1
|
Chen Q, Wang Y, Li J, Gu A, Zhai X. Cumulative effects of extreme ambient temperatures on placental perfusion and function markers in early pregnancy: Analysis from a birth cohort study. ENVIRONMENTAL RESEARCH 2025; 269:120930. [PMID: 39862953 DOI: 10.1016/j.envres.2025.120930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Exposure to suboptimal temperatures during pregnancy has been associated with adverse pregnancy and birth outcomes related to placental development disorders. No prior studies have examined the potential impacts of temperature on placental markers. We conducted an investigation into the cumulative impact of daily ambient temperature on critical clinical placental perfusion and function markers during the placentation period, utilizing data from a prospective birth cohort in Nanjing, China. METHODS We collected UtA-PI data and blood samples during the first follow-up (11-13.5 weeks of gestation) and measured PlGF and PAPP-A concentrations in plasma. We estimated individual daily temperature exposure over the 30 days preceding the follow-up and applied a Distributed Lag Nonlinear Model to evaluate its associations with UtA-PI, PlGF, and PAPP-A levels. RESULTS We included 3403, 3407, and 3427 women in the UtA-PI, PlGF, and PAPP-A analyses, respectively. Cold exposure was associated with higher UtA-PI measurements, with the strongest estimated percent change being 14.80% (95% CI: 3.32, 27.55). Both cold and heat exposures were associated with decreased PlGF concentrations, with the strongest estimated percent changes being -44.23% (95% CI: 63.28, -15.30) and -48.27% (95% CI: 64.33, -24.98), respectively. Temperature effects on UtA-PI were immediate, whereas changes in PlGF concentrations manifested after a cumulative lag of 24 days. CONCLUSIONS Both cold and heat exposures were associated with changes in placental markers, providing new insights into the potential mechanisms connecting ambient temperature to adverse pregnancy and birth outcomes through disorders of placental development.
Collapse
Affiliation(s)
- Qi Chen
- School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Ya Wang
- Department of Obstetrics and Gynecology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jie Li
- Department of Obstetrics and Gynecology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aihua Gu
- School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Xiangjun Zhai
- School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| |
Collapse
|
2
|
Gatti CR, Schibert F, Taylor VS, Capobianco E, Montero V, Higa R, Jawerbaum A. Maternal dietary olive oil protects diabetic rat offspring from impaired uterine decidualization. Placenta 2024:S0143-4004(24)00776-8. [PMID: 39609224 DOI: 10.1016/j.placenta.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Maternal diabetes increases the risk of adverse maternal, perinatal and offspring outcomes. This study aimed to address whether alterations in uterine decidualization are programmed in the prepubertal offspring from diabetic rats fed diets enriched or not in extra virgin olive oil (EVOO). METHODS Control and mild pregestational diabetic female rats (F0) were mated with control males and fed diets enriched or not with 6 % EVOO during pregnancy. Offspring (F1) were evaluated on postnatal day 30, after induction of uterine decidualization (PMSG 50 IU- hCG 50 IU). Signaling pathways involved in decidualization, including prolactin, PPAR and mTOR pathways as well as microRNAs (miRs) regulating these pathways were evaluated by Western blot or qPCR in the decidualized uteri. RESULTS The offspring from diabetic rats evidenced reduced prolactin and prolactin receptor levels in the decidualized uteri. Additionally, these tissues showed increased PPARγ levels and reduced levels of its negative regulators miR-19b and miR-155. MiR-21, a microRNA that targets both PPARα and mTOR pathway regulators was reduced, whereas PPARα, PTEN and FOXO1 mRNA levels were increased in the decidualized uteri of the offspring from diabetic rats. The mTOR pathway activity was reduced in the decidualized uteri of the offspring from diabetic rats. Most of the observed alterations were prevented by the EVOO-enriched maternal diet. DISCUSSION Impaired pathways relevant to decidualization are programmed in the uteri of prepubertal offspring from diabetic dams, alterations capable of being prevented by maternal diets enriched in EVOO.
Collapse
Affiliation(s)
- Cintia Romina Gatti
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Florencia Schibert
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Virginia Soledad Taylor
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | | | - Romina Higa
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires (UBA). Facultad de Medicina, Argentina; CONICET - UBA. Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Buenos Aires, Argentina.
| |
Collapse
|
3
|
Qin C, Wu J, Wei X, Liu X, Lin Y. ALKBH5 modulation of ferroptosis in recurrent miscarriage: implications in cytotrophoblast dysfunction. PeerJ 2024; 12:e18227. [PMID: 39434797 PMCID: PMC11493020 DOI: 10.7717/peerj.18227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/13/2024] [Indexed: 10/23/2024] Open
Abstract
Background As one of the most common and abundant internal modifications of eukaryotic mRNA, N6-methyladenosine (m6A) modifications are closely related to placental development. Ferroptosis is a newly discovered form of programmed cell death. During placental development, placental trophoblasts are susceptible to ferroptosis. However, the interactions of m6A and ferroptosis in trophoblast physiology and injury are unclear. Methods Recurrent miscarriage (RM) was selected as the main gestational disease in this study. Published data (GSE76862) were used to analyze the gene expression profiles in patients with RM. The extent of m6A modification in total RNA of villous tissues between patients with RM and healthy controls (HC) was compared. ALKBH5 (encoding AlkB homolog 5, RNA demethylase) was selected as the candidate gene for further research. Quantitative real-time reverse transcription PCR, western blotting, and immunohistochemistry (IHC) confirmed the elevated expression of ALKBH5 in the cytotrophoblasts of patients with RM. Then, cell counting kit-8 assays, glutathione disulfide/glutathione quantification, 2',7'-dichlorfluorescein-diacetate staining, and malonaldehyde assays were used to explore the alterations of ferroptosis-related characteristics following RAS-selective lethal (RSL3) stimulation after overexpression of ALKBH5. Thereafter, we re-analyzed the published RNA sequencing data upon knockdown of ALKBH5, combined with published tissue RNA-seq data, and FTL (encoding ferritin light chain) was identified as the ferroptosis-related gene in cytotrophoblasts of patients with RM that is regulated by ALKBH5. Finally, western blotting and IHC confirmed the increased expression of FTL in the cytotrophoblasts from patients with RM. Results Total m6A levels were decreased in patients with RM. The most significant differentially m6A-related gene was ALKBH5, which was increased in patients with RM. In vitro cell experiments showed that treatment with RSL3 resulted in increased cell death and upregulated ALKBH5 expression. Overexpression of ALKBH5 alleviated RSL3-induced HTR8 cell death and caused decreased levels of intracellular oxidation products. Published transcriptome sequencing revealed that FTL was the major ferroptosis-related gene regulated by ALKBH5 in the villous tissues of patients with RM. Consistent with the expression of ALKBH5, FTL was increased by RSL3-induction and increased in patients with RM. Conclusion Elevated ALKBH5 alleviated RSL3-induced cytotrophoblast cell death by promoting the expression of FTL in patients with RM. Our results supported the view that ALKBH5 is an important regulator of the ferroptosis-related etiology of RM and suggested that ALKBH5 could be responsible for epigenetic aberrations in RM pathogenesis.
