1
|
Tang C, Hu W. Epigenetic modifications during embryonic development: Gene reprogramming and regulatory networks. J Reprod Immunol 2024; 165:104311. [PMID: 39047672 DOI: 10.1016/j.jri.2024.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of normal pregnancy requires appropriate maturation and transformation of various cells, which constitute the microenvironmental regulatory network at the maternal-fetal interface. Interestingly, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of epigenetic modifications of the genome have attracted much attention. With the development of epigenetics (DNA and RNA methylation, histone modifications, etc.), new insights have been gained into early embryonic developmental stages (e.g., maternal-to-zygotic transition, MZT). Understanding the various appropriate modes of transcriptional regulation required for the early embryonic developmental process from the perspective of epigenetic modifications will help us to provide new targets and insights into the pathogenesis of embryonic failure during further natural fertilization. This review focuses on the loci of action of epigenetic modifications from the perspectives of female germ cell development and embryo development to provide new insights for personalized diagnosis and treatment of abortion.
Collapse
Affiliation(s)
- Cen Tang
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China
| | - Wanqin Hu
- Kunming Medical University Second Affiliated Hospital, Obstetrics Department, Kunming, Yunnan 650106, China.
| |
Collapse
|
2
|
Wang C, Ju H, Zhou L, Zhu Y, Wu L, Deng X, Jiang L, Sun L, Xu Y. TET3-mediated novel regulatory mechanism affecting trophoblast invasion and migration: Implications for preeclampsia development. Placenta 2024; 147:31-41. [PMID: 38295560 DOI: 10.1016/j.placenta.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Aberrant expression of genes has been demonstrated to be related to the abnormal function of trophoblasts and lead to the occurrence and progression of Preeclampsia (PE). However, the underlying mechanism of PE has not been elucidated. METHODS We performed PCR analysis to investigate TET3 expression in PE placental tissues. Cell assays were performed in HTR-8/SVneo and JAR. Cell invasion and migration events were investigated by transwell assays in vitro. ChIP-PCR and Targeted bisulfite sequencing were conducted to detect the demethylation of related CpG sites in the KLF13 promoter after inhibition of TET3. In conjunction with bioinformatics analysis, luciferase reporter assays were performed to elucidate the mechanism by which miR-544 binds to TET3/KLF13 mRNA. RESULTS In this study, we identified genes associated with human extravillous trophoblasts by conducting sc-seq analysis from the GEO. Then, we measured the expression of TET3 in a larger clinical sample. The results showed that TET3, a DNA demethylase, was found to be expressed at much higher levels in the preeclamptic placenta compared to the control. Then, the inhibition of TET3 significantly promoted trophoblast cell migration and invasion. Conversely, TET3 overexpression suppressed cell migration and invasion in vitro. Further RNA sequencing and mechanism analysis indicated that the inhibition of TET3 suppressed the activation of KLF13 by reducing the demethylation of related CpG sites in the KLF13 promoter, thereby transcriptionally inactivating KLF13 expression. Moreover, luciferase reporter assay indicate that TET3 and KLF13 were direct targets of miR-544. DISCUSSION This study uncovers a TET3-mediated regulatory mechanism in PE progression and suggests that targeting the placental miR-544-TET3-KLF13-axis might provide new diagnostic and therapeutic strategies for PE.
