1
|
Guo L, Yang Y, Yang L, Sun P, He J, Fu S, Ye C, Zong B, Qiu Y. Comparative study of the effects of baicalin and probenecid on microRNA expression profiles in porcine aortic vascular endothelial cells infected by Glaesserella parasuis. BMC Vet Res 2025; 21:237. [PMID: 40176019 PMCID: PMC11963612 DOI: 10.1186/s12917-025-04702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 03/20/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND Glaesserella parasuis elicits severe inflammatory responses and vascular damage, thus resulting in high mortality and morbidity in pigs; consequently, early diagnosis and treatment are critical to controlling economic losses. MicroRNAs (miRNAs) have been demonstrated to be involved in vascular endothelial inflammation. Baicalin is an effective Chinese medicinal herb with anti-microbial, anti-inflammatory, and anti-oxidant activity. Probenecid has activity toward multiple mammalian biological processes. Herein, we compared the effects of baicalin and probenecid on the miRNA expression profiles of porcine aortic vascular endothelial cells (PAVECs) infected with G. parasuis. RESULTS We identified 277 known miRNAs and 540 novel miRNAs. Twelve miRNAs were significantly differentially expressed in PAVECs after G. parasuis infection. Both baicalin and probenecid affected the miRNA expression profiles in G. parasuis-infected PAVECs but showed different modulation patterns. Ssc-miR-27b-5p and ssc-miR-1842 were the top differentially expressed miRNAs (DEmiRNAs) in baicalin group comparing to control group. Ssc-miR-9851-3p and ssc-miR-1296-5p were the top DEmiRNAs in probenecid group. And Ssc-miR-127, ssc-miR-1842, and ssc-miR-9810-3p were the top DEmiRNAs between the baicalin group and probenecid group, as validated by qRT-PCR. The target genes of DEmiRNAs between various groups were subjected to KEGG and GO enrichment analyses. Hematopoietic cell lineage, insulin resistance, and AMPK signaling pathway were the top significantly enriched pathways associated with the target genes of DEmiRNAs in G. parasuis-infected PAVECs pretreated with baicalin; in contrast, B cell receptor, T cell receptor, and HIF-1 signaling pathways predominated in G. parasuis-infected PAVECs treated with probenecid. We additionally constructed co-expression and protein-protein interaction networks based on the differentially expressed target genes of miR-127, miR-1842, and miR-9810-3p. CONCLUSION Our findings suggested that baicalin and probenecid regulated miRNAs associated with vascular inflammation and damage, but showed different modulation patterns. This report provided the first comparison of the effects of baicalin and probenecid on G. parasuis-infected PAVECs, and might aid in the development of novel biomarkers and therapeutic targets to control G. parasuis infection.
Collapse
Affiliation(s)
- Ling Guo
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Yaqiong Yang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Linrong Yang
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Peiyan Sun
- School of Animal Science and Nutritional Engineering, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Wuhan Polytechnic University, Wuhan, Hubei, 430023, People's Republic of China
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan, Hubei, 430023, PR China
| | - Jing He
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Bingbing Zong
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| |
Collapse
|
2
|
Peng X, Tan X, Dai L, Xia W, Wu Z. Exploring the impact of Apelin and Reactive Oxygen Species on autophagy and cell senescence in pre-eclampsia. Free Radic Res 2025; 59:23-48. [PMID: 39714262 DOI: 10.1080/10715762.2024.2446337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
This research investigates the interplay between Reactive Oxygen Species (ROS) and Apelin (APLN) in regulating autophagy, with implications for placental cell senescence and apoptosis in pre-eclampsia (PE). We manipulated APLN expression using sgRNA to study its effects on ROS levels and subsequent cellular responses. Our findings reveal that APLN overexpression elevates ROS production, accelerating cellular senescence and apoptosis. In contrast, silencing APLN enhances autophagy, thereby diminishing cellular aging and apoptosis. These outcomes were confirmed in vitro and in vivo experiments, establishing a causative relationship between ROS-mediated APLN modulation and altered placental cell dynamics in PE. The results suggest potential therapeutic targets within the ROS and APLN pathways to alleviate detrimental changes in the placenta, offering new strategies for the clinical management of PE. This study emphasizes the crucial role of autophagy in placental health and sets the stage for future investigations into therapeutic interventions for pregnancy-related complications.
Collapse
Affiliation(s)
- Xue Peng
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xi Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Li Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Wei Xia
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Zhao Wu
- Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Ajmeriya S, Kashyap N, Gul A, Ahirwar A, Singh S, Tripathi S, Dhar R, Nayak NR, Karmakar S. Aberrant expression of solute carrier family transporters in placentas associated with pregnancy complications. Placenta 2025; 159:9-19. [PMID: 39602836 DOI: 10.1016/j.placenta.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/01/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Solute carrier family transporters (SLCs), crucial for nutrient and trace element uptake in the placenta, play a significant role in fetal growth and development. Their dysregulation is associated with various pregnancy disorders. However, a comprehensive understanding of their role and regulation in placental function and pregnancy complications is still a largely unexplored area, making this study novel and significant. METHODS We performed a rigorous meta-analysis of publicly available NCBI GEO microarray and RNA-Seq datasets followed by bioinformatics analysis of differentially expressed SLCs in PE and IUGR. The identified SLCs were then validated using qPCR on PE placental samples, ensuring the reliability and validity of the findings. RESULTS Bioinformatics analysis of preeclampsia (PE) and Intrauterine Growth restriction (IUGR) datasets revealed significant associations between specific SLC transporters with disease pathology, identified by studying differentially expressed SLCs. Subsequent validation using qPCR on placental samples confirmed considerable downregulation of SLC6A8, SLC16A10, SLC25A3, and SLC29A3, highlighting their dysregulation in the pathogenesis of PE and IUGR. DISCUSSION The significant downregulation of SLC6A8, SLC16A10, SLC25A3, and SLC29A3 observed by bioinformatics analyses and validated by qPCR indicates atypical expression of these SLCs in gestational disorders. Our findings underscore the potential contribution of multiple SLC gene families to the development of placental pathologies associated with diverse pregnancy complications.
Collapse
Affiliation(s)
- Swati Ajmeriya
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Neha Kashyap
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Anamta Gul
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Ashok Ahirwar
- Department of Laboratory Medicine, AIl India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, 110029, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, University of Missouri, Kansas City, USA
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
4
|
Corti G, Kim J, Enguita FJ, Guarnieri JW, Grossman LI, Costes SV, Fuentealba M, Scott RT, Magrini A, Sanders LM, Singh K, Sen CK, Juran CM, Paul AM, Furman D, Calleja-Agius J, Mason CE, Galeano D, Bottini M, Beheshti A. To boldly go where no microRNAs have gone before: spaceflight impact on risk for small-for-gestational-age infants. Commun Biol 2024; 7:1268. [PMID: 39369042 PMCID: PMC11455966 DOI: 10.1038/s42003-024-06944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
In the era of renewed space exploration, comprehending the effects of the space environment on human health, particularly for deep space missions, is crucial. While extensive research exists on the impacts of spaceflight, there is a gap regarding female reproductive risks. We hypothesize that space stressors could have enduring effects on female health, potentially increasing risks for future pregnancies upon return to Earth, particularly related to small-for-gestational-age (SGA) fetuses. To address this, we identify a shared microRNA (miRNA) signature between SGA and the space environment, conserved across humans and mice. These miRNAs target genes and pathways relevant to diseases and development. Employing a machine learning approach, we identify potential FDA-approved drugs to mitigate these risks, including estrogen and progesterone receptor antagonists, vitamin D receptor antagonists, and DNA polymerase inhibitors. This study underscores potential pregnancy-related health risks for female astronauts and proposes pharmaceutical interventions to counteract the impact of space travel on female health.
Collapse
Affiliation(s)
- Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra M Juran
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, MF9M + 958, San Lorenzo, Paraguay
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Space Biomedicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Ramzan F, Rong J, Roberts CT, O'Sullivan JM, Perry JK, Taylor R, McCowan L, Vickers MH. Maternal Plasma miRNAs as Early Biomarkers of Moderate-to-Late-Preterm Birth. Int J Mol Sci 2024; 25:9536. [PMID: 39273483 PMCID: PMC11394737 DOI: 10.3390/ijms25179536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Globally, preterm birth (PTB) is a primary cause of mortality and morbidity in infants, with PTB rates increasing worldwide over the last two decades. Biomarkers for accurate early prediction of PTB before the clinical event do not currently exist. Given their roles in the development and progression of many disease states, there has been increasing interest in the utility of microRNAs (miRNAs) as early biomarkers for pregnancy-related disorders, including PTB. The present study was designed to examine potential differences in miRNA abundances in maternal plasma from mothers with infants born following a moderate to late (28-36 weeks' gestation, n = 54) spontaneous PTB (SPTB) compared to mothers with matched term infants (n = 54). Maternal plasma collected at 15 weeks' gestation were utilised from the Auckland and Adelaide cohorts from the Screening for Pregnancy Endpoints (SCOPE) study. miRNAs in plasma were quantified using the NanoString nCounter expression panel (800 miRNAs). The top four most abundant miRNAs were significantly decreased in the plasma of mothers in the SPTB group with results consistent across both cohorts and pathway analysis was undertaken to examine the biological processes linked to the dysregulated miRNAs. The top candidate miRNAs (miRs-451a, -223-3p, let-7a-5p, and -126-3p) were linked to gene pathways associated with inflammation, apoptosis, and mitochondrial biogenesis. Moreover, miRNAs were consistently less abundant in the plasma of mothers of preterm infants across both sites, suggesting potential global dysregulation in miRNA biogenesis. This was supported by a significant downregulation in expression of key genes that are involved in miRNA biogenesis (DROSHA, DICER, and AGO2) across both sites in the SPTB group. In summary, the present study has identified miRNAs in maternal plasma that may provide predictive utility as early biomarkers for the risk of later SPTB. Importantly, these observations were conserved across two independent cohorts. Further, our data provide evidence for a persistent decrease in miRNA abundance in mothers who later experienced an SPTB, which is likely to have widespread consequences for gene regulation and epigenetic processes.
Collapse
Affiliation(s)
- Farha Ramzan
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Jing Rong
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Claire T Roberts
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5001, Australia
| | - Justin M O'Sullivan
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| | - Rennae Taylor
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland 1142, New Zealand
| | - Lesley McCowan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland 1142, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
6
|
He A, Yip KC, Lu D, Liu J, Zhang Z, Wang X, Liu Y, Wei Y, Zhang Q, Yan R, Gao F, Li R. Construction of a pathway-level model for preeclampsia based on gene expression data. Hypertens Res 2024; 47:2521-2531. [PMID: 38914704 DOI: 10.1038/s41440-024-01753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024]
Abstract
Preeclampsia (PE) is a heterogeneous disease that seriously affects the health of mothers and fetuses. Lack of detection assays, its diagnosis and intervention are often delayed when the clinical symptoms are atypical. Using personalized pathway-based analysis and machine learning algorithms, we built a PE diagnosis model consisting of nine core pathways using multiple cohorts from the Gene Expression Omnibus database. The model showed an area under the receiver operating characteristic (AUROC) curve of 0.959 with the data from the placental tissue samples in the development cohort. In the two validation cohorts, the AUROCs were 0.898 and 0.876, respectively. The model also performed well with the maternal plasma data in another validation cohort (AUROC: 0.815). Moreover, we identified tyrosine-protein kinase Lck (LCK) as the hub gene in this model and found that LCK and pLCK proteins were downregulated in placentas from PE patients. The pathway-level model for PE can provide a novel direction to develop molecular diagnostic assay and investigate potential mechanisms of PE in future studies.