Collapse
Affiliation(s)
- Chuanmei Qin
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowei Wei
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueqing Liu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Jiao Tong University School of Medicine Affiliated Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Hivert MF, Backman H, Benhalima K, Catalano P, Desoye G, Immanuel J, McKinlay CJD, Meek CL, Nolan CJ, Ram U, Sweeting A, Simmons D, Jawerbaum A. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 2024; 404:158-174. [PMID: 38909619 DOI: 10.1016/s0140-6736(24)00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024]
Abstract
Gestational diabetes is the most common medical complication in pregnancy. Historically, gestational diabetes was considered a pregnancy complication involving treatment of rising glycaemia late in the second trimester. However, recent evidence challenges this view. Pre-pregnancy and pregnancy-specific factors influence gestational glycaemia, with open questions regarding roles of non-glycaemic factors in the aetiology and consequences of gestational diabetes. Varying patterns of insulin secretion and resistance in early and late pregnancy underlie a heterogeneity of gestational diabetes in the timing and pathophysiological subtypes with clinical implications: early gestational diabetes and insulin resistant gestational diabetes subtypes are associated with a higher risk of pregnancy complications. Metabolic perturbations of early gestational diabetes can affect early placental development, affecting maternal metabolism and fetal development. Fetal hyperinsulinaemia can affect the development of multiple fetal tissues, with short-term and long-term consequences. Pregnancy complications are prevented by managing glycaemia in early and late pregnancy in some, but not all women with gestational diabetes. A better understanding of the pathophysiology and heterogeneity of gestational diabetes will help to develop novel management approaches with focus on improved prevention of maternal and offspring short-term and long-term complications, from pre-conception, throughout pregnancy, and beyond.
Collapse
Affiliation(s)
- Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Helena Backman
- Faculty of Medicine and Health, Department of Obstetrics and Gynecology, Örebro University, Örebro, Sweden
| | - Katrien Benhalima
- Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Catalano
- Maternal Infant Research Institute, Obstetrics and Gynecology Research, Tufts Medical Center, Boston, MA, USA; School of Medicine, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Jincy Immanuel
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Institute for Women's Health, College of Nursing, Texas Woman's University, Denton, TX, USA
| | - Christopher J D McKinlay
- Department of Paediatrics Child and Youth Health, University of Auckland, Auckland, New Zealand; Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Claire L Meek
- Leicester Diabetes Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | - Christopher J Nolan
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Department of Endocrinology, Canberra Health Services, Woden, ACT, Australia
| | - Uma Ram
- Department of Obstetrics and Gynecology, Seethapathy Clinic and Hospital, Chennai, Tamilnadu, India
| | - Arianne Sweeting
- Department of Endocrinology, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - David Simmons
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina; Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Ahmed A, Rahman AE, Ahmed S, Rahman F, Sujan HM, Ahmmed F, Hossain AT, Sayeed A, Hossain S, Huq NL, Quaiyum MA, Reichenbach L, El Arifeen S. Effect of low-cost kitchen with improved cookstove on birthweight of neonates in Shahjadpur, Bangladesh: a cluster-randomised controlled trial. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 25:100342. [PMID: 39021478 PMCID: PMC467075 DOI: 10.1016/j.lansea.2023.100342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/01/2023] [Accepted: 12/12/2023] [Indexed: 07/20/2024]
Abstract
Background Smoke from biomass fuels used for cooking in traditional cookstoves contains a variety of health-damaging pollutants. Inhalation of these pollutants by pregnant women has been linked to abnormal foetal development and adverse pregnancy outcomes, including low birthweight (LBW). There is a dearth of data on environmental interventions that have the potential to reduce exposure to biomass fuel during pregnancy and improve birth outcomes. International Centre for Diarrheal Disease Research, Bangladesh (icddr,b) therefore, designed a low-cost kitchen with an improved cookstove and examined the impact of this intervention on the birthweight of neonates. Methods icddr,b conducted a cluster-randomised controlled trial of a 'low-cost kitchen with improved cookstove' intervention among 1,267 pregnant women who used traditional cookstoves in a rural sub-district of Bangladesh. All participants were enrolled during the first trimester of pregnancy among 104 randomly selected clusters after obtaining informed consent. The model kitchens were installed in 628 participants' households of the intervention group, and 639 participants continued to use traditional cookstoves as the control group. The primary outcome was the proportion of LBW neonates between the intervention and control groups. The study also examined if the intervention would reduce CO exposure, measured by the differences in maternal blood carbon monoxide saturation (SpCO) levels and prevalence of LBW in neonates. We performed a generalized structural equation model for jointly assessing the simultaneous relationships of biomass fuel exposure to LBW of neonates and the relationships of LBW of neonates to maternal blood SpCO level. This trial was registered with ClinicalTrials.gov (NCT02923882). Findings We found that in the intervention group using 'low-cost kitchen with improved cookstove', the risk of LBW reduced by 37% (adjusted risk ratio: 0.63, 95% CI [0.45, 0.89]). Between the second and third trimester, the mean maternal blood SpCO level was significantly reduced from 10.4% to 8.9% (p-value <0.01) in the intervention group but remained unchanged in the control group (11.6% and 11.5%). Of the total effects of the intervention on the risk of LBW, 48.3% was mediated through maternal blood SpCO level. Interpretation The risk of LBW among rural neonates was reduced in the intervention group using 'low-cost kitchen with improved cookstove', which may be attributed to the reduction in maternal blood SpCO level. Additional research is needed to identify other mechanisms through which biomass fuel exposure might lead to adverse pregnancy outcomes. Funding Grand Challenges Canada: Rising Stars in Global Health Programme.
Collapse
Affiliation(s)
- Anisuddin Ahmed
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ahmed Ehsanur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Saifuddin Ahmed
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fariya Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Hasan Mahmud Sujan
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Faisal Ahmmed
- Infectious Disease Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Aniqa Tasnim Hossain
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abu Sayeed
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shahed Hossain
- James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | - Nafisa Lira Huq
- James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh
| | | | | | - Shams El Arifeen
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
6
|
Gan H, Xing Y, Tong J, Lu M, Yan S, Huang K, Wu X, Tao S, Gao H, Pan Y, Dai J, Tao F. Impact of Gestational Exposure to Individual and Combined Per- and Polyfluoroalkyl Substances on a Placental Structure and Efficiency: Findings from the Ma'anshan Birth Cohort. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6117-6127. [PMID: 38525964 DOI: 10.1021/acs.est.3c09611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) is inevitable among pregnant women. Nevertheless, there is a scarcity of research investigating the connections between prenatal PFAS exposure and the placental structure and efficiency. Based on 712 maternal-fetal dyads in the Ma'anshan Birth Cohort, we analyzed associations between individual and mixed PFAS exposure and placental measures. We repeatedly measured 12 PFAS in the maternal serum during pregnancy. Placental weight, scaling exponent, chorionic disc area, and disc eccentricity were used as the outcome variables. Upon adjusting for confounders and implementing corrections for multiple comparisons, we identified positive associations between branched perfluorohexane sulfonate (br-PFHxS) and 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) with placental weight. Additionally, a positive association was observed between br-PFHxS and the scaling exponent, where a higher scaling exponent signified reduced placental efficiency. Based on neonatal sex stratification, female infants were found to be more susceptible to the adverse effects of PFAS exposure. Mixed exposure modeling revealed that mixed PFAS exposure was positively associated with placental weight and scaling exponent, particularly during the second and third trimesters. Furthermore, br-PFHxS and 6:2 Cl-PFESA played major roles in the placental measures. This study provides the first epidemiological evidence of the relationship between prenatal PFAS exposure and placental measures.
Collapse
Affiliation(s)
- Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032 Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Yanan Xing
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032 Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032 Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011 Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032 Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Xiaoyan Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032 Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| | - Shuman Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022 Anhui, China
| | - Yitao Pan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032 Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032 Anhui, China
| |
Collapse
|
7
|
Contini T, Béranger R, Multigner L, Klánová J, Price EJ, David A. A Critical Review on the Opportunity to Use Placenta and Innovative Biomonitoring Methods to Characterize the Prenatal Chemical Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15301-15313. [PMID: 37796725 DOI: 10.1021/acs.est.3c04845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Adverse effects associated with chemical exposures during pregnancy include several developmental and reproductive disorders. However, considering the tens of thousands of chemicals present on the market, the effects of chemical mixtures on the developing fetus is still likely underestimated. In this critical review, we discuss the potential to apply innovative biomonitoring methods using high-resolution mass spectrometry (HRMS) on placenta to improve the monitoring of chemical exposure during pregnancy. The physiology of the placenta and its relevance as a matrix for monitoring chemical exposures and their effects on fetal health is first outlined. We then identify several key parameters that require further investigations before placenta can be used for large-scale monitoring in a robust manner. Most critical is the need for standardization of placental sampling. Placenta is a highly heterogeneous organ, and knowledge of the intraplacenta variability of chemical composition is required to ensure unbiased and robust interindividual comparisons. Other important variables include the time of collection, the sex of the fetus, and mode of delivery. Finally, we discuss the first applications of HRMS methods on the placenta to decipher the chemical exposome and describe how the use of placenta can complement biofluids collected on the mother or the fetus.