Collapse
Affiliation(s)
- Cong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Huihui Ju
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Department of Obstetrics and Gynecology, Changzhou Maternal and Child Health Care Hospital Changzhou Medical Center of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Lihong Zhou
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuanyuan Zhu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xiaokang Deng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lingling Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
3
|
Jiang J, Li D, Zhong Y, Zhang Y, Zhong M. TET2-mediated DNA hydroxymethylation of TGFB1 is related to selective intrauterine growth restriction in monochorionic twin pregnancies. Placenta 2023; 144:45-54. [PMID: 37992596 DOI: 10.1016/j.placenta.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023]
Abstract
INTRODUCTION Selective intrauterine growth restriction (sIUGR), which specifically occurs in monochorionic (MC) twins, usually has a poor prognosis and the underlying mechanisms are not well understood. It is an ideal model for exploring epigenetic-modified mechanisms for fetal development in MCDA twins due to eliminating the interference of different heritable backgrounds and intrauterine environments among individuals. METHODS The levels of ten-eleven translocation 2 (TET2) and its upstream and downstream targets miR-29b-3p and transforming growth factor beta 1 (TGFB1) were determined using RT‒qPCR, western blotting, and immunohistochemistry. Using TET2 overexpression and knockdown methods, we investigated the role of TET2 in trophoblast functions. The regulatory relationships among TET2, miR-29b-3p, and TGFB1 were explored by cell migration assay, invasion assay, apoptotic ratio assays, Western blot, hMeDIP-qPCR and dual-luciferase assay. RESULTS A consistent upregulation of TET2 and TGFB1 was observed in the smaller placental shares compared to the larger placental shares in sIUGR. Gain-of-function studies of TET2 in trophoblasts showed decreased cell invasion and increased apoptosis, whereas loss-of-function studies of TET2 rescued this effect. Mechanistic studies revealed that miR-29b-3p and TGFB1 were the upstream factor and downstream target of TET2, respectively. Furthermore, miR-29b-3p/TET2/TGFB1-smad was identified as a unique axis that regulates trophoblast invasion, migration, and apoptosis in a DNA hydroxymethylation-dependent manner. DISCUSSION We elucidated the functional roles of TET2 and DNA hydroxymethylation in trophoblasts and identified a novel DNA regulatory mechanism, providing a basis for further exploration of DNA epigenetic regulatory patterns in sIUGR.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, China
| | - Dianjie Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, China
| | - Yixiang Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, China.
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, China.
| |
Collapse
|
4
|
Vasconcelos S, Caniçais C, Chuva de Sousa Lopes SM, Marques CJ, Dória S. The role of DNA hydroxymethylation and TET enzymes in placental development and pregnancy outcome. Clin Epigenetics 2023; 15:66. [PMID: 37095555 PMCID: PMC10127343 DOI: 10.1186/s13148-023-01483-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/12/2023] [Indexed: 04/26/2023] Open
Abstract
The placenta is a temporary organ that is essential for supporting mammalian embryo and fetal development. Understanding the molecular mechanisms underlying trophoblast differentiation and placental function may contribute to improving the diagnosis and treatment of obstetric complications. Epigenetics plays a significant role in the regulation of gene expression, particularly at imprinted genes, which are fundamental in the control of placental development. The Ten-Eleven-Translocation enzymes are part of the epigenetic machinery, converting 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC). DNA hydroxymethylation is thought to act as an intermediate in the DNA demethylation mechanism and potentially be a stable and functionally relevant epigenetic mark on its own. The role of DNA hydroxymethylation during differentiation and development of the placenta is not fully understood but increasing knowledge in this field will help to evaluate its potential role in pregnancy complications. This review focuses on DNA hydroxymethylation and its epigenetic regulators in human and mouse placental development and function. Additionally, we address 5hmC in the context of genomic imprinting mechanism and in pregnancy complications, such as intrauterine growth restriction, preeclampsia and pregnancy loss. The cumulative findings show that DNA hydroxymethylation might be important for the control of gene expression in the placenta and suggest a dynamic role in the differentiation of trophoblast cell types during gestation.