Collapse
Affiliation(s)
- Andong He
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Ka Cheuk Yip
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Daiqiang Lu
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jia Liu
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Zunhao Zhang
- Department of Pathology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiufang Wang
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Yifeng Liu
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yiling Wei
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China
| | - Qiao Zhang
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Ruiling Yan
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China.
| | - Feng Gao
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Ruiman Li
- Department of Obstetrics and Gynecology, Jinan University First Affiliated Hospital, Guangzhou, 510630, China.
| |
Collapse
|
7
|
Yang Z, Luo X, Huang B, Jia X, Luan X, Shan N, An Z, Cao J, Qi H. Altered distribution of fatty acid exerting lipid metabolism and transport at the maternal-fetal interface in fetal growth restriction. Placenta 2023; 139:159-171. [PMID: 37406553 DOI: 10.1016/j.placenta.2023.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is a common complication of pregnancy. Lipid metabolism and distribution may contribute to the progression of FGR. However, the metabolism-related mechanisms of FGR remain unclear. The aim of this study was to identify metabolic profiles associated with FGR, as well as probable genes and signaling pathways. METHODS Metabolomic profiles at the maternal-fetal interface (including the placenta, maternal and fetal serum) from pregnant women with (n = 35) and without (n = 35) FGR were analyzed by gas chromatography-mass spectrometry (GC-MS). Combined with differentially expressed genes (DEGs) from the GSE35574 dataset, analysis was performed for differential metabolites, and identified by the Metabo Analyst dataset. Finally, the pathology and screened DEGs were further identified. RESULTS The results showed that fatty acids (FAs) accumulated in the placenta and decreased in fetal blood in FGR cases compared to controls. The linoleic acid metabolism was the focus of placental differential metabolites and genes enrichment analysis. In this pathway, phosphatidylcholine can interact with PLA2G2A and PLA2G4C, and 12(13)-EpOME can interact with CYP2J2. PLA2G2A and CYP2J2 were elevated, and PLA2G4C was decreased in the FGR placenta. DISCUSSION In conclusion, accumulation of FAs in the placental ischemic environments, may involve linoleic acid metabolism, which may be regulated by PLA2G2A, CYP2J2, and PLA2G4C. This study may contribute to understanding the underlying metabolic and molecular mechanisms of FGR.
Collapse
Affiliation(s)
- Zhongmei Yang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; The Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Xiaofang Luo
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Biao Huang
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Xiaoyan Jia
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Xiaojin Luan
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Nan Shan
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Zhongling An
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Jinfeng Cao
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, 400016, China
| | - Hongbo Qi
- The Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, China; Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
| |
Collapse
|
8
|
Sundrani D, Karkhanis A, Randhir K, Panchanadikar T, Joshi S. MicroRNAs targeting peroxisome proliferator-activated receptor (PPAR) gene are differentially expressed in low birth weight placentae. Placenta 2023; 139:51-60. [PMID: 37311266 DOI: 10.1016/j.placenta.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Peroxisome proliferator-activated receptors (PPARs) are activated by natural ligands like fatty acids and influence placental angiogenesis and pregnancy outcome. However, the underlying molecular mechanisms are not clear. This study aims to investigate the association of maternal and placental fatty acid levels with DNA methylation and microRNA regulation of PPARs in the placentae of women delivering low birth weight (LBW) babies. METHODS This study includes 100 women delivering normal birth weight (NBW) baby and 70 women delivering LBW baby. Maternal and placental fatty acids levels were estimated by gas chromatograph. Gene promoter methylation and mRNA expression of PPARs was analyzed using Epitect Methyl-II PCR assay kit and RT-PCR respectively. Expression of miRNAs targeting PPAR mRNA were analyzed using a Qiagen miRCURY LNA PCR Array on RT-PCR. RESULTS Placental docosahexaenoic acid (DHA) levels and placental mRNA expression of PPARα and PPARγ were lower (p < 0.05 for all) in the LBW group. Differential expression of miRNAs (upregulated miR-33a-5p and miR-22-5p; downregulated miR-301a-5p, miR-518d-5p, miR-27b-5p, miR-106a-5p, miR-21-5p, miR-548d-5p, miR-17-5p and miR-20a-5p) (p < 0.05 for all) was observed in the LBW group. Maternal and placental polyunsaturated fatty acids and total omega-3 fatty acids were positively associated while saturated fatty acids were negatively associated with expression of miRNAs (p < 0.05 for all). Placental expression of miRNAs were positively associated with birth weight (p < 0.05 for all). DISCUSSION Our data suggests that maternal fatty acid status is associated with changes in the placental expression of miRNAs targeting PPAR gene in women delivering LBW babies.
Collapse
Affiliation(s)
- Deepali Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India.
| | - Aishwarya Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Karuna Randhir
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Tushar Panchanadikar
- Department of Obstetrics and Gynecology, Bharati Medical College and Hospital, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth (Deemed to be University), Pune, 411043, India
| |
Collapse
|
9
|
Yang X, Yu L, Ding Y, Yang M. Diagnostic signature composed of seven genes in HIF-1 signaling pathway for preeclampsia. BMC Pregnancy Childbirth 2023; 23:233. [PMID: 37020283 PMCID: PMC10074875 DOI: 10.1186/s12884-023-05559-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
PURPOSE In this study, we explored the relationship of genes in HIF-1 signaling pathway with preeclampsia and establish a logistic regression model for diagnose preeclampsia using bioinformatics analysis. METHOD Two microarray datasets GSE75010 and GSE35574 were downloaded from the Gene Expression Omnibus database, which was using for differential expression analysis. DEGs were performed the Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene set enrichment analysis (GSEA). Then we performed unsupervised consensus clustering analysis using genes in HIF-1 signaling pathway, and clinical features and immune cell infiltration were compared between these clusters, as well as the least absolute shrinkage and selection operator (LASSO) method to screened out key genes to constructed logistic regression model, and receiver operating characteristic (ROC) curve was plotted to evaluate the accuracy of the model. RESULTS 57 DEGs were identified, of which GO, KEGG and analysis GSEA showed DEGs were mostly involved in HIF-1 signaling pathway. Two subtypes were identified of preeclampsia and 7 genes in HIF1-signaling pathway were screened out to establish the logistic regression model for discrimination preeclampsia from controls, of which the AUC are 0.923 and 0.845 in training and validation datasets respectively. CONCLUSION Seven genes (including MKNK1, ARNT, FLT1, SERPINE1, ENO3, LDHA, BCL2) were screen out to build potential diagnostic model of preeclampsia.
Collapse
Affiliation(s)
- Xun Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Ling Yu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Yiling Ding
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China
| | - Mengyuan Yang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
10
|
Ashraf UM, Hall DL, Campbell N, Waller JP, Rawls AZ, Solise D, Cockrell K, Bidwell GL, Romero DG, Ojeda NB, LaMarca B, Alexander BT. Inhibition of the AT 1R agonistic autoantibody in a rat model of preeclampsia improves fetal growth in late gestation. Am J Physiol Regul Integr Comp Physiol 2022; 323:R670-R681. [PMID: 36121142 PMCID: PMC9602704 DOI: 10.1152/ajpregu.00122.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 02/07/2023]
Abstract
Placenta ischemia, the initiating event in preeclampsia (PE), is associated with fetal growth restriction. Inhibition of the agonistic autoantibody against the angiotensin type 1 receptor AT1-AA, using an epitope-binding inhibitory peptide ('n7AAc') attenuates increased blood pressure at gestational day (G)19 in the clinically relevant reduced uterine perfusion pressure (RUPP) model of PE. Thus we tested the hypothesis that maternal administration of 'n7AAc' does not transfer to the fetus, improves uterine blood flow and fetal growth, and attenuates elevated placental expression of miRNAs implicated in PE and FGR. Sham or RUPP surgery was performed at G14 with vehicle or 'n7AAc' (144 µg/day) administered via an osmotic pump from G14 to G20. Maternal plasma levels of the peptide on G20 were 16.28 ± 4.4 nM, and fetal plasma levels were significantly lower at 1.15 ± 1.7 nM (P = 0.0007). The uterine artery resistance index was significantly elevated in RUPP (P < 0.0001) but was not increased in 'n7AAc'-RUPP or 'n7AAc'-Sham versus Sham. A significant reduction in fetal weight at G20 in RUPP (P = 0.003) was not observed in 'n7AAc'-RUPP. Yet, percent survival was reduced in RUPP (P = 0.0007) and 'n7AAc'-RUPP (P < 0.0002). Correlation analysis indicated the reduction in percent survival during gestation was specific to the RUPP (r = 0.5342, P = 0.043) and independent of 'n7AAc'. Placental miR-155 (P = 0.0091) and miR-181a (P = 0.0384) expression was upregulated in RUPP at G20 but was not elevated in 'n7AAc'-RUPP. Collectively, our results suggest that maternal administration of 'n7AAc' does not alter fetal growth in the RUPP implicating its potential as a therapeutic for the treatment of PE.NEW & NOTEWORTHY The seven amino acid inhibitory peptide to the AT1-AA ('n7AAc') has limited transfer to the fetus at gestational day 20, improves uterine blood flow and fetal growth in the reduced uterine perfusion pressure model of preeclampsia (PE), and does not impair fetal survival during gestation in sham-operated or placental ischemic rats. Collectively, these findings suggest that maternal administration of 'n7AAc' as an effective strategy for the treatment of PE is associated with improved outcomes in the fetus.