Collapse
Affiliation(s)
- Thomas Contini
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Rémi Béranger
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Luc Multigner
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Elliott J Price
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
| | - Arthur David
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
8
|
O'Brien K, Wang Y. The Placenta: A Maternofetal Interface. Annu Rev Nutr 2023; 43:301-325. [PMID: 37603428 DOI: 10.1146/annurev-nutr-061121-085246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The placenta is the gatekeeper between the mother and the fetus. Over the first trimester of pregnancy, the fetus is nourished by uterine gland secretions in a process known as histiotrophic nutrition. During the second trimester of pregnancy, placentation has evolved to the point at which nutrients are delivered to the placenta via maternal blood (hemotrophic nutrition). Over gestation, the placenta must adapt to these variable nutrient supplies, to alterations in maternal physiology and blood flow, and to dynamic changes in fetal growth rates. Numerous questions remain about the mechanisms used to transport nutrients to the fetus and the maternal and fetal determinants of this process. Growing data highlight the ability of the placenta to regulate this process. As new technologies and omics approaches are utilized to study this maternofetal interface, greater insight into this unique organ and its impact on fetal development and long-term health has been obtained.
Collapse
Affiliation(s)
- Kimberly O'Brien
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| | - Yiqin Wang
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| |
Collapse
|
9
|
Burton GJ, Jauniaux E. The human placenta: new perspectives on its formation and function during early pregnancy. Proc Biol Sci 2023; 290:20230191. [PMID: 37072047 PMCID: PMC10113033 DOI: 10.1098/rspb.2023.0191] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
The placenta has evolved to support the development of the embryo and fetus during the different intrauterine periods of life. By necessity, its development must precede that of the embryo. There is now evidence that during embryogenesis and organogenesis, the development of the human placenta is supported by histotrophic nutrition secreted from endometrial glands rather than maternal blood. These secretions provide a plentiful supply of glucose, lipids, glycoproteins and growth factors that stimulate rapid proliferation and differentiation of the villous trophoblast. Furthermore, evidence from endometrial gland organoids indicates that expression and secretion of these products are upregulated following sequential exposure to oestrogen, progesterone and trophoblastic and decidual hormones, in particular prolactin. Hence, a feed-forward signalling dialogue is proposed among the trophoblast, decidua and glands that enables the placenta to stimulate its own development, independent of that of the embryo. Many common complications of pregnancy represent a spectrum of disorders associated with deficient trophoblast proliferation. Increasing evidence suggests that this spectrum is mirrored by one of impaired decidualization, potentially compromising histotroph secretion through diminished prolactin secretion and reduced gland function. Optimizing endometrial wellbeing prior to conception may therefore help to prevent common pregnancy complications, such as miscarriage, growth restriction and pre-eclampsia.
Collapse
Affiliation(s)
- Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Eric Jauniaux
- EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, UK
| |
Collapse
|
10
|
Translational Comparison of the Human and Mouse Yolk Sac Development and Function. Reprod Sci 2023; 30:41-53. [PMID: 35137348 DOI: 10.1007/s43032-022-00872-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/29/2022] [Indexed: 01/06/2023]
Abstract
The yolk sac (YS) is the oldest of the extraembryonic membranes in vertebrates. Considered a transitory structure in the human species, the importance of the YS for a successful pregnancy is often overlooked. Due to the general inaccessibility of healthy human YS tissue for research, the use of experimental animal models is of great value. In order to better understand whether the mouse could be used as a translational model for the study of the human YS under normal and pathological conditions, this review comprehensively describes key developmental aspects of the human and mouse YS, detailing their development and function. YS major similarities in both species comprise the following: (1) histological composition (both being composed of endoderm, mesoderm, and mesothelium layers); (2) endoderm endocytosis, synthesis, secretion, and transport capabilities; and (3) mesoderm onset of haematopoiesis and angiogenesis. Examples of main dissimilarities include (1) persistence across pregnancy (i.e. early pregnancy in humans vs term pregnancy in mice); (2) the existence of a secondary YS in humans; (3) the presence of proliferative primordial germ cells (PGCs) in the human versus their absence in mice; and (4) eversion of histological layers in the mouse. Although these differences should be considered when interpreting data from mouse-based studies, the overall morphofunctional similarities in the YS between these species indicate that the mouse can be potentially used as a translational model for the study of the human YS.
Collapse
|
11
|
Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131:66-77. [PMID: 35393235 DOI: 10.1016/j.semcdb.2022.03.039] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
12
|
Chen Z, Sandoval K, Dean M. Endometrial glycogen metabolism during early pregnancy in mice. Mol Reprod Dev 2022; 89:431-440. [PMID: 35842832 PMCID: PMC9796177 DOI: 10.1002/mrd.23634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Glucose is critical during early pregnancy. The uterus can store glucose as glycogen but uterine glycogen metabolism is poorly understood. This study analyzed glycogen storage and localization of glycogen metabolizing enzymes from proestrus until implantation in the murine uterus. Quantification of diastase-labile periodic acid-Schiff (PAS) staining showed glycogen in the glandular epithelium decreased 71.4% at 1.5 days postcoitum (DPC) and 62.13% at DPC 3.5 compared to proestrus. In the luminal epithelium, glycogen was the highest at proestrus, decreased 46.2% at DPC 1.5 and 63.2% at DPC 3.5. Immunostaining showed that before implantation, glycogen metabolizing enzymes were primarily localized to the glandular and luminal epithelium. Stromal glycogen was low from proestrus to DPC 3.5. However, at the DPC 5.5 implantation sites, stromal glycogen levels increased sevenfold. Similarly, artificial decidualization resulted in a fivefold increase in glycogen levels. In both models, decidualization increased expression of glycogen synthase as determine by immunohistochemistry and western blot. In conclusion, glycogen levels decreased in the uterine epithelium before implantation, indicating that it could be used to support preimplantation embryos. Decidualization resulted in a dramatic increase in stromal glycogen levels, suggesting it may have an important, but yet undefined, role in pregnancy.
Collapse
Affiliation(s)
- Ziting Chen
- Department of Animal ScienceUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Kassandra Sandoval
- Department of Animal ScienceUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Matthew Dean
- Department of Animal ScienceUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
13
|
Parhi L, Abed J, Shhadeh A, Alon-Maimon T, Udi S, Ben-Arye SL, Tam J, Parnas O, Padler-Karavani V, Goldman-Wohl D, Yagel S, Mandelboim O, Bachrach G. Placental colonization by Fusobacterium nucleatum is mediated by binding of the Fap2 lectin to placentally displayed Gal-GalNAc. Cell Rep 2022; 38:110537. [PMID: 35320712 DOI: 10.1016/j.celrep.2022.110537] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 11/27/2022] Open
Abstract
While the existence of an indigenous placental microbiota remains controversial, several pathogens are known to be involved in adverse pregnancy outcomes. Fusobacterium nucleatum is an oral bacterium that is one of several bacteria associated with preterm birth. Oral fusobacteria translocate to the placenta hematogenously; however, the mechanisms localizing them to the placenta remain unclear. Here, using peanut agglutinin, we demonstrate that the level of Gal-GalNAc (Galβ1-3GalNAc; Thomsen Friedenreich antigen) found on trophoblasts facing entering maternal blood rises during gestation and is recognized by the fusobacterial Fap2 Gal-GalNAc lectin. F. nucleatum binding to human and mouse placenta correlates with Gal-GalNAc levels and is reduced upon O-glycanase treatment or with soluble Gal-GalNAc. Fap2-inactivated F. nucleatum shows reduced binding to Gal-GalNAc-displaying placental sections. In a mouse model, intravenously injected Fap2-expressing F. nucleatum, but not a Fap2 mutant, reduces mouse fetal survival by 70%.
