1
|
Li XH, Lei JJ, Chi Y, Wang XP, Xiao YW, Sun Q, Zhang H. Cytotoxic limonoids from the barks of Chisocheton siamensis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025:1-8. [PMID: 40376883 DOI: 10.1080/10286020.2025.2501020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/18/2025]
Abstract
A phytochemical study of 90% methanol extract of the barks of Chisocheton siamensis afforded three undescribed limonoids, siamensisines A-C (1-3). The structures of the new compounds were elucidated by spectroscopic analysis (NMR, IR, UV, and MS). The isolated limonoids were tested in vitro for cytotoxic activities against 5 pancreatic cell lines. As a result, limonoid 3 exhibited some cytotoxic activities against all the tested tumor cell lines with IC50 values less than 20 μM.
Collapse
Affiliation(s)
- Xue-Hua Li
- Training Center for Clinical Skills and Medical Staff, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Jian-Jun Lei
- Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yang Chi
- Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Xin-Pei Wang
- Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Yu-Wei Xiao
- Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Qian Sun
- Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - He Zhang
- Training Center for Clinical Skills and Medical Staff, General Hospital of Northern Theater Command, Shenyang 110016, China
- Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang 110016, China
| |
Collapse
|
2
|
Wali AF, Pillai JR, Talath S, Shivappa P, Sridhar SB, El-Tanani M, Rangraze IR, Mohamed OI, Al Ani NN. Phytochemicals in Breast Cancer Prevention and Treatment: A Comprehensive Review. Curr Issues Mol Biol 2025; 47:30. [PMID: 39852145 PMCID: PMC11764082 DOI: 10.3390/cimb47010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
Extensive investigation has been conducted on plant-based resources for their pharmacological usefulness, including various cancer types. The scope of this review is wider than several studies with a particular focus on breast cancer, which is an international health concern while studying sources of flavonoids, carotenoids, polyphenols, saponins, phenolic compounds, terpenoids, and glycosides apart from focusing on nursing. Important findings from prior studies are synthesized to explore these compounds' sources, mechanisms of action, complementary and synergistic effects, and associated side effects. It was reviewed that the exposure to certain doses of catechins, piperlongumine, lycopene, isoflavones and cucurbitacinfor a sufficient period can provide profound anticancer benefits through biological events such as cell cycle arrest, cells undergoing apoptosis and disruption of signaling pathways including, but not limited to JAK-STAT3, HER2-integrin, and MAPK. Besides, the study also covers the potential adverse effects of these phytochemicals. Regarding mechanisms, the widest attention is paid to Complementary and synergistic strategies are discussed which indicate that it would be realistic to alter the dosage and delivery systems of liposomes, nanoparticles, nanoemulsions, and films to enhance efficacy. Future research directions include refining these delivery approaches, further elucidating molecular mechanisms, and conducting clinical trials to validate findings. These efforts could significantly advance the role of phytocompounds in breast cancer management.
Collapse
Affiliation(s)
- Adil Farooq Wali
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Jayachithra Ramakrishna Pillai
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Pooja Shivappa
- Translational Medicinal Research Centre, Department of Biochemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Sathvik Belagodu Sridhar
- Department of Clinical Pharmacy & Pharmacology, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Imran Rashid Rangraze
- RAK College of Medical Sciences, RAK Medical and Health Science University, Ras Al Khaimah 11172, United Arab Emirates;
| | - Omnia Ibrahim Mohamed
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| | - Nowar Nizar Al Ani
- Department of General Education, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates; (O.I.M.); (N.N.A.A.)
| |
Collapse
|
3
|
Aly SH, Elbadry AMM, Doghish AS, El-Nashar HAS. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5571-5596. [PMID: 38563878 PMCID: PMC11329582 DOI: 10.1007/s00210-024-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer is the most prevalent type of cancer, the fifth leading cause of cancer-related deaths, and the second leading cause of cancer deaths among women globally. Recent research has provided increasing support for the significance of phytochemicals, both dietary and non-dietary, particularly triterpenoids, in the mitigation and management of breast cancer. Recent studies showed that triterpenoids are promising agents in the treatment and inhibition of breast cancer achieved through the implementation of several molecular modes of action on breast cancer cells. This review discusses recent innovations in plant triterpenoids and their underlying mechanisms of action in combating breast cancer within the timeframe spanning from 2017 to 2023. The present work is an overview of different plant triterpenoids with significant inhibition on proliferation, migration, apoptosis resistance, tumor angiogenesis, or metastasis in various breast cancer cells. The anticancer impact of triterpenoids may be attributed to their antiproliferative activity interfering with angiogenesis and differentiation, regulation of apoptosis, DNA polymerase inhibition, change in signal transductions, and impeding metastasis. The present review focuses on several targets, mechanisms, and pathways associated with pentacyclic triterpenoids, which are responsible for their anticancer effects. We could conclude that natural triterpenoids are considered promising agents to conquer breast cancer.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt.