Collapse
Affiliation(s)
- Usman M Ashraf
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Nathan Campbell
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jamarius P Waller
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Adam Z Rawls
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Dylan Solise
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kathy Cockrell
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Gene L Bidwell
- Department of Neurology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Damian G Romero
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Barbara T Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Kochhar P, Vukku M, Rajashekhar R, Mukhopadhyay A. microRNA signatures associated with fetal growth restriction: a systematic review. Eur J Clin Nutr 2022; 76:1088-1102. [PMID: 34741137 DOI: 10.1038/s41430-021-01041-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022]
Abstract
Placental-origin microRNA (miRNA) profiles can be useful toward early diagnosis and management of fetal growth restriction (FGR) and associated complications. We conducted a systematic review to identify case-control studies that have examined miRNA signatures associated with human FGR. We systematically searched PubMed and ScienceDirect databases for relevant articles and manually searched reference lists of the relevant articles till May 18th, 2021. Of the 2133 studies identified, 21 were included. FGR-associated upregulation of miR-210 and miR-424 and downregulation of a placenta-specific miRNA cluster miRNA located on C19MC (miR-518b, miR-519d) and miR-221-3p was reported by >1 included studies. Analysis of the target genes of these miRNA as well as pathway analysis pointed to the involvement of angiogenesis and growth signaling pathways, such as the phosphatidylinositol 3-kinase- protein kinase B (PI3K-Akt) pathway. Only 3 out of the 21 included studies reported FGR-associated miRNAs in matched placental and maternal blood samples. We conclude that FGR-associated placental miRNAs could be utilized to inform clinical practice towards early diagnosis of FGR, provided enough evidence from studies on matched placental and maternal blood samples become available.Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42019136762.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - M Vukku
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India
| | - R Rajashekhar
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.,Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, A Recognized Research Centre of University of Mysore, Bangalore, India.
| |
Collapse
|
12
|
Liu Y, Lu X, Zhang Y, Liu M. Identification and Validation of a Five-Gene Diagnostic Signature for Preeclampsia. Front Genet 2022; 13:910556. [PMID: 35774506 PMCID: PMC9237423 DOI: 10.3389/fgene.2022.910556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022] Open
Abstract
Preeclampsia is the leading cause of morbidity and mortality for mothers and newborns worldwide. Despite extensive efforts made to understand the underlying pathology of preeclampsia, there is still no clinically useful effective tool for the early diagnosis of preeclampsia. In this study, we conducted a retrospectively multicenter discover-validation study to develop and validate a novel biomarker for preeclampsia diagnosis. We identified 38 differentially expressed genes (DEGs) involved in preeclampsia in a case-control study by analyzing expression profiles in the discovery cohort. We developed a 5-mRNA signature (termed PE5-signature) to diagnose preeclampsia from 38 DEGs using recursive feature elimination with a random forest supervised classification algorithm, including ENG, KRT80, CEBPA, RDH13 and WASH9P. The PE5-signature showed high accuracy in discriminating preeclampsia from controls with a receiver operating characteristic area under the curve value (AUC) of 0.971, a sensitivity of 0.842 and a specificity of 0.950. The PE5-signature was then validated in an independent case-control study and achieved a reliable and robust predictive performance with an AUC of 0.929, a sensitivity of 0.696, and a specificity of 0.946. In summary, we have developed and validated a five-mRNA biomarker panel as a risk assessment tool to assist in the detection of preeclampsia. This gene panel has potential clinical value for early preeclampsia diagnosis and may help us better understand the precise mechanisms involved.
Collapse
|
13
|
Tamposis IA, Manios GA, Charitou T, Vennou KE, Kontou PI, Bagos PG. MAGE: An Open-Source Tool for Meta-Analysis of Gene Expression Studies. BIOLOGY 2022; 11:biology11060895. [PMID: 35741417 PMCID: PMC9220151 DOI: 10.3390/biology11060895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022]
Abstract
MAGE (Meta-Analysis of Gene Expression) is a Python open-source software package designed to perform meta-analysis and functional enrichment analysis of gene expression data. We incorporate standard methods for the meta-analysis of gene expression studies, bootstrap standard errors, corrections for multiple testing, and meta-analysis of multiple outcomes. Importantly, the MAGE toolkit includes additional features for the conversion of probes to gene identifiers, and for conducting functional enrichment analysis, with annotated results, of statistically significant enriched terms in several formats. Along with the tool itself, a web-based infrastructure was also developed to support the features of this package.
Collapse
Affiliation(s)
- Ioannis A. Tamposis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | - Georgios A. Manios
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | - Theodosia Charitou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | - Konstantina E. Vennou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (I.A.T.); (G.A.M.); (T.C.); (K.E.V.)
- Correspondence:
| |
Collapse
|
14
|
Oravecz O, Balogh A, Romero R, Xu Y, Juhasz K, Gelencser Z, Xu Z, Bhatti G, Pique-Regi R, Peterfia B, Hupuczi P, Kovalszky I, Murthi P, Tarca AL, Papp Z, Matko J, Than NG. Proteoglycans: Systems-Level Insight into Their Expression in Healthy and Diseased Placentas. Int J Mol Sci 2022; 23:5798. [PMID: 35628608 PMCID: PMC9147780 DOI: 10.3390/ijms23105798] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/14/2022] [Accepted: 05/15/2022] [Indexed: 02/04/2023] Open
Abstract
Proteoglycan macromolecules play key roles in several physiological processes (e.g., adhesion, proliferation, migration, invasion, angiogenesis, and apoptosis), all of which are important for placentation and healthy pregnancy. However, their precise roles in human reproduction have not been clarified. To fill this gap, herein, we provide an overview of the proteoglycans' expression and role in the placenta, in trophoblast development, and in pregnancy complications (pre-eclampsia, fetal growth restriction), highlighting one of the most important members of this family, syndecan-1 (SDC1). Microarray data analysis showed that of 34 placentally expressed proteoglycans, SDC1 production is markedly the highest in the placenta and that SDC1 is the most upregulated gene during trophoblast differentiation into the syncytiotrophoblast. Furthermore, placental transcriptomic data identified dysregulated proteoglycan genes in pre-eclampsia and in fetal growth restriction, including SDC1, which is supported by the lower concentration of syndecan-1 in maternal blood in these syndromes. Overall, our clinical and in vitro studies, data analyses, and literature search pointed out that proteoglycans, as important components of the placenta, may regulate various stages of placental development and participate in the maintenance of a healthy pregnancy. Moreover, syndecan-1 may serve as a useful marker of syncytialization and a prognostic marker of adverse pregnancy outcomes. Further studies are warranted to explore the role of proteoglycans in healthy and complicated pregnancies, which may help in diagnostic or therapeutic developments.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Detroit Medical Center, Detroit, MI 48201, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Zhonghui Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Balint Peterfia
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | | | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Clayton, VIC 3800, Australia;
- Department of Obstetrics and Gynaecology, University of Melbourne, Royal Women’s Hospital, Parkville, VIC 3502, Australia
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892, and Detroit, MI 48201, USA; (R.R.); (Y.X.); (Z.X.); (G.B.); (R.P.-R.); (A.L.T.)
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48202, USA
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
| | - Janos Matko
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (O.O.); (A.B.); (K.J.); (Zs.G.); (B.P.); (J.M.)
- Maternity Private Clinic, H-1126 Budapest, Hungary; (P.H.); (Z.P.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| |
Collapse
|
15
|
Cui J, Kang X, Shan Y, Zhang M, Gao Y, Wu W, Chen L. miR-1227-3p participates in the development of fetal growth restriction via regulating trophoblast cell proliferation and apoptosis. Sci Rep 2022; 12:6374. [PMID: 35430618 PMCID: PMC9013361 DOI: 10.1038/s41598-022-10127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 11/25/2022] Open
Abstract
Fetal growth restriction (FGR) is a common obstetric disease, which is harmful to the pregnant women and fetuses. It has many influencing factors, but the specific etiology is not clear. MiRNA plays an important role in the fetal growth and development. In this article, we use TaqMan Low-Density Array to screen and analyze the differently expressed miRNAs in FGR-affected placenta (n = 40) and the normal placenta (n = 40). A total of 139 abnormally expressed miRNAs in the FGR-affected placenta were identified, and miR-1227-3p was the most highly downregulated miRNA. Importantly, miR-1227-3p may promote the proliferation in HTR-8/SVneo cells, while inhibited the apoptosis of HTR-8/SVneo cells. DAVID was used to analyze the pathway enrichment of target genes of miR-1227-3p to predict its mechanism of action. Furthermore, the putative targets of miR-1227-3p were predicted using the TargetScan, PicTar, DIANA LAB, and miRWalk database. The potential expression of target genes of miR-1227-3p, including PRKAB2, AKT1, PIK3R3, and MKNK1 were significantly increased in FGR-affected placenta. Taken together, miR-1227-3p may participate in the development of FGR via regulating trophoblast cell proliferation and apoptosis by targeting genes involved in the insulin pathway. MiR-1227-3p may have a potential clinical value in the prevention and treatment of FGR, we need to study further to prove its value in the future.
Collapse
Affiliation(s)
- Jiawen Cui
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, No.6, North Road, Haierxiang, Chongchuan District, Nantong, 226001, Jiangsu, China
- Obstetrics and Gynecology Department, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Qingpu, Shanghai, 201700, China
| | - Xinyi Kang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, No.6, North Road, Haierxiang, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Yanxing Shan
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, No.6, North Road, Haierxiang, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Mingjin Zhang
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, No.6, North Road, Haierxiang, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Ying Gao
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, No.6, North Road, Haierxiang, Chongchuan District, Nantong, 226001, Jiangsu, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Liping Chen
- Obstetrics and Gynecology Department, The Second Affiliated Hospital of Nantong University, No.6, North Road, Haierxiang, Chongchuan District, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
16
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Kochhar P, Dwarkanath P, Ravikumar G, Thomas A, Crasta J, Thomas T, Kurpad AV, Mukhopadhyay A. Placental expression of miR-21-5p, miR-210-3p and miR-141-3p: relation to human fetoplacental growth. Eur J Clin Nutr 2021; 76:730-738. [PMID: 34611295 DOI: 10.1038/s41430-021-01017-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 09/06/2021] [Accepted: 09/21/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND/OBJECTIVES Dysregulation of microRNAs (miRNAs) and their target genes in placental tissue is associated with foetal growth restriction. We aimed to evaluate associations of placental miR-21-5p, miR-141-3p and miR-210-3p expression with maternal, placental and newborn parameters and with placental expression of their potential target genes PTEN, VEGF, FLT and ENG in a set of well-characterized small- (SGA) and appropriate- (AGA) for gestational age full-term singleton pregnancies. SUBJECTS/METHODS Placental samples (n = 80) from 26 SGA and 54 AGA were collected from full-term singleton pregnancies. Placental transcript abundances of miR-21-5p, miR-141-3p and miR-210-3p were assessed after normalization to a reference miRNA, mir-16-5p by real-time quantitative PCR. Placental transcript abundances of PTEN, VEGF, FLT and ENG were assessed after normalizing to a panel of reference genes. RESULTS Placental miR-21-5p transcript abundance was negatively associated with placental weight (n = 80, r = -0.222, P = 0.047) and this association was specific to the AGA births (n = 54, r = -0.292, P = 0.032). Placental transcript abundances of miR-210-3p and miR-141-3p were not associated with placental weight or birth weight in all 80 births. However, placental miR-210-3p transcript abundance was positively associated with birth weight specifically in the SGA births (n = 26, r = 0.449, P = 0.021). Placental transcript abundance of miR-21-5p was negatively associated with PTEN transcript abundance (Spearman's ρ = -0.245, P = 0.028) while that of miR-141-3p was positively associated with FLT (Spearman's ρ = 0.261, P = 0.019) and ENG (Spearman's ρ = 0.259, P = 0.020) transcript abundances in all 80 births. CONCLUSION We conclude that placental miR-21-5p and miR-210-3p may be involved in fetoplacental growth. However, this regulation is unlikely to be mediated through placental expression of PTEN, VEGF, FLT or ENG.