Collapse
Affiliation(s)
- Lishay Parhi
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 9112001, Israel
| | - Jawad Abed
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 9112001, Israel
| | - Amjad Shhadeh
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 9112001, Israel
| | - Tamar Alon-Maimon
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 9112001, Israel
| | - Shiran Udi
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shani Leviatan Ben-Arye
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Oren Parnas
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel
| | - Vered Padler-Karavani
- Department of Cell Research and Immunology, The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Debra Goldman-Wohl
- Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hebrew University Hadassah Medical Center, Jerusalem 91240, Israel
| | - Simcha Yagel
- Magda and Richard Hoffman Center for Human Placenta Research, Department of Obstetrics and Gynecology, Hebrew University Hadassah Medical Center, Jerusalem 91240, Israel
| | - Ofer Mandelboim
- Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel.
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem 9112001, Israel.
| |
Collapse
|
14
|
Roles of Two Small Leucine-Rich Proteoglycans Decorin and Biglycan in Pregnancy and Pregnancy-Associated Diseases. Int J Mol Sci 2021; 22:ijms221910584. [PMID: 34638928 PMCID: PMC8509074 DOI: 10.3390/ijms221910584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
Two small leucine-rich proteoglycans (SLRP), decorin and biglycan, play important roles in structural–functional integrity of the placenta and fetal membranes, and their alterations can result in several pregnancy-associated diseases. In this review, we briefly discuss normal placental structure and functions, define and classify SLRPs, and then focus on two SLRPs, decorin (DCN) and biglycan (BGN). We discuss the consequences of deletions/mutations of DCN and BGN. We then summarize DCN and BGN expression in the pregnant uterus, myometrium, decidua, placenta, and fetal membranes. Actions of these SLRPs as ligands are then discussed in the context of multiple binding partners in the extracellular matrix and cell surface (receptors), as well as their alterations in pathological pregnancies, such as preeclampsia, fetal growth restriction, and preterm premature rupture of membranes. Lastly, we raise some unanswered questions as food for thought.
Collapse
|
15
|
Warner GR, Dettogni RS, Bagchi IC, Flaws JA, Graceli JB. Placental outcomes of phthalate exposure. Reprod Toxicol 2021; 103:1-17. [PMID: 34015474 PMCID: PMC8260441 DOI: 10.1016/j.reprotox.2021.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Proper placental development and function relies on hormone receptors and signaling pathways that make the placenta susceptible to disruption by endocrine disrupting chemicals, such as phthalates. Here, we review relevant research on the associations between phthalate exposures and dysfunctions of the development and function of the placenta, including morphology, physiology, and genetic and epigenetic effects. This review covers in vitro studies, in vivo studies in mammals, and studies in humans. We also discuss important gaps in the literature. Overall, the evidence indicates that toxicity to the placental and maternal-fetal interface is associated with exposure to phthalates. Further studies are needed to better elucidate the mechanisms through which phthalates act in the placenta as well as additional human studies that assess placental disruption through pregnancy with larger sample sizes.
Collapse
Affiliation(s)
- Genoa R Warner
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | | | - Indrani C Bagchi
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA.
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| |
Collapse
|
16
|
Aplin JD, Jones CJP. Cell dynamics in human villous trophoblast. Hum Reprod Update 2021; 27:904-922. [PMID: 34125187 DOI: 10.1093/humupd/dmab015] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Villous cytotrophoblast (vCTB) is a precursor cell population that supports the development of syncytiotrophoblast (vSTB), the high surface area barrier epithelium of the placental villus, and the primary interface between maternal and fetal tissue. In light of increasing evidence that the placenta can adapt to changing maternal environments or, under stress, can trigger maternal disease, we consider what properties of these cells empower them to exert a controlling influence on pregnancy progression and outcome. OBJECTIVE AND RATIONALE How are cytotrophoblast proliferation and differentiation regulated in the human placental villus to allow for the increasing demands of the fetal and environmental challenges and stresses that may arise during pregnancy? SEARCH METHODS PubMed was interrogated using relevant keywords and word roots combining trophoblast, villus/villous, syncytio/syncytium, placenta, stem, transcription factor (and the individual genes), signalling, apoptosis, autophagy (and the respective genes) from 1960 to the present. Since removal of trophoblast from its tissue environment is known to fundamentally change cell growth and differentiation kinetics, research that relied exclusively on cell culture has not been the main focus of this review, though it is mentioned where appropriate. Work on non-human placenta is not systematically covered, though mention is made where relevant hypotheses have emerged. OUTCOMES The synthesis of data from the literature has led to a new hypothesis for vCTB dynamics. We propose that a reversible transition can occur from a reserve population in G0 to a mitotically active state. Cells from the in-cycle population can then differentiate irreversibly to intermediate cells that leave the cycle and turn on genes that confer the capacity to fuse with the overlying vSTB as well as other functions associated with syncytial barrier and transport function. We speculate that alterations in the rate of entry to the cell cycle, or return of cells in the mitotic fraction to G0, can occur in response to environmental challenge. We also review evidence on the life cycle of trophoblast from the time that fusion occurs, and point to gaps in knowledge of how large quantities of fetal DNA arrive in maternal circulation. We critique historical methodology and make a case for research to re-address questions about trophoblast lifecycle and dynamics in normal pregnancy and the common diseases of pre-eclampsia and fetal growth restriction, where altered trophoblast kinetics have long been postulated. WIDER IMPLICATIONS The hypothesis requires experimental testing, moving research away from currently accepted methodology towards a new standard that includes representative cell and tissue sampling, assessment of cell cycle and differentiation parameters, and robust classification of cell subpopulations in villous trophoblast, with due attention to gestational age, maternal and fetal phenotype, disease and outcome.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Carolyn J P Jones
- Maternal and Fetal Health, University of Manchester, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
17
|
Lala PK, Nandi P, Hadi A, Halari C. A crossroad between placental and tumor biology: What have we learnt? Placenta 2021; 116:12-30. [PMID: 33958236 DOI: 10.1016/j.placenta.2021.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
Placenta in certain species including the human has evolved as a highly invasive tumor-like organ invading the uterus aned its vasculature to derive oxygen and nutrients for the fetus and exchange waste products. While several excellent reviews have been written comparing hemochorial placentation with tumors, no comprehensive review is available dealing with mechanistic insights into what makes them different, and what tumor biologists can learn from placental biologists, and vice versa. In this review, we analyze the structure-function relationship of the human placenta, emphasizing the functional need of the spatio-temporally orchestrated trophoblast invasiveness for fetal development and growth, and pathological consequences of aberrant invasiveness for fetal and maternal health. We then analyze similarities and differences between the placenta and invasive tumors in terms of hallmarks of cancer, some key molecules regulating their invasive functions, and how placental cancers (choriocarcinomas) or other cancers become refractory or even addicted to these invasion-restraining molecules. We cite in vitro models of human trophoblast and choriocarcinoma cell lines utilized to study mechanisms in normal placental development as well as those responsible for tumor progression. We discuss the pathobiology of hyper-invasive placentas and show thattrophoblastic neoplasias are a unique and heterogeneous class of tumors. We delve into the questions as to why metastasis from other organs rarely occurs at the placental site and whether pregnancy makes the mother more or less vulnerable to cancer-related morbidity/mortality. We attempt to compare trophoblast stem cells and cancer stem cells. Finally, we leave the readers with some thoughts as foods of future investigations.