Collapse
Affiliation(s)
- Sara Vasconcelos
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Caniçais
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | | | - C Joana Marques
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Sofia Dória
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| |
Collapse
|
5
|
Pinson MR, Tseng AM, Adams A, Lehman TE, Chung K, Gutierrez J, Larin KV, Chambers C, Miranda RC. Prenatal alcohol exposure contributes to negative pregnancy outcomes by altering fetal vascular dynamics and the placental transcriptome. Alcohol Clin Exp Res 2022; 46:1036-1049. [PMID: 35474222 PMCID: PMC9325399 DOI: 10.1111/acer.14846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/17/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022]
Abstract
Background Prenatal alcohol exposure (PAE) has been shown to alter fetal blood flow in utero and is also associated with placental insufficiency and intrauterine growth restriction (IUGR), suggesting an underlying connection between perturbed circulation and pregnancy outcomes. Methods Timed‐pregnant C57/BL6NHsd mice, bred in‐house, were exposed by gavage on gestational day 10 (GD10) to ethanol (3 g/kg) or purified water, as a control. Pulse‐wave Doppler ultrasound measurements for umbilical arteries and ascending aorta were obtained post‐gavage (GD12, GD14, GD18) on 2 fetuses/litter. RNA from the non‐decidual (labyrinthine and junctional zone) portion of placentas was isolated and processed for RNA‐seq and subsequent bioinformatic analyses, and the association between transcriptomic changes and fetal phenotypes assessed. Results Exposure to ethanol in pregnant mice on GD10 attenuates umbilical cord blood flow transiently during gestation, and is associated with indices of IUGR, specifically decreased fetal weight and morphometric indices of cranial growth. Moreover, RNA‐seq of the fetal portion of the placenta demonstrated that this single exposure has lasting transcriptomic changes, including upregulation of Tet3, which is associated with spontaneous abortion. Weighted gene co‐expression network analysis (WGCNA) identified erythrocyte differentiation and homeostasis as important pathways associated with improved umbilical cord blood flow as gestation progresses. WGCNA also identified sensory perception of chemical stimulus/odorant and receptor activity as important pathways associated with cranial growth. Conclusion Our data suggest that PAE perturbs the expression of placental genes relevant for placental hematopoiesis and environmental sensing, resulting in transient impairment of umbilical cord blood flow and, subsequently, IUGR.
Collapse
Affiliation(s)
- Marisa R Pinson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Amy Adams
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Tenley E Lehman
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Karen Chung
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, USA
| | - Jessica Gutierrez
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Christina Chambers
- Clinical and Translational Research Institute, University of California San Diego, San Diego, California, USA.,Department of Pediatrics, University of California San Diego, San Diego, California, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M College of Medicine, Bryan, Texas, USA.,Women's Health in Neuroscience Program, Texas A&M University College of Medicine, Bryan, Texas, USA.,Interdisciplinary Program of Genetics, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
6
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
7
|
The IVF-generated human embryonic microenvironment reverses progestin resistance in endometrial cancer cells by inducing cancer stem cell differentiation. Cancer Lett 2021; 526:311-321. [PMID: 34775003 DOI: 10.1016/j.canlet.2021.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Progestin resistance is a critical factor that prevents patients with endometrial cancer (EC) from receiving conservative therapy. However, the etiology remains elusive. Cancer stem cells (CSCs) may be a contributing factor to progestin resistance in EC. These cells share similar stemness properties with embryonic stem cells that have a multipotent but differential naïve phenotype. Embryonic stem cells are programed to self-renew, to differentiate and to show plasticity toward a normal cellular phenotype in their defined microenvironment. However, whether this microenvironment may promote CSC differentiation toward a better responsive phenotype and reverse progestin resistance has not yet been clarified. In the current study, we found that progestin resistance of endometrial CSCs can be improved or reversed by using in vitro fertilization (IVF)-generated embryonic sac-derived fluid containing the embryonic microenvironment. Furthermore, suppression or reversal of progestin resistance was mediated by placental alkaline phosphatase (ALPP), a factor secreted into the embryonic microenvironment by IVF-generated blastocysts. ALPP significantly reversed progestin resistance by facilitating endometrial CSC differentiation through downregulating the stemness genes NANOG, OCT4 and SOX2. We further showed that the downregulation of NANOG, OCT4 and SOX2 by ALPP was carried out by TET1/2-mediated epigenetic modulation of the promoter regions of these genes. Such changes at the molecular level initiated endometrial CSC differentiation and promoted a better responsive endometrial cancer phenotype. In fact, their response to progestin treatment was similar to that of well-differentiated endometrioid carcinoma cells without CSCs. ALPP could be a novel target in the process to overcome progestin resistance, and such findings may provide a new approach for the conservative treatment of endometrial cancer.