Collapse
Affiliation(s)
- P Kochhar
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, India
| | - P Dwarkanath
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, India
| | - G Ravikumar
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - A Thomas
- Department of Obstetrics and Gynaecology, St John's Medical College Hospital, Bangalore, India
| | - J Crasta
- Department of Pathology, St John's Medical College Hospital, Bangalore, India
| | - T Thomas
- Department of Biostatistics, St. John's Medical College Hospital, Bangalore, India
| | - A V Kurpad
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, India
| | - A Mukhopadhyay
- Division of Nutrition, St. John's Research Institute, A recognized research centre of University of Mysore, Bangalore, India.
| |
Collapse
|
18
|
Pepe GJ, Albrecht ED. Novel Technologies for Target Delivery of Therapeutics to the Placenta during Pregnancy: A Review. Genes (Basel) 2021; 12:1255. [PMID: 34440429 PMCID: PMC8392549 DOI: 10.3390/genes12081255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Uterine spiral artery remodeling is essential for placental perfusion and fetal growth and, when impaired, results in placental ischemia and pregnancy complications, e.g., fetal growth restriction, preeclampsia, premature birth. Despite the high incidence of adverse pregnancies, current treatment options are limited. Accordingly, research has shifted to the development of gene therapy technologies that provide targeted delivery of "payloads" to the placenta while limiting maternal and fetal exposure. This review describes the current strategies, including placental targeting peptide-bound liposomes, nanoparticle or adenovirus constructs decorated with specific peptide sequences and placental gene promoters delivered via maternal IV injection, directly into the placenta or the uterine artery, as well as noninvasive site-selective targeting of regulating genes conjugated with microbubbles via contrast-enhanced ultrasound. The review also provides a perspective on the effectiveness of these technologies in various animal models and their practicability and potential use for targeted placental delivery of therapeutics and genes in adverse human pregnancies affected by placental dysfunction.
Collapse
Affiliation(s)
- Gerald J. Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
| | - Eugene D. Albrecht
- Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
19
|
Abstract
Tracing the early paths leading to developmental disorders is critical for prevention. In previous work, we detected an interaction between genomic risk scores for schizophrenia (GRSs) and early-life complications (ELCs), so that the liability of the disorder explained by genomic risk was higher in the presence of a history of ELCs, compared with its absence. This interaction was specifically driven by loci harboring genes highly expressed in placentae from normal and complicated pregnancies [G. Ursini et al., Nat. Med. 24, 792-801 (2018)]. Here, we analyze whether fractionated genomic risk scores for schizophrenia and other developmental disorders and traits, based on placental gene-expression loci (PlacGRSs), are linked with early neurodevelopmental outcomes in individuals with a history of ELCs. We found that schizophrenia's PlacGRSs are negatively associated with neonatal brain volume in singletons and offspring of multiple pregnancies and, in singletons, with cognitive development at 1 y and, less strongly, at 2 y, when cognitive scores become more sensitive to other factors. These negative associations are stronger in males, found only with GRSs fractionated by placental gene expression, and not found in PlacGRSs for other developmental disorders and traits. The relationship of PlacGRSs with brain volume persists as an anlage of placenta biology in adults with schizophrenia, again selectively in males. Higher placental genomic risk for schizophrenia, in the presence of ELCs and particularly in males, alters early brain growth and function, defining a potentially reversible neurodevelopmental path of risk that may be unique to schizophrenia.
Collapse
|
20
|
Gonzalez TL, Eisman LE, Joshi NV, Flowers AE, Wu D, Wang Y, Santiskulvong C, Tang J, Buttle RA, Sauro E, Clark EL, DiPentino R, Jefferies CA, Chan JL, Lin Y, Zhu Y, Afshar Y, Tseng HR, Taylor K, Williams J, Pisarska MD. High-throughput miRNA sequencing of the human placenta: expression throughout gestation. Epigenomics 2021; 13:995-1012. [PMID: 34030457 PMCID: PMC8244582 DOI: 10.2217/epi-2021-0055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Aim: To understand miRNA changes across gestation in healthy human placentae. This is essential before miRNAs can be used as biomarkers or prognostic indicators during pregnancy. Materials & methods: Using next-generation sequencing, we characterize the normative human placenta miRNome in first (n = 113) and third trimester (n = 47). Results & conclusion: There are 801 miRNAs expressed in both first and third trimester, including 182 with similar expression across gestation (p ≥ 0.05, fold change ≤2) and 180 significantly different (false discovery rate <0.05, fold change >2). Of placenta-specific miRNA clusters, chromosome 14 miRNA cluster decreases across gestation and chromosome 19 miRNA cluster is overall highly expressed. Chromosome 13 clusters are upregulated in first trimester. This work provides a rich atlas of healthy pregnancies to direct functional studies investigating the epigenetic differences in first and third trimester placentae.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Laura E Eisman
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Nikhil V Joshi
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy E Flowers
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Di Wu
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yizhou Wang
- Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Chintda Santiskulvong
- CS Cancer Applied Genomics Shared Resource, CS Cancer, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jie Tang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rae A Buttle
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Erica Sauro
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekaterina L Clark
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rosemarie DiPentino
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Caroline A Jefferies
- Division of Rheumatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica L Chan
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yayu Lin
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yalda Afshar
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular & Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kent Taylor
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- The Institute for Translational Genomics & Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - John Williams
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Margareta D Pisarska
- Department of Obstetrics & Gynecology, Center for Reproductive Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
21
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Lin P, Lai X, Wu L, Liu W, Lin S, Ye J. Network analysis reveals important genes in human placenta. J Obstet Gynaecol Res 2021; 47:2607-2615. [PMID: 34005840 DOI: 10.1111/jog.14820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/22/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
AIM To determine which genes are important in placenta by network analysis. METHODS Placenta expressing genes were screened from RNA-Seq data. Protein-protein interaction data were downloaded from STRING (v11.0) database. Google PageRank (PR) algorithm was used to identify important placental genes from protein interaction network. Six placental disease-related datasets were downloaded from NCBI GEO database, and the differential expression of the 99 genes was identified. RESULTS We calculated PR for each placenta expressing gene and defined the top 99 genes with high PR as important genes. GAPDH has the highest PR. The 99 genes had different expression pattern in placental cell types. FN1 is up-regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. HSPA4 is down-regulated in 8 w EVT compared to 8 w CTB and 24 w EVT compared to 8 w EVT. MIB2, TLR4, and UBB are consistently changed in preeclampsia (PE). UBB and ACTG1 were identified to be down-regulated in fetal growth restriction (FGR). SOD1 is down-regulated in preterm birth placenta. CONCLUSION Our findings confirmed that the importance of these genes in placenta-related diseases, and provide new candidates (MIB2, UBB, ACTG1, and SOD1) for placenta-related disease diagnosis and treatment.
Collapse
Affiliation(s)
- Peihong Lin
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Xuedan Lai
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Ling Wu
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Wei Liu
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiqiang Lin
- Department of Bioinformatics, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianwen Ye
- Department of Gynaecology and Obstetrics, Fuzhou First Hospital Affiliated to Fujian Medical University, Fuzhou, China
| |
Collapse
|
23
|
Sundrani DP, Karkhanis AR, Joshi SR. Peroxisome Proliferator-Activated Receptors (PPAR), fatty acids and microRNAs: Implications in women delivering low birth weight babies. Syst Biol Reprod Med 2021; 67:24-41. [PMID: 33719831 DOI: 10.1080/19396368.2020.1858994] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Low birth weight (LBW) babies are associated with neonatal morbidity and mortality and are at increased risk for noncommunicable diseases (NCDs) in later life. However, the molecular determinants of LBW are not well understood. Placental insufficiency/dysfunction is the most frequent etiology for fetal growth restriction resulting in LBW and placental epigenetic processes are suggested to be important regulators of pregnancy outcome. Early life exposures like altered maternal nutrition may have long-lasting effects on the health of the offspring via epigenetic mechanisms like DNA methylation and microRNA (miRNA) regulation. miRNAs have been recognized as major regulators of gene expression and are known to play an important role in placental development. Angiogenesis in the placenta is known to be regulated by transcription factor peroxisome proliferator-activated receptor (PPAR) which is activated by ligands such as long-chain-polyunsaturated fatty acids (LCPUFA). In vitro studies in different cell types indicate that fatty acids can influence epigenetic mechanisms like miRNA regulation. We hypothesize that maternal fatty acid status may influence the miRNA regulation of PPAR genes in the placenta in women delivering LBW babies. This review provides an overview of miRNAs and their regulation of PPAR gene in the placenta of women delivering LBW babies.Abbreviations: AA - Arachidonic Acid; Ago2 - Argonaute2; ALA - Alpha-Linolenic Acid; ANGPTL4 - Angiopoietin-Like Protein 4; C14MC - Chromosome 14 miRNA Cluster; C19MC - Chromosome 19 miRNA Cluster; CLA - Conjugated Linoleic Acid; CSE - Cystathionine γ-Lyase; DHA - Docosahexaenoic Acid; EFA - Essential Fatty Acids; E2F3 - E2F transcription factor 3; EPA - Eicosapentaenoic Acid; FGFR1 - Fibroblast Growth Factor Receptor 1; GDM - Gestational Diabetes Mellitus; hADMSCs - Human Adipose Tissue-Derived Mesenchymal Stem Cells; hBMSCs - Human Bone Marrow Mesenchymal Stem Cells; HBV - Hepatitis B Virus; HCC - Hepatocellular Carcinoma; HCPT - Hydroxycamptothecin; HFD - High-Fat Diet; Hmads - Human Multipotent Adipose-Derived Stem; HSCS - Human Hepatic Stellate Cells; IUGR - Intrauterine Growth Restriction; LA - Linoleic Acid; LBW - Low Birth Weight; LCPUFA - Long-Chain Polyunsaturated Fatty Acids; MEK1 - Mitogen-Activated Protein Kinase 1; MiRNA - MicroRNA; mTOR - Mammalian Target of Rapamycin; NCDs - NonCommunicable Diseases; OA - Oleic Acid; PASMC - Pulmonary Artery Smooth Muscle Cell; PLAG1 - Pleiomorphic Adenoma Gene 1; PPAR - Peroxisome Proliferator-Activated Receptor; PPARα - PPAR alpha; PPARγ - PPAR gamma; PPARδ - PPAR delta; pre-miRNA - precursor miRNA; RISC - RNA-Induced Silencing Complex; ROS - Reactive Oxygen Species; SAT - Subcutaneous Adipose Tissue; WHO - World Health Organization.
Collapse
Affiliation(s)
- Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Aishwarya R Karkhanis
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| |
Collapse
|
24
|
Integrated analysis of multiple microarray studies to identify novel gene signatures in preeclampsia. Placenta 2021; 105:104-118. [PMID: 33571845 DOI: 10.1016/j.placenta.2021.01.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the major causes of maternal and fetal morbidity and mortality in pregnancy worldwide. However, the intrinsic molecular mechanisms underlying the pathogenesis of PE have not yet been fully elucidated. METHODS Robust rank aggregation (RRA), weighted correlation network analysis (WGCNA) and protein-protein interaction (PPI) methods were used to identify robust differentially expressed genes (DEGs) and hub genes in preeclampsia and subgroups based on 10 Gene Expression Omnibus (GEO) datasets. Subsequently, enrichment analysis and correlation analysis were performed to explore the potential function of the robust DEGs and hub genes. The diagnostic role of hub genes was further investigated by GSE12767. The miRNA regulators and the effect of hypoxia on hub genes were explored by using GSE84260 and GSE65271, respectively. RESULTS Robust DEGs were identified in each subgroup including preeclampsia. Totally, 24 hub genes enriched in inflammatory response, renin-angiotensin system and JAK-STAT pathway, and 24 related miRNA regulators were identified. DISCUSSION Our integrated analysis identified novel gene signatures in preeclampsia and subgroups and will contribute to the understanding of comprehensive molecular changes in preeclampsia.