Collapse
Affiliation(s)
- Peeyush K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada; Associate Scientist, Children's Health Research Institute, University of Western Ontario, London, Ontario, Canada N6C2V5.
| | - Pinki Nandi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| | - Ali Hadi
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| | - Chidambra Halari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Westernat Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
18
|
Antczak DF, Allen WRT. Placentation in Equids. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:91-128. [PMID: 34694479 DOI: 10.1007/978-3-030-77360-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This chapter focuses on the early stages of placental development in horses and their relatives in the genus Equus and highlights unique features of equid reproductive biology. The equine placenta is classified as a noninvasive, epitheliochorial type. However, equids have evolved a minor component of invasive trophoblast, the chorionic girdle and endometrial cups, which links the equine placenta with the highly invasive hemochorial placentae of rodents and, particularly, with the primate placenta. Two types of fetus-to-mother signaling in equine pregnancy are mediated by the invasive equine trophoblast cells. First, endocrinological signaling mediated by equine chorionic gonadotrophin (eCG) drives maternal progesterone production to support the equine conceptus between days 40 and 100 of gestation. Only in primates and equids does the placenta produce a gonadotrophin, but the evolutionary paths taken by these two groups of mammals to produce this placental signal were very different. Second, florid expression of paternal major histocompatibility complex (MHC) class I molecules by invading chorionic girdle cells stimulates strong maternal anti-fetal antibody responses that may play a role in the development of immunological tolerance that protects the conceptus from destruction by the maternal immune system. In humans, invasive extravillous trophoblasts also express MHC class I molecules, but the loci involved, and their likely function, are different from those of the horse. Comparison of the cellular and molecular events in these disparate species provides outstanding examples of convergent evolution and co-option in mammalian pregnancy and highlights how studies of the equine placenta have produced new insights into reproductive strategies.
Collapse
Affiliation(s)
- Douglas F Antczak
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA.
| | - W R Twink Allen
- Sharjah Equine Hospital, Sharjah, United Arab Emirates
- Robinson College, University of Cambridge, Cambridge, UK
- The Paul Mellon Laboratory of Equine Reproduction, 'Brunswick', Newmarket, Suffolk, UK
| |
Collapse
|
19
|
Burton GJ, Jauniaux E. Placentation in the Human and Higher Primates. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2021; 234:223-254. [PMID: 34694484 DOI: 10.1007/978-3-030-77360-1_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Placentation in humans is precocious and highly invasive compared to other mammals. Implantation is interstitial, with the conceptus becoming completely embedded within the endometrium towards the end of the second week post-fertilization. Villi initially form over the entire surface of the chorionic sac, stimulated by histotrophic secretions from the endometrial glands. The secondary yolk sac never makes contact with the chorion, and a choriovitelline placenta is never established. However, recent morphological and transcriptomic analyses suggest that the yolk sac plays an important role in the uptake of nutrients from the coelomic fluid. Measurements performed in vivo demonstrate that early development takes place in a physiological, low-oxygen environment that protects against teratogenic free radicals and maintains stem cells in a multipotent state. The maternal arterial circulation to the placenta is only fully established around 10-12 weeks of gestation. By then, villi have regressed over the superficial, abembryonic pole, leaving the definitive discoid placenta, which is of the villous, hemochorial type. Remodeling of the maternal spiral arteries is essential to ensure a high-volume but low-velocity inflow into the mature placenta. Extravillous trophoblast cells migrate from anchoring villi and surround the arteries. Their interactions with maternal immune cells release cytokines and proteases that are key to remodeling, and a successful pregnancy.
Collapse
Affiliation(s)
- Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Eric Jauniaux
- Faculty of Population Health Sciences, EGA Institute for Women's Health, University College London, London, UK
| |
Collapse
|
20
|
Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol 2020; 16:479-494. [PMID: 32601352 DOI: 10.1038/s41574-020-0372-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Pre-eclampsia and fetal growth restriction arise from disorders of placental development and have some shared mechanistic features. Initiation is often rooted in the maldevelopment of a maternal-placental blood supply capable of providing for the growth requirements of the fetus in later pregnancy, without exerting undue stress on maternal body systems. Here, we review normal development of a placental bed with a safe and adequate blood supply and a villous placenta-blood interface from which nutrients and oxygen can be extracted for the growing fetus. We consider disease mechanisms that are intrinsic to the maternal environment, the placenta or the interaction between the two. Systemic signalling from the endocrine placenta targets the maternal endothelium and multiple organs to adjust metabolism for an optimal pregnancy and later lactation. This signalling capacity is skewed when placental damage occurs and can deliver a dangerous pathogenic stimulus. We discuss the placental secretome including glycoproteins, microRNAs and extracellular vesicles as potential biomarkers of disease. Angiomodulatory mediators, currently the only effective biomarkers, are discussed alongside non-invasive imaging approaches to the prediction of disease risk. Identifying the signs of impending pathology early enough to intervene and ameliorate disease in later pregnancy remains a complex and challenging objective.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK.
| | - Jenny E Myers
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| | - Kate Timms
- Lydia Becker Institute of Inflammation and Immunology, The University of Manchester, Manchester, UK
| | - Melissa Westwood
- Maternal and Fetal Health Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
21
|
Agrawal S, Verma V, Gehlot S. Explication on tissue nutrition in prenatal and postnatal life: An Ayurveda perspective. J Ayurveda Integr Med 2020; 12:198-205. [PMID: 32855015 PMCID: PMC8039343 DOI: 10.1016/j.jaim.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/14/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Tissue nutrition is the continuous process which is established just after the conception and persists throughout the life. Ayurveda scholars have mentioned that the manner of tissue nutrition is not same in all phases of life. In prenatal life embryo gets nutrition by Upasneha (filtration) and Upasweda (percolation/secretion) and fetus by Garbhanabhinadi (umbilical cord) which is attached with the heart of mother via Rasavahanadi (blood vessels). Thus in intrauterine life the nutrition of embryo is histotrophic, whereas just after the formation of placenta nutrition becomes haemotrophic. In post-natal life nutrition is enteral means nutrients are taken in the form of food via mouth called Aahar. Ayurveda scholars have postulated theories to understand the mechanism of tissue nutrition are Ksheera Dadhi Nyaya (transformation of nutrients), Khale Kapota Nyaya (selective uptake of nutrients), KedariKulya Nyaya (transportation of nutrients via channels), Ek Kala Dhatu Poshan Nyaya (simultaneous supply of nutrients to whole body). The theories of tissue nutrition discussed in Ayurveda suggest that although tissues are nourished and replenished continuously at different rate as per the functional state of Agni by circulating nutrients obtained from Ahara, but tissues are also dependent on each other for their proper nourishment and metabolism. This concept has great implication in management of malnourishment and various other disorders. This manuscript is an attempt to explore the Ayurveda's view on tissue nutrition along with physiological and clinical significance of theories of tissue nutrition in a scientific manner.