Collapse
|
8
|
Caniçais C, Vasconcelos S, Ramalho C, Marques CJ, Dória S. Deregulation of imprinted genes expression and epigenetic regulators in placental tissue from intrauterine growth restriction. J Assist Reprod Genet 2021; 38:791-801. [PMID: 33389447 PMCID: PMC8079450 DOI: 10.1007/s10815-020-02047-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Intrauterine growth restriction (IUGR) is a fetal growth complication that can be caused by ineffective nutrient transfer from the mother to the fetus via the placenta. Abnormal placental development and function have been correlated with abnormal expression of imprinted genes, which are regulated by epigenetic modifications at imprinting control regions (ICRs). In this study, we analyzed the expression of imprinted genes known to be involved in fetal growth and epigenetic regulators involved in DNA methylation, as well as DNA methylation at the KvDMR1 imprinting control region and global levels of DNA hydroxymethylation, in IUGR cases. METHODS Expression levels of imprinted genes and epigenetic regulators were analyzed in term placental samples from 21 IUGR cases and 9 non-IUGR (control) samples, by RT-qPCR. Additionally, KvDMR1 methylation was analyzed by bisulfite sequencing and combined bisulfite restriction analysis (COBRA) techniques. Moreover, global DNA methylation and hydroxymethylation levels were also measured. RESULTS We observed increased expression of PHLDA2, CDKN1C, and PEG10 imprinted genes and of DNMT1, DNMT3A, DNMT3B, and TET3 epigenetic regulators in IUGR placentas. No differences in methylation levels at the KvDMR1 were observed between the IUGR and control groups; similarly, no differences in global DNA methylation and hydromethylation were detected. CONCLUSION Our study shows that deregulation of epigenetic mechanisms, namely increased expression of imprinted genes and epigenetic regulators, might be associated with IUGR etiology. Therefore, this study adds knowledge to the molecular mechanisms underlying IUGR, which may contribute to novel prediction tools and future therapeutic options for the management of IUGR pregnancies.
Collapse
Affiliation(s)
- Carla Caniçais
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Sara Vasconcelos
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Ramalho
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hospital São João, Porto, Portugal
| | - C Joana Marques
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Sofia Dória
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| |
Collapse
|
9
|
Roberts GAG, Tunster SJ. Characterising the dynamics of placental glycogen stores in the mouse. Placenta 2020; 99:131-140. [PMID: 32798765 DOI: 10.1016/j.placenta.2020.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The placenta performs a range of functions to support fetal growth. In addition to facilitating nutrient transport, the placenta also stores glucose as glycogen, which is thought to maintain fetal glucose supply during late gestation. However, evidence to support such a role is currently lacking. Similarly, our understanding of the dynamics of placental glycogen metabolism in normal mouse pregnancy is limited. METHODS We quantified the placental glycogen content of wild type C57BL/6JOlaHsd mouse placentas from mid (E12.5) to late (E18.5) gestation, alongside characterising the temporal expression pattern of genes encoding glycogenesis and glycogenolysis pathway enzymes. To assess the potential of the placenta to produce glucose, we investigated the spatiotemporal expression of glucose 6-phosphatase by qPCR and in situ hybridisation. Separate analyses were undertaken for placentas of male and female conceptuses to account for potential sexual dimorphism. RESULTS Placental glycogen stores peak at E15.5, having increased over 5-fold from E12.5, before declining by a similar extent by E18.5. Glycogen stores were 17% higher in male placentas than in females at E15.5. Expression of glycogen branching enzyme (Gbe1) was reduced ~40% towards term. Expression of the glucose 6-phosphatase isoform G6pc3 was enriched in glycogen trophoblast cells and increased towards term. DISCUSSION Reduced expression of Gbe1 suggests a decline in glycogen branching towards term. Expression of G6pc3 by glycogen trophoblasts is consistent with an ability to produce and release glucose from glycogen stores. However, the ultimate destination of the glucose generated from placental glycogen remains to be elucidated.