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Bailly C. Limonoids isolated from Chisocheton ceramicus Miq. and the antiadipogenic mechanism of action of ceramicine B. Arch Pharm (Weinheim) 2024; 357:e2400160. [PMID: 38678480 DOI: 10.1002/ardp.202400160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Different types of limonoids have been isolated from plants of the Chisocheton genus, notably from the species Chisocheton ceramicus Miq. which is largely distributed in the Indonesian archipelago and Malaysia region. A variety of natural products have been found in the bark of the tree and characterized as antimicrobial and/or antiproliferative agents. The isolated limonoids include chisomicines A-E, proceranolide, and a few other compounds. A focus is made on a large series of limonoids designated ceramicines A to Z including derivatives with antiparasitic activities, antioxidant, antimelanogenic, and antiproliferative effects and/or acting as regulators of lipogenesis. The lead compound in the series is ceramicine B functioning as a potent inhibitor of lipid droplet accumulation (LDA). Extracts from Chisocheton ceramicus and ceramicines have shown anti-LDA effects, with little or no cytotoxic effects. Ceramicine B is the most active compound functioning as a regulator of lipid storage in cells and tissues. Ceramicine B is a transcriptional repressor of peroxisome proliferator-activated receptor γ (PPARγ) and an inhibitor of phosphorylation of the transcription factor FoxO1, acting via an upstream molecular target. Targeting of glycogen synthase kinase-3β is proposed, based on the analogy with structurally related limonoids known to target this enzyme, and supported by a molecular docking analysis. The target and pathway implicated in ceramicine B activity are discussed. The analysis shed light on ceramicine B as a natural product precursor for the design of novel compounds capable of reducing LDA in cells and of potential interest for the treatment of obesity, liver diseases, and other pathologies.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Lille, France
- OncoWitan, Scientific Consulting Office, Lille, France
| |
Collapse
|
5
|
Sianipar NF, Hadisaputri YE, Assidqi K, Salam S, Yusuf M, Destiarani W, Purnamaningsih R, So IG, Takara K, Asikin Y. In silico and in vitro Characterizations of Rodent Tuber (Typhonium flagelliforme) Mutant Plant Isolates against FXR Receptor on MCF-7 Cells. J Oleo Sci 2024; 73:1349-1360. [PMID: 39358218 DOI: 10.5650/jos.ess24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Typhonium flagelliforme (T. flagelliforme) is an Indonesian rodent tuber plant traditionally used to treat cancer diseases. Although gamma-ray irradiation has been used to increase the content in the chemical compounds of the T. flagelliforme plants with anticancer activity ten times effective, the specific effect of the isolated compounds from the mutant plants has never been reported yet. The potential cytotoxic agents were characterized via nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry as stigmasterol and 7α-hydroxyl stigmasterol; and their anticancer activity was investigated. The in silico biochemical profile of the two compounds were analyzed by molecular docking and molecular dynamics simulation to confirm its interaction with the agonist binding site of Farsenoid X receptor (FXR). Stigmasterol and 7α-hydroxyl stigmasterol can act as a competitive regulator with a high-affinity for the FXR. The results also showed that stigmasterol and 7α-hydroxyl stigmasterol were the most potential and active fraction of the T. flagelliforme mutant plant against the MCF-7 human breast cancer cell line, with IC 50 value 9.13 µM and 12.97 µM, compared with cisplastin as a control about 13.20 µM. These results demonstrate the potential of stigmasterol and 7α-hydroxyl stigmasterol in T. flagelliforme mutant plants to act towards cancer diseases.