Collapse
Affiliation(s)
- Sonam Agrawal
- Department of Kriya Sharir, Faculty of Ayurveda, IMS, BHU, India
| | - Vandana Verma
- Department of Kriya Sharir Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University, Varanasi, India.
| | - Sangeeta Gehlot
- Department of Kriya Sharir Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Jones CJP, Aplin JD, Allen WRT, Wilsher S. The influences of cycle stage and pregnancy upon cell glycosylation in the endometrium of the mare. Theriogenology 2020; 154:92-99. [PMID: 32535395 DOI: 10.1016/j.theriogenology.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
From Day 6.5-7 post-conception until its loss around Day 22, the equine embryo is enclosed in a mucinous capsule that prevents direct intercellular interaction between the trophectoderm and uterine epithelium. The embryo is, however, bathed in glycoprotein-rich secretions. In this study, lectin histochemistry was used to characterise the distribution and glycan composition of uterine glycoproteins destined for secretion, and to ascertain the local effect of an embryo on glycosylation in the endometrium. Endometrial biopsies were taken from mares in estrus, on Days 5, 8, 12 and 15 of diestrus, and on Days 12 and 15 of pregnancy and processed for lectin histochemistry. During estrus, lumenal epithelial cells were as truncated pyramids and mainly non-ciliated with glycosylated granules in the cytoplasm. Occasional ciliated cells contained few granules. Five days post-ovulation, non-ciliated cells of the lumenal epithelium were taller, and had accumulated many highly glycosylated apical granules. By Days 12 and 15 post-ovulation these cells were more cuboidal and some showed fewer secretory granules. In marked contrast, by Days 12 and 15 of pregnancy, the ciliated cells were distended, with numerous granules but non-ciliated cells had only a few in the apical cytoplasm. Glycosylation changed dramatically in pregnancy in the luminal and superficial gland epithelium, with fewer fucosylated termini, more N-acetyl galactosamine residues, together with an overall reduction in sialic acid and several other sugar structures. Glycosylation in ciliated cells on Days 12 and 15 of pregnancy showed a striking similarity to that of the blastocyst capsule. The data strongly suggests that glycoprotein production by luminal epithelial cells is influenced by the presence of a conceptus. We speculate that, as well as providing nourishment for the developing embryo, epithelial secretory glycoproteins may contribute components to the capsule, which develops only partially in embryos cultured in vitro.
Collapse
Affiliation(s)
- Carolyn J P Jones
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Central Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology & Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Central Manchester University Hospital NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - W R Twink Allen
- Sharjah Equine Hospital, Bridge No 6, Al Daid Road, Al Atain Area, Sharjah, United Arab Emirates.
| | - Sandra Wilsher
- Sharjah Equine Hospital, Bridge No 6, Al Daid Road, Al Atain Area, Sharjah, United Arab Emirates.
| |
Collapse
|
23
|
Zheng J, Qu D, Wang C, Ding L, Zhou W. Involvement of CXCL12/CXCR4 in the motility of human first-trimester endometrial epithelial cells through an autocrine mechanism by activating PI3K/AKT signaling. BMC Pregnancy Childbirth 2020; 20:87. [PMID: 32041571 PMCID: PMC7011269 DOI: 10.1186/s12884-020-2788-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Background CXCL12(chemokine ligand 12, CXCL12) and its receptors CXCR4 are widely expressed in maternal-fetal interface and plays an adjust role in materno-fetal dialogue and immune tolerance during early pregnancy. This study aimed to evaluate the role and mechanism of self-derived CXCL12 in modulating the functions of human first-trimester endometrial epithelial cells (EECs) and to identify the potential protein kinase signaling pathways involved in the CXCL12/CXCR4’s effect on EECs. Methods The expression of CXCL12 and CXCR4 in EECs was measured by using immunohistochemistry, immunofluorescence, real-time polymerase chain reaction and enzyme-linked immunosorbent assay. The effects of EEC-conditioned medium (EEC-CM) and recombinant human CXCL12 (rhCXCL12) on EEC migration and invasion in vitro were evaluated with migration and invasion assays. In-cell western blot analysis was used to examine the phosphorylation of protein kinase B (AKT), extracellular regulated protein kinases (ERKs) and phosphatidylinositol 3-kinase (PI3K) after CXCL12 treatment. Results CXCL12 and CXCR4 were both expressed in human first-trimester EECs at the mRNA and protein level. Both EEC-CM and rhCXCL12 significantly increased the migration and invasion of EECs (P < 0.05), which could be blocked by neutralizing antibodies against CXCR4 (P < 0.05) or CXCL12 (P < 0.05), respectively. CXCL12 activated both PI3K/AKT and ERK1/2 signaling and CXCR4 neutralizing antibody effectively reduced CXCL12-induced phosphorylation of AKT and ERK1/2. LY294002, a PI3K-AKT inhibitor, was able to reverse the promotive effect of EEC-CM or rhCXCL12 on EEC migration and invasion. Conclusions Human first-trimester EECs promoted their own migration and invasion through the autocrine mechanism with CXCL12/CXCR4 axis involvement by activating PI3K/AKT signaling. This study contributes to a better understanding of the epithelium function mediated by chemokine and chemokine receptor during normal pregnancy.
Collapse
Affiliation(s)
- Jiayi Zheng
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Danni Qu
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Chen Wang
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Ling Ding
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Wenhui Zhou
- Medical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| |
Collapse
|
24
|
Duval F, Dos Santos E, Maury B, Serazin V, Fathallah K, Vialard F, Dieudonné MN. Adiponectin regulates glycogen metabolism at the human fetal–maternal interface. J Mol Endocrinol 2018; 61:139-152. [PMID: 30307166 DOI: 10.1530/jme-18-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Throughout the entire first trimester of pregnancy, fetal growth is sustained by endometrial secretions, i.e. histiotrophic nutrition. Endometrial stromal cells (EnSCs) accumulate and secrete a variety of nutritive molecules that are absorbed by trophoblastic cells and transmitted to the fetus. Glycogen appears to have a critical role in the early stages of fetal development, since infertile women have low endometrial glycogen levels. However, the molecular mechanisms underlying glycogen metabolism and trafficking at the fetal–maternal interface have not yet been characterized. Among the various factors acting at the fetal–maternal interface, we focused on adiponectin – an adipocyte-secreted cytokine involved in the control of carbohydrate and lipid homeostasis. Our results clearly demonstrated that adiponectin controls glycogen metabolism in EnSCs by (i) increasing glucose transporter 1 expression, (ii) inhibiting glucose catabolism via a decrease in lactate and ATP productions, (iii) increasing glycogen synthesis, (iv) promoting glycogen accumulation via phosphoinositide-3 kinase activation and (v) enhancing glycogen secretion. Furthermore, our results revealed that adiponectin significantly limits glycogen endocytosis by human villous trophoblasts. Lastly, we demonstrated that once glycogen has been endocytosed into placental cells, it is degraded into glucose molecules in lysosomes. Taken as a whole, the present results demonstrate that adiponectin exerts a dual role at the fetal–maternal interface by promoting glycogen synthesis in the endometrium and conversely reducing trophoblastic glycogen uptake. We conclude that adiponectin may be involved in feeding the conceptus during the first trimester of pregnancy by controlling glycogen metabolism in both the uterus and the placenta.