Collapse
|
25
|
Nuh AM, You Y, Ma M. Information on dysregulation of microRNA in placenta linked to preeclampsia. Bioinformation 2021; 17:240-248. [PMID: 34393443 PMCID: PMC8340720 DOI: 10.6026/97320630017240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/30/2021] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs are single-stranded, non-coding RNA molecules, regulate gene expression at the post-transcriptional level. They are expressed in the human body and have a significant impact on the different processes of pathological illness. A developing placenta undergoes a series of stages after successful fertilization, such as cell division, migration, adhesion, apoptosis, and angiogenesis. MicroRNAs dysregulation in placenta has been linked to pregnancy-related complications such as preeclampsia. Therefore, it is of interest to document known information (list of microRNA) on this issue in the development of biological tools for diagnosis, treatment and prevention of the disease.
Collapse
Affiliation(s)
- Abdifatah Mohamed Nuh
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Yan You
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| | - Min Ma
- Department of Obstetrics, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu Province, 225000, China
- Yangzhou University Medical College, Yangzhou, Jiangsu Province, 225000, China
| |
Collapse
|
26
|
Wang P, Chen X, Chang Y, Wang Y, Xu X, Guo Y, Cui H. Inhibition of microRNA-149 protects against recurrent miscarriage through upregulating RUNX2 and activation of the PTEN/Akt signaling pathway. J Obstet Gynaecol Res 2020; 46:2534-2546. [PMID: 32939872 PMCID: PMC7756651 DOI: 10.1111/jog.14488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
AIM Recently, microRNA-149 (miR-149) has been indicated to act as an oncogene or a tumor suppressor in various malignant tumors, while its inner mechanisms in recurrent miscarriage (RM) are still in infancy. Therein, this study intends to decode the mechanism of miR-149 in RM. METHODS miR-149 and RUNX2 expression in the chorionic tissues of normal pregnant women and RM patients were first examined, and the correlation between miR-149 and RUNX2 was analyzed. Subsequently, miR-149 was upregulated in HTR-8 cells or downregulated in BEWO cells, and then the changes in biological functions of trophoblasts in RM were detected. Furthermore, the expression of PTEN/Akt signaling pathway-related factors in trophoblasts was detected by western blot analysis. RESULTS miR-149 expression was increased while RUNX2 expression was suppressed in RM patients, and miR-149 was negatively correlated with RUNX2. Overexpressed miR-149 induced cell apoptosis and inhibited cell activity, while reduced miR-149 in trophoblasts contributed to opposite experimental results. Moreover, miR-149 promoted the expression of PTEN and inhibited Akt phosphorylation by targeting RUNX2, thereby inhibiting trophoblast activity and promoting their apoptosis. CONCLUSION Our study demonstrates that miR-149 knockdown halted the RM development through upregulating RUNX2 and activation of the PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| | - Xu Chen
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Ying Chang
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| | - Yanping Wang
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Xinran Xu
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Yuling Guo
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Hongyan Cui
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| |
Collapse
|
27
|
Maternal plasma miRNAs as potential biomarkers for detecting risk of small-for-gestational-age births. EBioMedicine 2020; 62:103145. [PMID: 33260001 PMCID: PMC7708817 DOI: 10.1016/j.ebiom.2020.103145] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background Small-for-gestational-age fetuses (SGA) (birthweight <10th centile) are at high risk for stillbirth or long-term adverse outcomes. Here, we investigate the ability of circulating maternal plasma miRNAs to determine the risk of SGA births. Methods Maternal plasma samples from 29 women of whom 16 subsequently delivered normally grown babies and 13 delivered SGA (birthweight <5th centile) were selected from a total of 511 women recruited to form a discovery cohort in which expression data for a total of 800 miRNAs was determined using the Nanostring nCounter miRNA assay. Validation by RT-qPCR was performed in an independent cohort. Findings Partial least-squares discriminant analysis (PLS-DA) of the Nanostring nCounter miRNA assay initially identified seven miRNAs at 12–14+6 weeks gestation, which discriminated between SGA cases and controls. Four of these were technically validated by RT-qPCR. Differential expression of two miRNA markers; hsa-miR-374a-5p (p = 0•0176) and hsa-let-7d-5p (p = 0•0036), were validated in an independent population of 95 women (SGA n = 12, Control n = 83). In the validation cohort, which was enriched for SGA cases, the ROC AUCs were 0•71 for hsa-miR-374a-5p, and 0•74 for hsa-let-7d-5p, and 0•77 for the two combined. Interpretation Whilst larger population-wide studies are required to validate their performance, these findings highlight the potential of circulating miRNAs to act as biomarkers for early prediction of SGA births. Funding This work was supported by Genesis Research Trust, March of Dimes, and the National Institute for Health Research Biomedical Research Centre (NIHR BRC) based at Imperial Healthcare NHS Trust and Imperial College London.
Collapse
|
28
|
Whigham CA, MacDonald TM, Walker SP, Hiscock R, Hannan NJ, Pritchard N, Cannon P, Nguyen TV, Miranda M, Tong S, Kaitu'u-Lino TJ. MicroRNAs 363 and 149 are differentially expressed in the maternal circulation preceding a diagnosis of preeclampsia. Sci Rep 2020; 10:18077. [PMID: 33093531 PMCID: PMC7583242 DOI: 10.1038/s41598-020-73783-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/21/2020] [Indexed: 12/26/2022] Open
Abstract
Preeclampsia is a pregnancy complication associated with angiogenic dysbalance, maternal endothelial dysfunction and end-organ injury. A predictive test to identify those who will develop preeclampsia could substantially decrease morbidity and mortality. MicroRNAs (miRs) are small RNA molecules involved in post-transcriptional gene regulation. We screened for circulating miRs differentially expressed at 36 weeks’ gestation in pregnancies before the development of preeclampsia. We used a case–control group (198 controls, 34 pre-preeclampsia diagnosis) selected from a prospective cohort (n = 2015) and performed a PCR-based microarray to measure the expression of 41 miRs. We found six circulating miRs (miRs 363, 149, 18a, 1283, 16, 424) at 36 weeks' had significantly reduced expression (p < 0.0001–0.04). miR363 was significantly downregulated at 28 weeks’ gestation, 10–12 weeks before the onset of clinical disease. In the circulation of another cohort of 34 participants with established preterm preeclampsia (vs 23 controls), we found miRs363, 18a, 149 and 16 were significantly down regulated (p < 0.0001–0.04). Combined expression of miRs149 and 363 in the circulation at 36 weeks’ gestation provides a test with 45% sensitivity (at a specificity of 90%) which suggests measuring both miRs may have promise as part of a multi-marker test to predict preeclampsia.
Collapse
Affiliation(s)
- Carole-Anne Whigham
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia. .,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia.
| | - Teresa M MacDonald
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Susan P Walker
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Richard Hiscock
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Natalie J Hannan
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Natasha Pritchard
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Ping Cannon
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Tuong Vi Nguyen
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Manisha Miranda
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Stephen Tong
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, 163 Studley Road, Heidelberg, VIC, 3084, Australia.,Mercy Perinatal, Mercy Hospital for Women, Heidelberg, VIC, Australia
| |
Collapse
|
29
|
Kennedy EM, Hermetz K, Burt A, Everson TM, Deyssenroth M, Hao K, Chen J, Karagas MR, Pei D, Koestler DC, Marsit CJ. Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. Epigenetics 2020; 16:770-782. [PMID: 33016211 DOI: 10.1080/15592294.2020.1827704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are non-coding RNAs that regulate gene expression post-transcriptionally. In the placenta, the master regulator of foetal growth and development, microRNAs shape the basic processes of trophoblast biology and specific microRNA have been associated with foetal growth. To comprehensively assess the role of microRNAs in placental function and foetal development, we have performed small RNA sequencing to profile placental microRNAs from two independent mother-infant cohorts: the Rhode Island Child Health Study (n = 225) and the New Hampshire Birth Cohort Study (n = 317). We modelled microRNA counts on infant birthweight percentile (BWP) in each cohort, while accounting for race, sex, parity, and technical factors, using negative binomial generalized linear models. We identified microRNAs that were differentially expressed (DEmiRs) with BWP at false discovery rate (FDR) less than 0.05 in both cohorts. hsa-miR-532-5p (miR-532) was positively associated with BWP in both cohorts. By integrating parallel whole transcriptome and small RNA sequencing in the RICHS cohort, we identified putative targets of miR-532. These targets are enriched for pathways involved in adipogenesis, adipocytokine signalling, energy metabolism, and hypoxia response, and included Leptin, which we further demonstrated to have a decreasing expression with increasing BWP, particularly in male infants. Overall, we have shown a robust and reproducible association of miR-532 with BWP, which could influence BWP through regulation of adipocytokines Leptin and Adiponectin.
Collapse
Affiliation(s)
- Elizabeth M Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.,Dartmouth College, Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon, NH, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
30
|
Fu S, Liu J, Xu J, Zuo S, Zhang Y, Guo L, Qiu Y, Ye C, Liu Y, Wu Z, Hou Y, Hu CAA. The effect of baicalin on microRNA expression profiles in porcine aortic vascular endothelial cells infected by Haemophilus parasuis. Mol Cell Biochem 2020; 472:45-56. [PMID: 32519231 DOI: 10.1007/s11010-020-03782-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/04/2020] [Indexed: 01/10/2023]
Abstract
Glässer's disease, caused by Haemophilus parasuis (H. parasuis), is associated with vascular damage and vascular inflammation in pigs. Therefore, early assessment and treatment are essential to control the inflammatory disorder. MicroRNAs have been shown to be involved in the vascular pathology. Baicalin has important pharmacological functions, including anti-inflammatory, antimicrobial and antioxidant effects. In this study, we investigated the changes of microRNAs in porcine aortic vascular endothelial cells (PAVECs) induced by H. parasuis and the effect of baicalin in this model by utilizing high-throughput sequencing. The results showed that 155 novel microRNAs and 76 differentially expressed microRNAs were identified in all samples. Subsequently, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the target genes of the differentially expressed microRNAs demonstrated that regulation of actin cytoskeleton, focal adhesion, ECM-receptor interaction, bacterial invasion of epithelial cells, and adherens junction were the most interesting pathways after PAVECs were infected with H. parasuis. In addition, when the PAVECs were pretreated with baicalin, mismatch repair, peroxisome, oxidative phosphorylation, DNA replication, and ABC transporters were the most predominant signaling pathways. STRING analysis showed that most of the target genes of the differentially expressed microRNAs were associated with each other. The expression levels of the differentially expressed microRNAs were negatively co-regulated with their target genes' mRNA following pretreatment with baicalin in the H. parasuis-induced PAVECs using co-expression networks analysis. This is the first report that microRNAs might have key roles in inflammatory damage of vascular tissue during H. parasuis infection. Baicalin regulated the microRNAs changes in the PAVECs following H. parasuis infection, which may represent useful novel targets to prevent or treat H. parasuis infection.
Collapse
Affiliation(s)
- Shulin Fu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Jun Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Jianfeng Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Sanling Zuo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yunfei Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Ling Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yinsheng Qiu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China.