Collapse
Affiliation(s)
- Nesti Fronika Sianipar
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University
- Food Biotechnology Research Center, Bina Nusantara University
| | - Yuni Elsa Hadisaputri
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran
| | - Khoirunnisa Assidqi
- Biotechnology Department, Faculty of Engineering, Bina Nusantara University
- Food Biotechnology Research Center, Bina Nusantara University
| | | | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran
| | - Wanda Destiarani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran
| | | | - Idris Gautama So
- Management Department, Binus Business School, Undergraduate Program, Bina Nusantara University
| | - Kensaku Takara
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
| | - Yonathan Asikin
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus
- The United Graduate School of Agricultural Sciences, Kagoshima University
| |
Collapse
|
6
|
Amang à Ngnoung GA, Nganso Ditchou YO, Leutcha PB, Dize D, Tatsimo SJN, Tchokouaha LRY, Kowa TK, Tembeni B, Mamoudou H, Poka M, Demana PH, Siwe Noundou X, Fekam Boyom F, Meli Lannang A. Antiplasmodial and Antileishmanial Activities of a New Limonoid and Other Constituents from the Stem Bark of Khaya senegalensis. Molecules 2023; 28:7227. [PMID: 37894704 PMCID: PMC10609173 DOI: 10.3390/molecules28207227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plasmodium falciparum and Leishmania sp. resistance to antiparasitic drugs has become a major concern in malaria and leishmaniasis control. These diseases are public health problems with significant socioeconomic impacts, and mostly affect disadvantaged populations living in remote tropical areas. This challenge emphasizes the need to search for new chemical scaffolds that preferably possess novel modes of action to contribute to antimalarial and antileishmanial research programs. This study aimed to investigate the antimalarial and antileishmanial properties of a methanol extract (KS-MeOH) of the stem bark of the Cameroonian medicinal plant Khaya senegalensis and its isolated compounds. The purification of KS-MeOH led to the isolation of a new ordered limonoid derivative, 21β-hydroxybourjotinolone A (1a), together with 15 known compounds (1bc-14) using a repeated column chromatography. Compound 1a was obtained in an epimeric mixture of 21α-melianodiol (1b) and 21β-melianodiol (1c). Structural characterization of the isolated compounds was achieved with HRMS, and 1D- and 2D-NMR analyses. The extracts and compounds were screened using pre-established in vitro methods against synchronized ring stage cultures of the multidrug-resistant Dd2 and chloroquine-sensitive/sulfadoxine-resistant 3D7 strains of Plasmodium falciparum and the promastigote form of Leishmania donovani (1S(MHOM/SD/62/1S). In addition, the samples were tested for cytotoxicity against RAW 264.7 macrophages. Positive controls consisted of artemisinin and chloroquine for P. falciparum, amphotericin B for L. donovani, and podophyllotoxin for cytotoxicity against RAW 264.7 cells. The extract and fractions exhibited moderate to potent antileishmanial activity with 50% inhibitory concentrations (IC50) ranging from 5.99 ± 0.77 to 2.68 ± 0.42 μg/mL, while compounds displayed IC50 values ranging from 81.73 ± 0.12 to 6.43 ± 0.06 μg/mL. They were weakly active against the chloroquine-sensitive/sulfadoxine-resistant Pf3D7 strain but highly potent toward the multidrug-resistant PfDd2 (extracts, IC50 2.50 ± 0.12 to 4.78 ± 0.36 μg/mL; compounds IC50 2.93 ± 0.02 to 50.97 ± 0.37 μg/mL) with selectivity indices greater than 10 (SIDd2 > 10) for the extract and fractions and most of the derived compounds. Of note, the limonoid mixture [21β-hydroxylbourjotinolone A (1a) + 21α-melianodiol (1b) + 21β-melianodiol (1c)] exhibited moderate activity against P. falciparum and L. donovani. This novel antiplasmodial and antileishmanial chemical scaffold qualifies as a promising starting point for further medicinal chemistry-driven development of a dually active agent against two major infectious diseases affecting humans in Africa.
Collapse
Affiliation(s)
- Gabrielle Ange Amang à Ngnoung
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (G.A.A.à.N.); (P.B.L.)
| | - Yves Oscar Nganso Ditchou
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (G.A.A.à.N.); (P.B.L.)
| | - Peron Bosco Leutcha
- Department of Chemistry, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon; (G.A.A.à.N.); (P.B.L.)
- Natural Product and Environmental Chemistry Group (NAPEC), Department of Chemistry, Higher Teachers’ Training College, University of Maroua, Maroua P.O. Box 55, Cameroon; (S.J.N.T.); (A.M.L.)
| | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon; (D.D.); (F.F.B.)
| | - Simplice Joël Ndendoung Tatsimo
- Natural Product and Environmental Chemistry Group (NAPEC), Department of Chemistry, Higher Teachers’ Training College, University of Maroua, Maroua P.O. Box 55, Cameroon; (S.J.N.T.); (A.M.L.)