Collapse
Affiliation(s)
- George A G Roberts
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Simon J Tunster
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
| |
Collapse
|
10
|
Vasconcelos S, Ramalho C, Marques CJ, Doria S. Altered expression of epigenetic regulators and imprinted genes in human placenta and fetal tissues from second trimester spontaneous pregnancy losses. Epigenetics 2019; 14:1234-1244. [PMID: 31221015 PMCID: PMC6791697 DOI: 10.1080/15592294.2019.1634988] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023] Open
Abstract
Epigenetic mechanisms such as genomic imprinting have a fundamental role in embryo and fetal development. Hence, we here studied expression levels of epigenetic modifiers and imprinted genes in cases of ididopathic spontaneous abortion (SA). Thirty-five placental samples and 35 matched fetal tissues from second trimester SA were analysed; including 16 controls (placental and fetal infections as the known cause of spontaneous abortion) and 19 idiopathic SA cases. Transcript levels of epigenetic regulators and imprinted genes were measured by qRT-PCR and methylation at imprinted genes was studied by bisulfite genomic sequencing and MS-MLPA. Global DNA hydroxymethylation (5-hmC) levels were measured by an ELISA-based assay. We observed an upregulation of TET2 and TET3 in placental samples from idiopathic SA cases; however, no significant difference in global 5-hmC levels was observed. On the contrary, in fetal tissues, TET3 was markedly downregulated in idiopathic SA, showing an opposite trend to that observed in placental tissue. IGF2 and CDKN1C were upregulated and MEST downregulated in placentas from idiopathic SA cases; concordantly, IGF2 was also upregulated in fetal tissues from idiopathic SA cases. Although not reaching statistical significance, an increase in methylation levels of MEST, KvDMR1 and H19 DMRs was observed in idiopathic SA cases, concordantly with the observed changes in expression. Our study reveals, for the first time, deregulation of epigenetic modifiers and imprinted genes in both placental and fetal tissues from idiopathic SA cases in the second trimester of pregnancy, indicating a critical role during pregnancy.
Collapse
Affiliation(s)
- Sara Vasconcelos
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla Ramalho
- Department of Obstetrics and Gynecology Hospital São João, Faculty of Medicine, Porto, Portugal
| | - C. Joana Marques
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sofia Doria
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
11
|
Silveira MM, Vargas LN, Bayão HXS, Schumann NAB, Caetano AR, Rumpf R, Franco MM. DNA methylation of the endogenous retrovirus Fematrin-1 in fetal placenta is associated with survival rate of cloned calves. Placenta 2019; 88:52-60. [PMID: 31671312 DOI: 10.1016/j.placenta.2019.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The expression of retroviral envelope proteins in the placenta facilitates generation of the multinuclear syncytiotrophoblast as an outer cellular layer of the placenta by fusion of the trophoblastic cells. This process is essential for placenta development in eutherians and for successful pregnancy. METHODS We tested the hypothesis that alterations in DNA methylation and gene expression profiles of the endogenous retroviruses (ERVs) and genes related to epigenetic reprogramming in placenta of cloned calves result in abnormal offspring phenotypes. The fetal cotyledons in 13 somatic cell nuclear transfer (SCNT) pregnancies were collected. DNA methylation level of Fematrin-1 was analyzed using bisulfite PCR and mRNA levels of Fematrin-1, Syncytin-Rum1, DNMT1, DNMT3A, DNMT3B, TET1, TET2 and TET3 measured by RT-qPCR. RESULTS Methylation of Fematrin-1 in placenta of control animals produced by artificial insemination (AI) was similar to live SCNT-produced calves, but hypermethylated than dead SCNT-produced calves. The levels of mRNA differed between SCNT-produced calves and AI animals for all genes, except TET3. However, no differences were observed between the live and dead cloned calves for all genes. Moreover, no differences were found between mRNA levels of Fematrin-1 and Syncytin-Rum1. DISCUSSION Our results suggest that this altered DNA methylation, deregulation in the expression of ERVs and in the genes of epigenetic machinery in fetal cotyledons of cloned calves may be associated with abnormal placentogenesis found in SCNT-produced animals. Further studies characterizing other mechanisms involved in the regulation of ERVs are important to support the development of new strategies to improve the efficiency of cloning.
Collapse
Affiliation(s)
- Márcia Marques Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | - Luna Nascimento Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Naiara Araújo Borges Schumann
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| | | | - Rodolfo Rumpf
- GENEAL Genetics and Animal Biotechnology, Uberaba, Minas Gerais, Brazil.
