76. [PMID: 34212963 DOI: 10.1039/d1np00030f] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2015 up to the end of 2020Even in the golden age of NMR, the number of natural products being incorrectly assigned is becoming larger every day. The use of quantum NMR calculations coupled with sophisticated data analysis provides ideal complementary tools to facilitate the elucidation process in challenging cases. Among the current computational methodologies to perform this task, the DP4+ probability is a popular and widely used method. This updated version of Goodman's DP4 synergistically combines NMR calculations at higher levels of theory with the Bayesian analysis of both scaled and unscaled data. Since its publication in late 2015, the use of DP4+ to solve controversial natural products has substantially grown, with several predictions being confirmed by total synthesis. To date, the structures of more than 200 natural products were determined with the aid of DP4+. However, all that glitters is not gold. Besides its intrinsic limitations, on many occasions it has been improperly used with potentially important consequences on the quality of the assignment. Herein we present a critical revision on how the scientific community has been using DP4+, exploring the strengths of the method and how to obtain optimal results from it. We also analyze the weaknesses of DP4+, and the paths to by-pass them to maximize the confidence in the structural elucidation.
Collapse
Affiliation(s)
- Maribel O Marcarino
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - Soledad Cicetti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| | - María M Zanardi
- Instituto de Ingeniería Ambiental, Química y Biotecnología Aplicada (INGEBIO), Facultad de Química e Ingeniería del Rosario, Pontificia Universidad Católica Argentina, Av. Pellegrini 3314, Rosario 2000, Argentina.
| | - Ariel M Sarotti
- Instituto de Química Rosario (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina.
| |
Collapse
|
15
|
Cheng ZY, Hou ZL, Ren JX, Zhang DD, Lin B, Huang XX, Song SJ. Guaiane-type sesquiterpenoids from the roots of Stellera chamaejasme L. and their neuroprotective activities. PHYTOCHEMISTRY 2021; 183:112628. [PMID: 33412403 DOI: 10.1016/j.phytochem.2020.112628] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Nine undescribed guaiane-type sesquiterpenoids stelleraterpenoids A‒I, along with seven reported congeners, were isolated and identified from the 70% EtOH extract of the roots of Stellera chamaejasme L. Their chemical structures were elucidated on the basis of various spectral data. The relative configurations were determined by their NOESY spectra and comparison between their experimental and calculated NMR data. The absolute configurations were established by the comparison between the experimental and calculated ECD spectra and further by X-ray single-crystal diffraction analysis. The neuroprotective effects of these compounds on the H2O2-induced damage in human neuroblastoma SH-SY5Y cells were evaluated. Stelleraguaianone B exhibited the better activity with 71.62% cell viability compared to the positive control Trolox (65.05%) at 12.5 μM, which might be achieved by inhibiting the apoptosis of SH-SY5Y cells based on an annexin V-FITC/PI staining experiment.
Collapse
Affiliation(s)
- Zhuo-Yang Cheng
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zi-Lin Hou
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jing-Xian Ren
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ding-Ding Zhang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bin Lin
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
16
|
Duan ZK, Lin B, Du YQ, Li C, Yu XQ, Xue XB, Liu QB, Song SJ, Huang XX. Monoterpenoid coumarins and monoterpenoid phenylpropanoids from the root bark of Ailanthus altissima. NEW J CHEM 2021; 45:1100-1108. [DOI: 10.1039/d0nj04872k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Three new monoterpenoid coumarins, zantholin A (3), altissimacoumarin P-Q (5, 6), two new monoterpenoid phenylpropanoids, altissmaphenylpropanoids A-B (2, 4), along with two known compounds (7, 8), were obtained from aqueous EtOH extracts of the root bark of Ailanthus altissima.
Collapse
Affiliation(s)
- Zhi-Kang Duan
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Bin Lin
- School of Pharmaceutical Engineering
- Shenyang Pharmaceutical University
- Shenyang 110016
- People's Republic of China
| | - Ye-Qin Du
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Chuan Li
- General Hospital of Northern Theater Command
- Shenyang 110016
- People's Republic of China
| | - Xiao-Qi Yu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Xiao-Bian Xue
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Qing-Bo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| | - Xiao-Xiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development
- Liaoning Province
- School of Traditional Chinese Materia Medica
- Shenyang Pharmaceutical University
- Shenyang 110016
| |
Collapse
|
17
|
Lončar M, Jakovljević M, Šubarić D, Pavlić M, Buzjak Služek V, Cindrić I, Molnar M. Coumarins in Food and Methods of Their Determination. Foods 2020; 9:E645. [PMID: 32443406 PMCID: PMC7278589 DOI: 10.3390/foods9050645] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 01/12/2023] Open
Abstract
Coumarin is a natural product with aromatic and fragrant characteristics, widespread in the entire plant kingdom. It is found in different plant sources such as vegetables, spices, fruits, and medicinal plants including all parts of the plants-fruits, roots, stems and leaves. Coumarin is found in high concentrations in certain types of cinnamon, which is one of the most frequent sources for human exposure to this substance. However, human exposure to coumarin has not been strictly determined, since there are no systematic measurements of consumption of cinnamon-containing foods. The addition of pure coumarin to foods is not allowed, since large amounts of coumarin can be hepatotoxic. However, according to the new European aroma law, coumarin may be present in foods only naturally or as a flavoring obtained from natural raw materials (as is the case with cinnamon). In this paper, the overview of the current European regulations on coumarin levels in food is presented, along with the most common coumarin food sources, with a special emphasis on cinnamon-containing food. Human exposure to coumarins in food is also reviewed, as well as the methods for determination and separation of coumarin and its derivatives in food.
Collapse
Affiliation(s)
- Mirjana Lončar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Martina Jakovljević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Drago Šubarić
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| | - Martina Pavlić
- Croatian Agency for Agriculture and Food, Vinkovačka cesta 63c, 31000 Osijek, Croatia; (M.P.); (V.B.S.)
| | - Vlatka Buzjak Služek
- Croatian Agency for Agriculture and Food, Vinkovačka cesta 63c, 31000 Osijek, Croatia; (M.P.); (V.B.S.)
| | - Ines Cindrić
- Karlovac University of Applied Sciences, Trg J. J. Strossmayera 9, 47000 Karlovac, Croatia;
| | - Maja Molnar
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (M.L.); (M.J.); (D.Š.)
| |
Collapse
|