| | - Lauve Rachel Yamthe Tchokouaha
- Laboratory of Pharmacology, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé P.O. Box 13033, Cameroon;
| | - Theodora Kopa Kowa
- Laboratory of Phytochemistry, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé P.O. Box 13033, Cameroon;
| | - Babalwa Tembeni
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (B.T.); (M.P.); (P.H.D.)
| | - Hamadou Mamoudou
- Department of Biological Sciences, Faculty of Science, University of Maroua, Maroua P.O. Box 814, Cameroon;
| | - Madan Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (B.T.); (M.P.); (P.H.D.)
| | - Patrick Hulisani Demana
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (B.T.); (M.P.); (P.H.D.)
| | - Xavier Siwe Noundou
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa; (B.T.); (M.P.); (P.H.D.)
| | - Fabrice Fekam Boyom
- Antimicrobial and Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon; (D.D.); (F.F.B.)
- Laboratory of Pharmacology, Centre for Research on Medicinal Plants and Traditional Medicine, Institute of Medical Research and Medicinal Plants Studies, Yaoundé P.O. Box 13033, Cameroon;
- Advanced Research and Health Innovation Hub (ARHIH), Yaoundé P.O. Box 20133, Cameroon
| | - Alain Meli Lannang
- Natural Product and Environmental Chemistry Group (NAPEC), Department of Chemistry, Higher Teachers’ Training College, University of Maroua, Maroua P.O. Box 55, Cameroon; (S.J.N.T.); (A.M.L.)
- Department of Chemical Engineering, School of Chemical Engineering and Mineral Industries, University of Ngaoundere, Ngaoundere P.O. Box 454, Cameroon
| |
Collapse
|
7
|
Dube NP, Tembu VJ, Nyemba GR, Davison C, Rakodi GH, Kemboi D, de la Mare JA, Siwe-Noundou X, Manicum ALE. In vitro cytotoxic effect of stigmasterol derivatives against breast cancer cells. BMC Complement Med Ther 2023; 23:316. [PMID: 37697361 PMCID: PMC10496295 DOI: 10.1186/s12906-023-04137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Stigmasterol is an unsaturated phytosterol that belong to the class of tetracyclic steroids abundant in Rhoicissus tridentata. Stigmasterol is an important constituent since it has shown impressive pharmacological effects such as anti-osteoarthritis, anticancer, anti-diabetic, anti-inflammatory, antiparasitic, immunomodulatory, antifungal, antioxidant, antibacterial, and neuroprotective activities. Furthermore, due to the presence of π system and hydroxyl group, stigmasterol is readily derivatized through substitution and addition reactions, allowing for the synthesis of a wide variety of stigmasterol derivatives. METHODS Stigmasterol (1) isolated from Rhoicissus tridentata was used as starting material to yield eight bio-active derivatives (2-9) through acetylation, epoxidation, epoxide ring opening, oxidation, and dihydroxylation reactions. The structures of all the compounds were established using spectroscopic techniques, NMR, IR, MS, and melting points. The synthesized stigmasterol derivatives were screened for cytotoxicity against the hormone receptor-positive breast cancer (MCF-7), triple-negative breast cancer (HCC70), and non-tumorigenic mammary epithelial (MCF-12 A) cell lines using the resazurin assay. RESULTS Eight stigmasterol derivatives were successfully synthesized namely; Stigmasterol acetate (2), Stigmasta-5,22-dien-3,7-dione (3), 5,6-Epoxystigmast-22-en-3β-ol (4), 5,6-Epoxystigmasta-3β,22,23-triol (5), Stigmastane-3β,5,6,22,23-pentol (6), Stigmasta-5-en-3,7-dion-22,23-diol (7), Stigmasta-3,7-dion-5,6,22,23-ol (8) and Stigmast-5-ene-3β,22,23-triol (9). This is the first report of Stigmasta-5-en-3,7-dion-22,23-diol (7) and Stigmasta-3,7-dion-5,6,22,23-ol (8). The synthesized stigmasterol analogues showed improved cytotoxic activity overall compared to the stigmasterol (1), which was not toxic to the three cell lines tested (EC50 ˃ 250 µM). In particular, 5,6-Epoxystigmast-22-en-3β-ol (4) and stigmast-5-ene-3β,22,23-triol (9) displayed improved cytotoxicity and selectivity against MCF-7 breast cancer cells (EC50 values of 21.92 and 22.94 µM, respectively), while stigmastane-3β,5,6,22,23-pentol (6) showed improved cytotoxic activity against the HCC70 cell line (EC50: 16.82 µM). CONCLUSION Natural products from Rhoicissus tridentata and their derivatives exhibit a wide range of pharmacological activities, including anticancer activity. The results obtained from this study indicate that molecular modification of stigmasterol functional groups can generate structural analogues with improved anticancer activity. Stigmasterol derivatives have potential as candidates for novel anticancer drugs.