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China.
| | - Chun Ye
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yu Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Zhongyuan Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Wuhan, 430023, People's Republic of China
| | - Chien-An Andy Hu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, People's Republic of China
- Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
31
|
Liu J, Song G, Meng T, Zhao G. Identification of Differentially Expressed Genes and Signaling Pathways in Placenta Tissue of Early-Onset and Late-Onset Pre-Eclamptic Pregnancies by Integrated Bioinformatics Analysis. Med Sci Monit 2020; 26:e921997. [PMID: 32497025 PMCID: PMC7294845 DOI: 10.12659/msm.921997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Pre-eclampsia (PE) can be divided into 2 sub-groups: early-onset and late-onset PE. Although these sub-groups show overlapping molecular and cellular mechanisms and similar clinical manifestations, they are regarded as 2 different phenotypes with heterogeneous manifestations. The pathophysiological mechanisms underlying early-onset and late-onset PE still remain unclear. Therefore, the present study aimed to identify the key genes and pathways related to early-onset and late-onset PE, and to investigate the molecular mechanisms that are involved in gene regulation. Material/Methods Our analysis involved the Gene Expression Series (GSE) 74341 and GSE22526 from the National Center of Biotechnology Information (NCBI) Gene Expression Omnibus Database. These 2 microarray datasets included 15 patients with early-onset PE and 15 patients with late-onset PE. Results Our analyses identified 15 differentially expressed genes (DEGs), including CGA, EGR1, HBB, HBA2, LEP, and LHB. Gene Ontology (GO) functional annotation showed that the biological functions of these DEGs were mainly associated with steroid biosynthetic, oxidative stress, angiogenesis, and sex differentiation. Signaling pathway analyses showed that these DEGs were mainly involved in the prolactin signaling pathway, hormone metabolism, the AMPK signaling pathway, and the FoxO signaling pathway. Protein-protein interaction (PPI) network analysis identified 4 genes with the highest degree of interaction. The hub genes for this selection of DEGS were EGR1, LEP, and HBB. Conclusions Integrated bioinformatic analyses provide us with a new approach to further understand the pathophysiology and molecular mechanisms underlying early-onset and late-onset PE. The DEGs identified in this study represent potential biomarkers for the early diagnosis of PE and may provide significant options the treatment of these 2 subtypes of PE.
Collapse
Affiliation(s)
- Jing Liu
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Guang Song
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Tao Meng
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ge Zhao
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
32
|
Meta-analysis of gene expression profiles in preeclampsia. Pregnancy Hypertens 2020; 19:52-60. [DOI: 10.1016/j.preghy.2019.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023]
|
33
|
Mas-Parés B, Xargay-Torrent S, Bonmatí A, Lizarraga-Mollinedo E, Martínez-Calcerrada JM, Carreras-Badosa G, Prats-Puig A, de Zegher F, Ibáñez L, López-Bermejo A, Bassols J. Umbilical Cord miRNAs in Small-for-Gestational-Age Children and Association With Catch-Up Growth: A Pilot Study. J Clin Endocrinol Metab 2019; 104:5285-5298. [PMID: 31125087 DOI: 10.1210/jc.2018-02346] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
CONTEXT Catch-up growth in infants who are small for gestational age (SGA) is a risk factor for the development of cardiometabolic diseases in adulthood. The basis and mechanisms underpinning catch-up growth in newborns who are SGA are unknown. OBJECTIVE To identify umbilical cord miRNAs associated with catch-up growth in infants who are SGA and study their relationship with offspring's cardiometabolic parameters. DESIGN miRNA PCR panels were used to study the miRNA profile in umbilical cord tissue of five infants who were SGA with catch-up (SGA-CU), five without catch-up (SGA-nonCU), and five control infants [appropriate for gestational age (AGA)]. The miRNAs with the smallest nominal P values were validated in 64 infants (22 AGA, 18 SGA-nonCU, and 24 SGA-CU) and correlated with anthropometric parameters at 1 (n = 64) and 6 years of age (n = 30). RESULTS miR-501-3p, miR-576-5p, miR-770-5p, and miR-876-3p had nominally significant associations with increased weight, height, weight catch-up, and height catch-up at 1 year, and miR-374b-3p, miR-548c-5p, and miR-576-5p had nominally significant associations with increased weight, height, waist, hip, and renal fat at 6 years. Multivariate analysis suggested miR-576-5p as a predictor of weight catch-up and height catch-up at 1 year, as well as weight, waist, and renal fat at 6 years. In silico studies suggested that miR-576-5p participates in the regulation of inflammatory, growth, and proliferation signaling pathways. CONCLUSIONS Umbilical cord miRNAs could be novel biomarkers for the early identification of catch-up growth in infants who are SGA. miR-576-5p may contribute to the regulation of postnatal growth and influence the risk for cardiometabolic diseases associated with a mismatch between prenatal and postnatal weight gain.
Collapse
Affiliation(s)
- Berta Mas-Parés
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research, Salt, Spain
| | - Sílvia Xargay-Torrent
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Salt, Spain
| | | | | | | | - Gemma Carreras-Badosa
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Salt, Spain
| | - Anna Prats-Puig
- Department of Physical Therapy, University School of Health and Sport Sciences, University of Girona (EUSES-UdG), Girona, Spain
| | - Francis de Zegher
- Department of Development and Regeneration, University of Leuven, Leuven, Belgium
| | - Lourdes Ibáñez
- Department of Endocrinology, Pediatric Research Institute, Sant Joan de Déu Children's Hospital, Esplugues, Barcelona, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research, Salt, Spain
- Department of Pediatrics, Dr. Josep Trueta Hospital, Girona, Spain
| | - Judit Bassols
- Maternal-Fetal Metabolic Research Group, Girona Institute for Biomedical Research, Salt, Spain
| |
Collapse
|
34
|
Hu XQ, Zhang L. MicroRNAs in Uteroplacental Vascular Dysfunction. Cells 2019; 8:E1344. [PMID: 31671866 PMCID: PMC6912833 DOI: 10.3390/cells8111344] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 02/06/2023] Open
Abstract
Pregnancy complications of preeclampsia and intrauterine growth restriction (IUGR) are major causes of maternal and perinatal/neonatal morbidity and mortality. Although their etiologies remain elusive, it is generally accepted that they are secondary to placental insufficiency conferred by both failure in spiral artery remodeling and uteroplacental vascular malfunction. MicroRNAs (miRNAs) are small no-coding RNA molecules that regulate gene expression at the post-transcriptional level. Increasing evidence suggests that miRNAs participate in virtually all biological processes and are involved in numerous human diseases. Differentially expressed miRNAs in the placenta are typical features of both preeclampsia and IUGR. Dysregulated miRNAs target genes of various signaling pathways in uteroplacental tissues, contributing to the development of both complications. In this review, we provide an overview of how aberrant miRNA expression in preeclampsia and IUGR impacts the expression of genes involved in trophoblast invasion and uteroplacental vascular adaptation.
Collapse
Affiliation(s)
- Xiang-Qun Hu
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| | - Lubo Zhang
- Lawrence D. Longo MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California 92350, USA.
| |
Collapse
|
35
|
Salimi S, Eskandari F, Rezaei M, Narooei-nejad M, Teimoori B, Yazdi A, Yaghmaei M. The effect of miR-146a rs2910164 and miR-149 rs2292832 polymorphisms on preeclampsia susceptibility. Mol Biol Rep 2019; 46:4529-4536. [DOI: 10.1007/s11033-019-04908-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/07/2019] [Indexed: 01/05/2023]
|
36
|
Gao Y, Guo X, Li Y, Sha W, She R. The decreased lncRNA ZEB2-AS1 in pre-eclampsia controls the trophoblastic cell line HTR-8/SVneo's invasive and migratory abilities via the miR-149/PGF axis. J Cell Biochem 2019; 120:17677-17686. [PMID: 31148230 DOI: 10.1002/jcb.29034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
Pre-eclampsia (PE) is a pregnancy disease that causes maternal death and threatens the health of newborns. Accumulating evidence has revealed the essential roles of long noncoding RNAs (lncRNAs) in the progression of PE. The present investigation determined lncRNA ZEB2 antisense RNA 1 (ZEB2-AS1) expression in PE and looked into the potential role of ZEB2-AS1 in modulating trophoblastic cell functions. Quantitative real-time polymerase chain reaction evaluated gene expression. Western blot analyzed the placental growth factor (PGF) protein level. Cell counting kit-8 and Transwell invasion assays assessed the proliferative and invasive abilities of placental trophoblast cells, respectively. Wound healing assay determined cell migratory potentials. Dual-luciferase reporter assay assessed the targeting relationship among ZEB2-AS1, miR-149, and PGF. Downregulation of lncRNA ZEB2-AS1 was detected in placentas from patients with PE when compared with those from normal pregnancies. Moreover, ZEB2-AS1 upregulation markedly promoted proliferative, migratory, and invasive potentials in HTR-8/SVneo cells, while knockdown of ZEB2-AS1 had the opposite effects. The effects on HTR-8/SVneo cells mediated by ZEB2-AS1 was correlated with the miR-149/PGF axis. These findings indicate that ZEB2-AS1 contributes to PE progression by affecting cell proliferative and invasive capacities via the miR-149/PGF axis in HTR-8/SVneo cells. In sum, we identified that ZEB2-AS1 was a novel aberrantly expressed lncRNA in the placentas of PE patients and lncRNA ZEB2-AS1 modulated trophoblastic cell line HTR-8/SVneo's proliferative and invasive potentials via targeting the miR-149/PGF axis.
Collapse
Affiliation(s)
- Yu Gao
- Department of Obstetrics and Gynecology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaohui Guo
- Department of Obstetrics and Gynecology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yan Li
- Department of Obstetrics and Gynecology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Wenqiong Sha
- Department of Obstetrics and Gynecology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Ruilian She
- Department of Obstetrics and Gynecology, the Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
37
|
Östling H, Kruse R, Helenius G, Lodefalk M. Placental expression of microRNAs in infants born small for gestational age. Placenta 2019; 81:46-53. [PMID: 31138431 DOI: 10.1016/j.placenta.2019.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/22/2019] [Accepted: 05/01/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The molecular mechanisms behind poor foetal growth are not fully known. The aim of this study was to explore global microRNA expression in placentas of infants born small for gestational age (SGA) compared to infants with a normal birth weight (NBW). METHODS Placental biopsies from term infants were identified in a biobank and divided into four groups: infants born SGA with (n = 13) or without (n = 9) exposure to low maternal gestational weight gain (GWG) and infants born with NBWs with (n = 20) or without (n = 26) exposure to low GWG. All women and infants were healthy, and no woman smoked during pregnancy. Only vaginal deliveries were included. Next-generation sequencing was performed with single read sequencing of >9 million reads per sample. Differential microRNA expression was analysed using ANOVA for unequal variances (Welch) with multiple testing corrections through the Benjamini-Hochberg method. A fold change >2 and a corrected p value < 0.05 were considered significant. Adjustments for possible confounding factors were made using a linear regression model. RESULTS A total of 1870 known, mature human microRNAs were detected in the sample. MiR-3679-5p and miR-193b-3p were significantly upregulated, and miR-379-3p, miR-335-3p, miR-4532, miR-519e-3p, miR-3065-5p, and miR-105-5p were significantly downregulated after adjustment for potential confounding factors in SGA infants with normal GWG compared to infants with NBWs and normal GWG. DISCUSSION Infants born unexplained SGA show differential microRNA expression in their placenta. Important pathways for the differentially expressed microRNAs include inflammation and the insulin-IGF system.