Collapse
Affiliation(s)
- Fabien Duval
- GIG – EA 7404, Université de Versailles-Saint Quentin en Yvelines – Université Paris Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
| | - Esther Dos Santos
- GIG – EA 7404, Université de Versailles-Saint Quentin en Yvelines – Université Paris Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, Poissy, France
| | - Benoît Maury
- GIG – EA 7404, Université de Versailles-Saint Quentin en Yvelines – Université Paris Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
| | - Valérie Serazin
- GIG – EA 7404, Université de Versailles-Saint Quentin en Yvelines – Université Paris Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
- Service de Biologie Médicale, Centre Hospitalier de Poissy-Saint Germain, Poissy, France
| | - Khadija Fathallah
- Département de Biologie de la Reproduction, Cytogénétique, Gynécologie et Obstétrique, Centre Hospitalier de Poissy-Saint Germain, Poissy, France
| | - François Vialard
- GIG – EA 7404, Université de Versailles-Saint Quentin en Yvelines – Université Paris Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
- Département de Biologie de la Reproduction, Cytogénétique, Gynécologie et Obstétrique, Centre Hospitalier de Poissy-Saint Germain, Poissy, France
| | - Marie-Noëlle Dieudonné
- GIG – EA 7404, Université de Versailles-Saint Quentin en Yvelines – Université Paris Saclay, Unité de Formation et de Recherche des Sciences de la Santé Simone Veil, Montigny-le-Bretonneux, France
| |
Collapse
|
25
|
The John Hughes Memorial Lecture: Stimulation of Early Placental Development Through a Trophoblast-Endometrial Dialog. J Equine Vet Sci 2018. [DOI: 10.1016/j.jevs.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Yang Y, Abdulhasan M, Awonuga A, Bolnick A, Puscheck EE, Rappolee DA. Hypoxic Stress Forces Adaptive and Maladaptive Placental Stress Responses in Early Pregnancy. Birth Defects Res 2018; 109:1330-1344. [PMID: 29105384 DOI: 10.1002/bdr2.1149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 10/07/2017] [Indexed: 12/19/2022]
Abstract
This review focuses on hypoxic stress and its effects on the placental lineage and the earliest differentiation events in mouse and human placental trophoblast stem cells (TSCs). Although the placenta is a decidual organ at the end of pregnancy, its earliest rapid growth and function at the start of pregnancy precedes and supports growth and function of the embryo. Earliest function requires that TSCs differentiate, however, "hypoxia" supports rapid growth, but not differentiation of TSCs. Most of the literature on earliest placental "hypoxia" studies used 2% oxygen which is normoxic for TSCs. Hypoxic stress happens when oxygen level drops below 2%. It decreases anabolism, proliferation, potency/stemness and increases differentiation, despite culture conditions that would sustain proliferation and potency. Thus, to study the pathogenesis due to TSC dysfunction, it is important to study hypoxic stress below 2%. Many studies have been performed using 0.5 to 1% oxygen in cultured mouse TSCs. From all these studies, a small number has examined human trophoblast lines and primary first trimester placental hypoxic stress responses in culture. Some other stress stimuli, aside from hypoxic stress, are used to elucidate common and unique aspects of hypoxic stress. The key outcomes produced by hypoxic stress are mitochondrial, anabolic, and proliferation arrest, and this is coupled with stemness loss and differentiation. Hypoxic stress can lead to depletion of stem cells and miscarriage, or can lead to later dysfunctions in placentation and fetal development. Birth Defects Research 109:1330-1344, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yu Yang
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Awoniyi Awonuga
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Alan Bolnick
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Elizabeth E Puscheck
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan
| | - Daniel A Rappolee
- CS Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Reproductive Endocrinology and Infertility, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Institutes for Environmental Health Science, Wayne state University School of Medicine, Detroit, Michigan.,Department of Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
27
|
Blastocyst-Derived Stem Cell Populations under Stress: Impact of Nutrition and Metabolism on Stem Cell Potency Loss and Miscarriage. Stem Cell Rev Rep 2018; 13:454-464. [PMID: 28425063 DOI: 10.1007/s12015-017-9734-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Data from in vitro and in vivo models suggest that malnutrition and stress trigger adaptive responses, leading to small for gestational age (SGA) blastocysts with fewer cell numbers. These stress responses are initially adaptive, but become maladaptive with increasing stress exposures. The common stress responses of the blastocyst-derived stem cells, pluripotent embryonic and multipotent placental trophoblast stem cells (ESCs and TSCs), are decreased growth and potency, and increased, imbalanced and irreversible differentiation. SGA embryos may fail to produce sufficient antiluteolytic placental hormone to maintain corpus luteum progesterone secretion that provides nutrition at the implantation site. Myriad stress inputs for the stem cells in the embryo can occur in vitro during in vitro fertilization/assisted reproductive technology (IVF/ART) or in vivo. Paradoxically, stresses that diminish stem cell growth lead to a higher level of differentiation simultaneously which further decreases ESC or TSC numbers in an attempt to functionally compensate for fewer cells. In addition, prolonged or strong stress can cause irreversible differentiation. Resultant stem cell depletion is proposed as a cause of miscarriage via a "quiet" death of an ostensibly adaptive response of stem cells instead of a reactive, violent loss of stem cells or their differentiated progenies.
Collapse
|
28
|
Zheng J, Wang H, Zhou W. Modulatory effects of trophoblast-secreted CXCL12 on the migration and invasion of human first-trimester decidual epithelial cells are mediated by CXCR4 rather than CXCR7. Reprod Biol Endocrinol 2018; 16:17. [PMID: 29499763 PMCID: PMC5833108 DOI: 10.1186/s12958-018-0333-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maternal-fetal crosstalk during embryo implantation is complex and regulated by local signaling molecules. Chemokines and their receptors are critical signaling components required for implantation and the process of pregnancy. This study aimed to explore whether human first-trimester trophoblast cells (TCs) were capable of modulating the migration and invasion of human first-trimester decidual epithelial cells (DECs) via CXCL12/CXCR4/CXCR7 signaling. METHOD The expression of CXCR4 and CXCR7 in DECs was examined by immunohistochemistry, immunocytochemistry, immunofluorescence, flow cytometry, real-time polymerase chain reactions and western blotting. The effects of recombinant human CXCL12 (rhCXCL12) and TC-conditioned medium (TC-CM) on DEC viability in vitro were explored using a viability assay. The modulatory effects of rhCXCL12 and TC/DEC co-cultures on DEC migration and invasion were examined with migration/invasion assays. RESULT CXCR4 and CXCR7 were co-expressed in human first-trimester DECs. Human rhCXCL12 and TC-CM had no effects on DEC viability in vitro (P > 0.05). Both exogenous CXCL12 and co-culture with TCs significantly increased the migration and invasion of DECs (P < 0.05). Neutralizing antibodies against CXCR4 (P < 0.05) or CXCL12 (P < 0.05), but not CXCR7 (P > 0.05), significantly blocked the enhanced migration and invasion of DECs induced by exogenous CXCL12 or TC co-culture. CONCLUSIONS CXCR4 and CXCR7 were co-expressed in human first-trimester DECs. TC-derived CXCL12 promoted the migration and invasion of DECs via CXCR4, but not CXCR7, in a paracrine manner during early pregnancy.
Collapse
Affiliation(s)
- Jiayi Zheng
- 0000 0004 0369 153Xgrid.24696.3fMedical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020 People’s Republic of China
| | - Haiping Wang
- 0000 0004 0369 153Xgrid.24696.3fMedical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020 People’s Republic of China
| | - Wenhui Zhou
- 0000 0004 0369 153Xgrid.24696.3fMedical Center for Human Reproduction, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020 People’s Republic of China
| |
Collapse
|
29
|
Abstract
At implantation, with the acquisition of a receptive phenotype in the uterine epithelium, an initial tenuous attachment of embryonic trophectoderm initiates reorganisation of epithelial polarity to enable stable embryo attachment and the differentiation of invasive trophoblasts. In this Cell Science at a Glance article, we describe cellular and molecular events during the epithelial phase of implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal regulators estrogen and progesterone that coordinate alterations in epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell interactions that occur during implantation, before considering specific adhesion molecules. We compare the rodent data with our much more limited knowledge of the human system, where direct mechanistic evidence is hard to obtain. In the accompanying poster, we represent the embryo-epithelium interactions in humans and laboratory rodents, highlighting similarities and differences, as well as depict some of the key cell biological events that enable interstitial implantation to occur.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| | - Peter T Ruane
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| |
Collapse
|
30
|
Akison LK, Nitert MD, Clifton VL, Moritz KM, Simmons DG. Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence. Placenta 2017; 54:52-58. [PMID: 28117144 DOI: 10.1016/j.placenta.2017.01.114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/16/2022]
Abstract
Normal placental function is essential for optimal fetal growth. Transport of glucose from mother to fetus is critical for fetal nutrient demands and can be stored in the placenta as glycogen. However, the function of this glycogen deposition remains a matter of debate: It could be a source of fuel for the placenta itself or a storage reservoir for later use by the fetus in times of need. While the significance of placental glycogen remains elusive, mounting evidence indicates that altered glycogen metabolism and/or deposition accompanies many pregnancy complications that adversely affect fetal development. This review will summarize histological, biochemical and molecular evidence that glycogen accumulates in a) placentas from a variety of experimental rodent models of perturbed pregnancy, including maternal alcohol exposure, glucocorticoid exposure, dietary deficiencies and hypoxia and b) placentas from human pregnancies with complications including preeclampsia, gestational diabetes mellitus and intrauterine growth restriction (IUGR). These pregnancies typically result in altered fetal growth, developmental abnormalities and/or disease outcomes in offspring. Collectively, this evidence suggests that changes in placental glycogen deposition is a common feature of pregnancy complications, particularly those associated with altered fetal growth.