Collapse
Affiliation(s)
- Nondumiso Premilla Dube
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Vuyelwa Jacqueline Tembu
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
| | - Getrude R Nyemba
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda/Grahamstown, 6140, South Africa
| | - Candace Davison
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda/Grahamstown, 6140, South Africa
| | | | - Douglas Kemboi
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa
- Department of Physical Sciences, University of Kabianga, Kericho, 2030, Kenya
| | - Jo-Anne de la Mare
- Department of Biochemistry and Microbiology, Female Cancers Research at Rhodes University (FemCR2U), Makhanda/Grahamstown, 6140, South Africa
| | - Xavier Siwe-Noundou
- Department of Pharmaceutical Sciences, Sefako Makgatho Health Sciences University, Pretoria, 0204, South Africa
| | - Amanda-Lee Ezra Manicum
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa.
| |
Collapse
|
8
|
A New Oleanane-Type Triterpenoid from the Fruits of Chisocheton macrophyllus. Chem Nat Compd 2023. [DOI: 10.1007/s10600-023-03922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
Parulian SS, Naini AA, Hilmayanti E, Farabi K, Harneti D, Mayanti T, Maharani R, Herlina T, Supratman U, Anwar R, Fajriah S, Azmi MN, Prescott T, Shiono Y. Tirucallane-type triterpenoid from the stem bark of Chisocheton lasiocarpus and its cytotoxic activity against MCF-7 breast cancer cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022:1-7. [PMID: 36409205 DOI: 10.1080/10286020.2022.2143353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Chisocarpene A (1) is a new tirucallane-type triterpenoid together with odoratone (2) and 24-methylenecycloartanol (3), isolated from the stem bark of Chisocheton lasiocarpus. The chemical structures of compounds 1-3 were elucidated through a detailed analysis of their spectroscopic data (IR, MS, 1 D, and 2 D NMR). The isolated compounds were evaluated for cytotoxic activity against the MCF-7 breast cancer cell line using a resazurin-based assay. Compound 1 showed the most potent activity (IC50 26.56 ± 1.01 µM) and was two-fold more active than the positive control.
Collapse
Affiliation(s)
- Samuel San Parulian
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Al Arofatus Naini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Erina Hilmayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Desi Harneti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Tri Mayanti
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Rani Maharani
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Tati Herlina
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Unang Supratman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Central Laboratory, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Risyandi Anwar
- Herbal Medicine Research, Department of Pediatric Dentistry, Faculty of Dental Medicine, University of Muhammadiyah Semarang, Semarang 50272, Indonesia
| | - Sofa Fajriah
- Research Center for Chemistry, National Research and Innovation Agency (BRIN) Kawasan PUSPIPTEK Serpong Tangeran Selatan, Banten 15314, Indonesia
| | - Mohamad Nurul Azmi
- School of Chemical Sciences, Universiti Sains Malaysia, Minden 11800, Malaysia
| | - Thomas Prescott
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, United Kingdom
| | - Yoshihito Shiono
- Department of Food, Life, and Environmental Science, Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan
| |
Collapse
|
10
|
In Vitro Pharmacological Screening of Essential Oils from Baccharis parvidentata and Lippia origanoides Growing in Brazil. Molecules 2022; 27:molecules27061926. [PMID: 35335288 PMCID: PMC8953750 DOI: 10.3390/molecules27061926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, the in vitro antimicrobial, antiparasitic, antiproliferative and cytotoxic activities of essential oil from Baccharis parvidentata Malag. (EO-Bp) and Lippia origanoides Kunth (EO-Lo) were explored. The relevant effects were observed against the parasitic protozoans Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei and Leishmania amazonensis (ranging 0.6 to 39.7 µg/mL) and malignant MCF-7, MCF-7/HT, 22Rv1, and A431 cell lines (ranging 6.1 to 31.5 µg/mL). In parallel, EO-Bp showed better selective indexes in comparison with EO-Lo against peritoneal macrophages from BALB/c mice and MRC-5 cell line. In conclusion, EO-Lo is known to show a wide range of health benefits that could be added as another potential use of this oil with the current study. In the case of EO-Bp, the wide spectrum of its activities against protozoal parasites and malignant cells, as well as its selectivity in comparison with non-malignant cells, could suggest an interesting candidate for further tests as a new therapeutic alternative.
Collapse
|