Collapse
Affiliation(s)
- H Östling
- Department of Obstetrics and Gynecology, School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden
| | - R Kruse
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden
| | - G Helenius
- Department of Laboratory Medicine, Faculty of Medicine and Health, SE-701 82, Örebro University, Örebro, Sweden
| | - M Lodefalk
- Department of Pediatrics, School of Medical Sciences, Örebro University, SE-701 82, Örebro, Sweden; University Health Care Research Center, Faculty of Medicine and Health, Örebro University, SE-701 82, Örebro, Sweden.
| |
Collapse
|
38
|
Liu S, Xie X, Lei H, Zou B, Xie L. Identification of Key circRNAs/lncRNAs/miRNAs/mRNAs and Pathways in Preeclampsia Using Bioinformatics Analysis. Med Sci Monit 2019; 25:1679-1693. [PMID: 30833538 PMCID: PMC6413561 DOI: 10.12659/msm.912801] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND This study aimed to identify significantly altered circRNAs/lncRNAs/miRNAs/mRNAs pathways in preeclampsia (PE), investigate their target relationships, and determine their biological functions. MATERIAL AND METHODS Base on RNA-seq technique and the GEO database, expression profiles of circRNAs/lncRNAs/miRNAs/mRNAs related to PE were obtained. Differentially expressed RNAs were determined using the Limma package in R. Gene set enrichment analysis (GSEA) was performed using GSEA software (v. 3.0) and illustrated by ClusterProfiler and ggplot2 package in R. DAVID database (v. 6.8) was implemented to analyze functional categories and the association between genes and the corresponding Gene Ontology (GO) classification. The R visualization package GOPlot was used to get a better visualization of the relationships between genes and the selected functional categories. CeRNA networks which visualized the correlations between circRNA/lncRNA-miRNA-mRNA were constructed using Cytoscape software (v. 3.6.0). Targetscan and miRanda database were used to predict target relationships between circRNA/lncRNA-miRNA-mRNA. QRT-PCR and luciferase reporter assay were used to verify the expression and target relationship of has_circ_0088196/LINC01492/miR-100-5p/LIF (leukemia inhibitory factor). RESULTS The jak-stat signaling pathway was activated and miR-100-5p was downregulated in PE compared with normal tissues both in collected placental tissue samples and GEO database. Upregulated LIF, LINC01492, and hsa_circ_0088196 were negatively correlated with miR-100-5p expression and had a targeted relationship with miR-100-5p. CONCLUSIONS miR-100-5p may suppress PE development, while LIF, LINC01492, and hsa_circ_0088196 may promote it though inhibiting miR-100-5p. The jak-stat signaling pathway was activated and involved in PE progression.
Collapse
Affiliation(s)
- Siwei Liu
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Xie Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China (mainland)
| | - Huajiang Lei
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Bingyu Zou
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Lan Xie
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| |
Collapse
|
39
|
Pendzialek SM, Knelangen JM, Schindler M, Gürke J, Grybel KJ, Gocza E, Fischer B, Navarrete Santos A. Trophoblastic microRNAs are downregulated in a diabetic pregnancy through an inhibition of Drosha. Mol Cell Endocrinol 2019; 480:167-179. [PMID: 30447248 DOI: 10.1016/j.mce.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/11/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs are promising biological markers for prenatal diagnosis. They regulate placental development and are present in maternal plasma. Maternal metabolic diseases are major risk factors for placental deterioration. We analysed the influence of a maternal insulin-dependent diabetes mellitus on microRNA expression in maternal plasma and in blastocysts employing an in vivo rabbit diabetic pregnancy model and an in vitro embryo culture in hyperglycaemic and hypoinsulinaemic medium. Maternal diabetes led to a marked downregulation of Dicer protein in embryoblast cells and Drosha protein in trophoblast cells. MiR-27b, miR-141 and miR-191 were decreased in trophoblast cells and in maternal plasma of diabetic rabbits. In vitro studies indicate, that maternal hyperglycaemia and hypoinsulinaemia partially contribute to the downregulation of trophoblastic microRNAs. As the altered microRNA expression was detectable in maternal plasma, too, the plasma microRNA signature could serve as an early biological marker for the prediction of trophoblast function during a diabetic pregnancy.
Collapse
Affiliation(s)
- S Mareike Pendzialek
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany.
| | - Julia M Knelangen
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Jacqueline Gürke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Katarzyna J Grybel
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Elen Gocza
- Agricultural Biotechnology Institute (ABC), National Agricultural Research and Innovation Centre (NARIC), Szent-Györgyi Albert u. 4, 2100, Gödöllő, Hungary
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| |
Collapse
|
40
|
Xiaobo 赵肖波 Z, Qizhi H, Zhiping W, Tao D. Down-regulated miR-149-5p contributes to preeclampsia via modulating endoglin expression. Pregnancy Hypertens 2019; 15:201-208. [PMID: 30713088 DOI: 10.1016/j.preghy.2019.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/15/2018] [Accepted: 01/09/2019] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Endoglin is expressed in human placenta and plays an important role in the pathogenesis of preeclampsia. Dysregulation of microRNAs in placental tissues has been recently suggested to be involved in the pathogenesis of preeclampsia. Until now, few studies have shed light on the correlation between endoglin and microRNAs, the latter of which may regulate the expression of ENG, a gene encoding endoglin, in placenta. In this study, we aim to investigate the regulation of ENG by microRNAs. STUDY DESIGN We located the microRNAs that might regulate the expression of ENG. Candidate microRNAs were tested if they had an impact on trophoblast function. MAIN OUTCOME MEASURES We compared endoglin expression between normotensive and preeclamptic placentas by using immunohistochemistry and real-time PCR. Downregulated microRNAs in preeclamptic placenta were revealed from a literature review. A bioinformatics assay was performed to predict those that might target ENG. Real-time PCR, Western blotting and dual luciferase assay were used to verify the targeting. The effects of the microRNAs on trophoblasts were evaluated by transwell invasion assay. RESULTS The endoglin level was significantly higher in preeclamptic placenta than in normotensive placenta. ENG was validated as the direct target of miR-149-5p and was inversely correlated with it. MiR-149-5p promoted the invasion of trophoblast cells, and this promotion was abrogated by the overexpression of ENG. CONCLUSIONS Our findings highlight the importance of miR-149-5p in the pathogenesis of preeclampsia and provide new insight into the development of the disease.
Collapse
Affiliation(s)
- Zhao Xiaobo 赵肖波
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, 200040 Shanghai, PR China
| | - He Qizhi
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, 200040 Shanghai, PR China
| | - Wu Zhiping
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, 200040 Shanghai, PR China
| | - Duan Tao
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, No. 536, Changle Road, 200040 Shanghai, PR China.
| |
Collapse
|
41
|
Affiliation(s)
- Sharvari S. Deshpande
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| | - Nafisa H. Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health (ICMR), Parel, Mumbai, India
| |
Collapse
|
42
|
Huang X, Anderle P, Hostettler L, Baumann MU, Surbek DV, Ontsouka EC, Albrecht C. Identification of placental nutrient transporters associated with intrauterine growth restriction and pre-eclampsia. BMC Genomics 2018; 19:173. [PMID: 29499643 PMCID: PMC5833046 DOI: 10.1186/s12864-018-4518-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 01/31/2018] [Indexed: 12/17/2022] Open
Abstract
Background Gestational disorders such as intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are main causes of poor perinatal outcomes worldwide. Both diseases are related with impaired materno-fetal nutrient transfer, but the crucial transport mechanisms underlying IUGR and PE are not fully elucidated. In this study, we aimed to identify membrane transporters highly associated with transplacental nutrient deficiencies in IUGR/PE. Results In silico analyses on the identification of differentially expressed nutrient transporters were conducted using seven eligible microarray datasets (from Gene Expression Omnibus), encompassing control and IUGR/PE placental samples. Thereby 46 out of 434 genes were identified as potentially interesting targets. They are involved in the fetal provision with amino acids, carbohydrates, lipids, vitamins and microelements. Targets of interest were clustered into a substrate-specific interaction network by using Search Tool for the Retrieval of Interacting Genes. The subsequent wet-lab validation was performed using quantitative RT-PCR on placentas from clinically well-characterized IUGR/PE patients (IUGR, n = 8; PE, n = 5; PE+IUGR, n = 10) and controls (term, n = 13; preterm, n = 7), followed by 2D-hierarchical heatmap generation. Statistical evaluation using Kruskal-Wallis tests was then applied to detect significantly different expression patterns, while scatter plot analysis indicated which transporters were predominantly influenced by IUGR or PE, or equally affected by both diseases. Identified by both methods, three overlapping targets, SLC7A7, SLC38A5 (amino acid transporters), and ABCA1 (cholesterol transporter), were further investigated at the protein level by western blotting. Protein analyses in total placental tissue lysates and membrane fractions isolated from disease and control placentas indicated an altered functional activity of those three nutrient transporters in IUGR/PE. Conclusions Combining bioinformatic analysis, molecular biological experiments and mathematical diagramming, this study has demonstrated systematic alterations of nutrient transporter expressions in IUGR/PE. Among 46 initially targeted transporters, three significantly regulated genes were further investigated based on the severity and the disease specificity for IUGR and PE. Confirmed by mRNA and protein expression, the amino acid transporters SLC7A7 and SLC38A5 showed marked differences between controls and IUGR/PE and were regulated by both diseases. In contrast, ABCA1 may play an exclusive role in the development of PE. Electronic supplementary material The online version of this article (10.1186/s12864-018-4518-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Huang
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Pascale Anderle
- Swiss Institute of Bioinformatics and HSeT Foundation, Lausanne, Switzerland.,Sitem-insel AG, Bern, Switzerland
| | - Lu Hostettler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Marc U Baumann
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Daniel V Surbek
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Department of Obstetrics and Gynaecology, University Hospital, University of Bern, Bern, Switzerland
| | - Edgar C Ontsouka
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Christiane Albrecht
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland. .,Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
43
|
Cirillo F, Lazzeroni P, Catellani C, Sartori C, Amarri S, Street ME. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev 2018; 39:1-18. [DOI: 10.1016/j.cytogfr.2017.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
44
|
Murphy MSQ, Tayade C, Smith GN. Maternal Circulating microRNAs and Pre-Eclampsia: Challenges for Diagnostic Potential. Mol Diagn Ther 2017; 21:23-30. [PMID: 27638415 DOI: 10.1007/s40291-016-0233-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pre-eclampsia (PE) is a common hypertensive disorder of pregnancy with a significant impact on maternal and neonatal mortality and morbidity. While the pathogenesis of PE has been well described, identification of a biomarker(s) with robust predictive utility in identifying women at the highest risk of developing the condition has yet to be identified. In the search for diagnostic markers, those that may be obtained from the circulation are preferred alternatives to those derived from organ tissue samples. Because of their stability in plasma, microRNAs (miRNAs) have been explored as biomarkers in a host of disease states, although there is comparably little literature available on the circulating miRNAome of PE. This article provides a narrative review on the current state of knowledge on miRNAs associated with PE. Literature on circulating miRNAs is presented and the challenges to developing the diagnostic and prognostic utility of miRNAs in this context is discussed.