Collapse
Affiliation(s)
- Lisa K Akison
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Marloes Dekker Nitert
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Centre for Clinical Research, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Vicki L Clifton
- Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4101, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Child Health Research Centre, The University of Queensland, Centre for Children's Health Research, South Brisbane, QLD, 4101, Australia
| | - David G Simmons
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Mater Medical Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, 4101, Australia
| |
Collapse
|
31
|
Morphology, histochemistry and glycosylation of the placenta and associated tissues in the European hedgehog (Erinaceus europaeus). Placenta 2016; 48:1-12. [PMID: 27871459 DOI: 10.1016/j.placenta.2016.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION There are few descriptions of the placenta and associated tissues of the European hedgehog (Erinaceus europaeus) and here we present findings on a near-term pregnant specimen. METHODS Tissues were examined grossly and then formalin fixed and wax-embedded for histology and immunocytochemistry (cytokeratin) and resin embedded for lectin histochemistry. RESULTS Each of four well-developed and near term hoglets displayed a discoid, haemochorial placenta with typical labyrinth and spongy zones. In addition there was a paraplacenta incorporating Reichert's membrane and a largely detached yolk sac. The trophoblast of the placenta contained diverse populations of granule which expressed most classes of glycan. Intercellular membranes were also glycosylated and this tended to be heavier in the labyrinth zone. Fetal capillary endothelium had glycosylated apical surfaces expressing sialic acid and various other glycans. Glycogen was present in large cells situated between the spongy zone and the endometrium. Trophoblast cells in the placental disc and under Reichert's membrane, as well as yolk sac endoderm and mesothelium, were cytokeratin positive. Reichert's membrane was heavily glycosylated. Yolk sac inner and outer endoderm expressed similar glycans except for N-acetylgalactosamine residues in endodermal acini. DISCUSSION New features of near-term hedgehog placenta and associated tissues are presented, including their glycosylation, and novel yolk sac acinar structures are described. The trophoblast of the placental disc showed significant differences from that underlying Reichert's membrane while the glycan composition of the membrane itself showed some similarity to that of rat thereby implying a degree of biochemical conservation of this structure.
Collapse
|
32
|
Jones CJP, Whittle SC, Aplin JD. A simple histochemical method for the identification of cytotrophoblasts in tissue sections. Placenta 2016; 42:84-6. [PMID: 27238717 DOI: 10.1016/j.placenta.2016.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
A simple method for the demonstration of placental cytotrophoblast cells is described, utilising the affinity of the lectin from Bandeiraea simplicifolia-II (BSA-II) for intracellular amylase-sensitive glycogen and a protocol using biotinylated BSA-II followed by an avidin-peroxidase revealing system. In early pregnancy, cytotrophoblast cells in chorionic and anchoring villi are deeply stained and with ongoing differentiation the staining gradually decreases in intensity, suggesting that this lectin can be a useful marker for these cells.
Collapse
Affiliation(s)
- Carolyn J P Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK.
| | - Saxon C Whittle
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, Manchester Academic Health Science Centre, St Mary's Hospital, Oxford Road, Manchester, M13 9WL, UK
| |
Collapse
|
33
|
Moser G, Weiss G, Gauster M, Sundl M, Huppertz B. Evidence from the very beginning: endoglandular trophoblasts penetrate and replace uterine glands in situ and in vitro. Hum Reprod 2015; 30:2747-57. [PMID: 26493408 DOI: 10.1093/humrep/dev266] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/30/2015] [Indexed: 12/23/2022] Open
Abstract
STUDY QUESTION How is histiotrophic nutrition of the embryo secured during the first trimester of pregnancy? SUMMARY ANSWER Rather than specifically focusing on invasion into spiral arteries, extravillous trophoblasts also invade into uterine glands (endoglandular trophoblast) from the very beginning and open them toward the intervillous space. WHAT IS KNOWN ALREADY Extravillous trophoblasts can be found in close contact and within the lumen of uterine glands, sometimes replacing glandular epithelial cells. STUDY DESIGN, SIZE, DURATION As well as extensive screening of specimens from first trimester placentation sites in situ we used a previously established three-dimensional co-culture in vitro model system of first trimester villous explants with non-invaded decidua parietalis. PARTICIPANTS/MATERIALS, SETTING, METHODS First trimester placentas were obtained from elective terminations of pregnancies (n = 48) at 5-11 weeks of gestational age. A subset was processed for confrontation co-culture (n = 31). Invaded decidua basalis was obtained from 20 placentas. All tissues were sectioned, subsequently immunostained and immunodoublestained with antibodies against keratin 7 (KRT7), major histocompatibility complex, class I, G (HLA-G), matrix metallopeptidase 9 (MMP9), von Willebrand factor (VWF) and the appropriate Immunoglobulin G (IgG) negative controls. Replacement of endothelial/epithelial cells by extravillous trophoblasts was quantified semi-quantitatively. Additionally, hematoxylin and eosin-stained archival specimens from early implantation sites were assessed. MAIN RESULTS AND THE ROLE OF CHANCE The earliest available specimen was from around Day 10 after conception; already at this stage trophoblasts had penetrated into uterine glands and had started to replace the epithelium of the glands. Endoglandular trophoblasts replaced uterine glands in vitro and in situ and could be found in the lumen of invaded glands. Quantitative analysis revealed significantly more replacement of epithelial cells in glands (63.8 ± 22.1%) compared with endothelial cells in vessels (26.4 ± 8.8%). Accumulated detached glandular epithelial cells could be repeatedly observed in the lumen of invaded glands. Additionally, in areas of trophoblast invasion the glandular epithelium seemed to be completely disintegrated compared with glandular epithelium in the non-invaded parts of the decidua. Whole tissue specimens were used in vitro and in situ instead of cell lines; these systems mostly maintain the context of the in vivo situation. LIMITATIONS, REASONS FOR CAUTION This is a descriptive study supported by in vitro experiments. However, a histological section will always only be a snapshot and quantification from histological sections has its limitations. WIDER IMPLICATIONS OF THE FINDINGS This study further strengthens the hypothesis of histiotrophic nutrition of the embryo prior to the establishment of the maternal blood flow toward the placenta. Invasion of uterine glands by endoglandular trophoblasts may have more impact on the outcome of early pregnancy than assumed up to now.
Collapse
Affiliation(s)
- G Moser
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010 Graz, Austria
| | - G Weiss
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010 Graz, Austria
| | - M Gauster
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010 Graz, Austria
| | - M Sundl
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010 Graz, Austria
| | - B Huppertz
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Harrachgasse 21/7, 8010 Graz, Austria
| |
Collapse
|
34
|
Functional changes in Hofbauer cell glycobiology during human pregnancy. Placenta 2015; 36:1130-7. [DOI: 10.1016/j.placenta.2015.07.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 11/19/2022]
|