Collapse
Affiliation(s)
- Malia S Q Murphy
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Graeme N Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada. .,Department of Obstetrics and Gynaecology, Kingston General Hospital, 76 Stuart St., Kingston, ON, K7L 2V7, Canada.
| |
Collapse
|
45
|
Cirillo F, Lazzeroni P, Sartori C, Street ME. Inflammatory Diseases and Growth: Effects on the GH-IGF Axis and on Growth Plate. Int J Mol Sci 2017; 18:E1878. [PMID: 28858208 PMCID: PMC5618527 DOI: 10.3390/ijms18091878] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 02/08/2023] Open
Abstract
This review briefly describes the most common chronic inflammatory diseases in childhood, such as cystic fibrosis (CF), inflammatory bowel diseases (IBDs), juvenile idiopathic arthritis (JIA), and intrauterine growth restriction (IUGR) that can be considered, as such, for the changes reported in the placenta and cord blood of these subjects. Changes in growth hormone (GH) secretion, GH resistance, and changes in the insulin-like growth factor (IGF) system are described mainly in relationship with the increase in nuclear factor-κB (NF-κB) and pro-inflammatory cytokines. Changes in the growth plate are also reported as well as a potential role for microRNAs (miRNAs) and thus epigenetic changes in chronic inflammation. Many mechanisms leading to growth failure are currently known; however, it is clear that further research in the field is still warranted.
Collapse
Affiliation(s)
- Francesca Cirillo
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Pietro Lazzeroni
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Chiara Sartori
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| | - Maria Elisabeth Street
- Division of Paediatric Endocrinology and Diabetology, Department of Obstetrics, Gynaecology and Paediatrics, Azienda AUSL-IRCCS, Viale Risorgimento, 80, 42123 Reggio Emilia, Italy.
| |
Collapse
|
46
|
Beards F, Jones LE, Charnock J, Forbes K, Harris LK. Placental Homing Peptide-microRNA Inhibitor Conjugates for Targeted Enhancement of Intrinsic Placental Growth Signaling. Am J Cancer Res 2017; 7:2940-2955. [PMID: 28824727 PMCID: PMC5562227 DOI: 10.7150/thno.18845] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/22/2017] [Indexed: 12/11/2022] Open
Abstract
Suboptimal placental growth and development are the underlying cause of many pregnancy complications. No treatments are available, primarily due to the risk of causing fetal teratogenicity. microRNAs (miRNAs) are short, non-coding RNA sequences that regulate multiple downstream genes; miR-145 and miR675 have previously been identified as negative regulators of placental growth. In this proof of principle study, we explored the feasibility of delivering miRNA inhibitors to the placentas of pregnant mice and developed novel placental homing peptide-microRNA inhibitor conjugates for targeted enhancement of intrinsic placental growth signalling. Scrambled-, miR-145- or miR-675 inhibitor sequences were synthesised from peptide nucleic acids and conjugated to the placental homing peptide CCGKRK. Intravenous administration of the miR-145- and miR-675 conjugates to pregnant C57BL/6J mice significantly increased fetal and placental weights compared to controls; the miR-675 conjugate significantly reduced placental miR-675 expression. When applied to human first trimester placental explants, the miR-145 conjugate significantly reduced placental miR-145 expression, and both conjugates induced significant enhancement of cytotrophoblast proliferation; no effect was observed in term placental explants. This study demonstrates that homing peptide-miRNA inhibitor conjugates can be exploited to promote placental growth; these novel therapeutics may represent an innovative strategy for targeted treatment of compromised placental development.
Collapse
|
47
|
Sakowicz A, Pietrucha T, Rybak-Krzyszkowska M, Huras H, Gach A, Sakowicz B, Banaszczyk M, Grzesiak M, Biesiada L. Double hit of NEMO gene in preeclampsia. PLoS One 2017; 12:e0180065. [PMID: 28654673 PMCID: PMC5487068 DOI: 10.1371/journal.pone.0180065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 06/08/2017] [Indexed: 12/19/2022] Open
Abstract
The precise etiology of preeclampsia is unknown. Family studies indicate that both genetic and environmental factors influence its development. One of these factors is NFkB, whose activation depends on NEMO (NFkB essential modulator. This is the first study to investigate the association between the existence of single nucleotide variant of the NEMO gene and the appearance of preeclampsia. A total of 151 women (72 preeclamptic women and 79 controls) and their children were examined. Sanger sequencing was performed to identify variants in the NEMO gene in the preeclamptic mothers. The maternal identified variants were then sought in the studied groups of children, and in the maternal and child controls, using RFLP-PCR. Real-time RT-PCR was performed to assess NEMO gene expression in maternal blood, umbilical cord blood and placentas. The sequencing process indicated the existence of two different variants in the 3'UTR region of the NEMO gene of preeclamptic women (IKBKG:c.*368C>A and IKBKG:c.*402C>T). The simultaneous occurrence of the TT genotype in the mother and the TT genotype in the daughter or a T allele in the son increased the risk of preeclampsia development 2.59 fold. Additionally, we found that the configuration of maternal/fetal genotypes (maternal TT/ daughter TT or maternal TT/son T) of IKBKG:c.*402C/T variant is associated with the level of NEMO gene expression. Our results showed that, the simultaneous occurrence of the maternal TT genotype (IKBKG:c.*402C>T variants) and TT genotype in the daughter or T allele in the son correlates with the level of NEMO gene expression and increases the risk of preeclampsia development. Our observations may offer a new insight into the genetic etiology and pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
- * E-mail:
| | - Tadeusz Pietrucha
- Department of Medical Biotechnology, Medical University of Lodz, Lodz, Poland
| | | | - Hubert Huras
- Department of Obstetrics and Perinatology, University Hospital in Krakow, Krakow, Poland
| | - Agnieszka Gach
- Departments of Genetic, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| | - Bartosz Sakowicz
- Department of Microelectronics and Computer Science, Lodz University of Technology, Lodz, Poland
| | | | - Mariusz Grzesiak
- Department of Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| | - Lidia Biesiada
- Department of Obstetrics and Gynecology, Polish Mother's Memorial Hospital-Research Institute in Lodz, Lodz, Poland
| |
Collapse
|
48
|
Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA, Devaskar SU. Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS One 2017; 12:e0176493. [PMID: 28463968 PMCID: PMC5413012 DOI: 10.1371/journal.pone.0176493] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 04/11/2017] [Indexed: 12/17/2022] Open
Abstract
Placental insufficiency leading to intrauterine growth restriction (IUGR) demonstrates perturbed gene expression affecting placental angiogenesis and nutrient transfer from mother to fetus. To understand the post-transcriptional mechanisms underlying such placental gene expression changes, our objective was to identify key non-coding microRNAs that express biological function. To this end, we initially undertook microarrays targeting microRNAs in a small sub-set of placentas of appropriate (AGA) versus small for gestational age (SGA) weight infants, and observed up-regulation of 97 miRs and down-regulation of 44 miRs in SGA versus AGA. In a larger cohort of samples (AGA, n = 21; SGA, n = 11; IUGR subset, n = 5), we validated by qRT-PCR differential expression of three specific microRNAs (miR-10b, -363 and -149) that target genes mediating angiogenesis and nutrient transfer. Validation yielded an increase in miR-10b and -363 expression of ~2.5-fold (p<0.02 each) in SGA versus AGA, and of ~3-fold (p<0.005) in IUGR versus AGA, with no significant change despite a trending increase in miR-149. To further establish a cause-and-effect paradigm, employing human HTR8 trophoblast cells, we assessed the effect of nutrient deprivation on miR expression and inhibition of endogenous miRs on target gene expression. In-vitro nutrient deprivation (~50%) increased the expression of miR-10b and miR-149 by 1.5-fold (p<0.02) while decreasing miR-363 (p<0.0001). Inhibition of endogenous miRs employing antisense sequences against miR-10b, -363 and -149 revealed an increase respectively in the expression of the target genes KLF-4 (transcription factor which regulates angiogenesis), SNAT1 and 2 (sodium coupled neutral amino acid transporters) and LAT2 (leucine amino acid transporter), which translated into a similar change in the corresponding proteins. Finally to establish functional significance we performed dual-luciferase reporter assays with 3'-insertion of miR-10b alone and observed a ~10% reduction in the 5'-luciferase activity versus the control. Lastly, we further validated by microarray and employing MirWalk software that the pathways and target genes identified by differentially expressed miRs in SGA/IUGR compared to AGA are consistent in a larger cohort. We have established the biological significance of various miRs that target common transcripts mediating pathways of importance, which are perturbed in the human IUGR placenta.
Collapse
Affiliation(s)
- Shanthie Thamotharan
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alison Chu
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Katie Kempf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Carla Janzen
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - David A. Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
49
|
Gray C, McCowan LM, Patel R, Taylor RS, Vickers MH. Maternal plasma miRNAs as biomarkers during mid-pregnancy to predict later spontaneous preterm birth: a pilot study. Sci Rep 2017; 7:815. [PMID: 28400603 PMCID: PMC5429750 DOI: 10.1038/s41598-017-00713-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/10/2017] [Indexed: 12/27/2022] Open
Abstract
More than 10% of babies are born too early resulting in over 15 million preterm births and more than one million new-born deaths globally. Although women with a previous spontaneous preterm birth (SPTB) are considered at high risk for recurrence, the majority occur in women without prior history. Prediction of SPTB risk allows for improved care and potential for targeting novel and existing therapeutics to prevent SPTB, which may result in improved outcomes for infant and mother. In this pilot study, a miRNA array was used to analyse plasma from healthy women in their first pregnancy at 20 weeks of gestation who then went on to deliver either at term or experience SPTB at 28-32 weeks. We identified specific miRNA expression profiles that differentiated between those mothers who delivered at term or delivered following SPTB. miR302b, miR1253 and a clustering of miR548 miRNAs were underexpressed in SPTB cases compared to term controls. Conversely, miR223 was elevated in mothers that later experienced a SPTB. The circulating miRNAs identified in the present study may therefore be attractive candidates as non-invasive biomarkers for the early prediction of SPTB. Further larger studies are now warranted to investigate the potential clinical utility of these markers.
Collapse
Affiliation(s)
- Clint Gray
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Lesley M McCowan
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Rachna Patel
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Rennae S Taylor
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
50
|
Do miRNAs Play a Role in Fetal Growth Restriction? A Fresh Look to a Busy Corner. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6073167. [PMID: 28466013 PMCID: PMC5390605 DOI: 10.1155/2017/6073167] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022]
Abstract
Placenta is the crucial organ for embryo and fetus development and plays a critical role in the development of fetal growth restriction (FGR). There are increasing evidences on the role of microRNAs (miRNAs) in a variety of pregnancy-related complications such as preeclampsia and FGR. More than 1880 miRNAs have been reported in humans and most of them are expressed in placenta. In this paper, we aimed to review the current evidence about the topic. According to retrieved data, controversial results about placental expression of miRNAs could be due (at least in part) to the different experimental methods used by different groups. Despite the fact that several authors have demonstrated a relatively easy and feasible detection of some miRNAs in maternal whole peripheral blood, costs of these tests should be reduced in order to increase cohorts and have stronger evidence. In this regard, we take the opportunity to solicit future studies on large cohort and adequate statistical power, in order to identify a panel of biomarkers on maternal peripheral blood for early diagnosis of FGR.
Collapse
|