| | - Maurício Machaim Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil; Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil; School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Wilson RL, François M, Jankovic-Karasoulos T, McAninch D, McCullough D, Leifert WR, Roberts CT, Bianco-Miotto T. Characterization of 5-methylcytosine and 5-hydroxymethylcytosine in human placenta cell types across gestation. Epigenetics 2019; 14:660-671. [PMID: 31038385 DOI: 10.1080/15592294.2019.1609866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The placenta is an important organ in pregnancy, however, very little is understood about placental development at a molecular level. This includes the role of epigenetic mechanisms and how they change throughout gestation. DNA methylation studies in this organ are complicated by the different cell types that make up the placenta, each with their own unique transcriptome and epigenome. Placental dysfunction is often associated with pregnancy complications such as preeclampsia (PE). Aberrant DNA methylation in the placenta has been identified in pregnancy complications. We used immunohistochemistry (IHC) and immunofluorescence (IF) to localize 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) in placenta tissue from first and second trimester as well as uncomplicated term and PE samples. IHC analysis of whole placental tissues showed 5-mC increased across gestation. When cytotrophoblasts (CTB) and syncytiotrophoblasts (STB) were isolated and assessed using IF, both 5-mC and 5-hmC increased in term CTBs compared to first/second-trimester samples. Staining intensity of 5-hmC was higher in first/second trimester STBs compared to CTBs (P = 0.0011). Finally, IHC staining of term tissue from PE and uncomplicated pregnancies revealed higher 5-mC staining intensity in placentas from PE pregnancies (P = 0.028). Our study has shown increased 5-mC and 5-hmC staining intensities across gestation and differed between two trophoblast populations. Differences in DNA methylation profiles between placental cell types may be indicative of different functions and requires further study to elucidate what changes accompany placental pathologies.
Collapse
Affiliation(s)
- Rebecca L Wilson
- a Center for Fetal and Placental Research , Cincinnati Children's Hospital and Medical Research Center , Cincinnati , OH , USA.,b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Maxime François
- d CSIRO Health and Biosecurity , Future Science Platforms Probing Biosystems , Adelaide , Australia.,e School of Biological Sciences , University of Adelaide , Adelaide , Australia
| | - Tanja Jankovic-Karasoulos
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Dale McAninch
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Dylan McCullough
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Wayne R Leifert
- d CSIRO Health and Biosecurity , Future Science Platforms Probing Biosystems , Adelaide , Australia.,e School of Biological Sciences , University of Adelaide , Adelaide , Australia
| | - Claire T Roberts
- b Adelaide Medical School , University of Adelaide , Adelaide , Australia.,c Robinson Research Institute , University of Adelaide , Adelaide , Australia
| | - Tina Bianco-Miotto
- c Robinson Research Institute , University of Adelaide , Adelaide , Australia.,f School of Agriculture, Food and Wine, Waite Research Institute , University of Adelaide , Adelaide , Australia
| |
Collapse
|
13
|
Rempel LA, Krautkramer MM, Parrish JJ, Miles JR. Impact of seasonality, storage of semen, and sperm head-shape on whole tissue methylation and expression of methylation responsive candidate genes in swine placenta and fetal livers from summer and winter breedings. Mol Reprod Dev 2019; 86:465-475. [PMID: 30767330 DOI: 10.1002/mrd.23125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/22/2022]
Abstract
Epigenetics includes the study of external factors that can influence the expression of genes by altering the accessibility of DNA through methylation. To investigate the epigenetic influence of season, sperm head shape, and semen storage on placental and fetal tissues, pregnancies were generated in the summer or winter using boar semen from either least or most sperm head shape change, collected during cool or warm seasons, and stored as cooled-extended or cryopreserved. The lowest (p < 0.05) ratios of 5-methylcytosine to 5-hydroxymethylcytosine activity (5mC:5hmC) in fetal liver were from summer breedings and in placental tissues from winter breedings. The relative expression of placental CDH1 tended ( p < 0.10) to be greater in placenta generated from cryopreserved semen or semen collected during cool periods. The relative expression of placental GNAS was affected ( p < 0.05) by the interaction of breeding and semen collection seasons. Cryopreserved semen increased ( p < 0.05) the placental relative expression of GNAS. Placental MEST and RHOBTB3 tended ( p < 0.10) to have a greater relative expression from pregnancies generated using semen collected during cool periods used during winter breedings. Within fetal liver, the relative expression of GNAS and HGF was greater ( p < 0.05) from winter breedings. Interaction of winter breedings and least sperm head shape change tended ( p < 0.10) to have the greatest fetal liver expression of CDH1. Seasonality of semen collection, breeding, and the effect on sperm head shape change had an influence on the expression of genes with known differentially methylated regions or response to methylation activity from embryonic and extraembryonic tissues.
Collapse
Affiliation(s)
- Lea A Rempel
- U.S. Department of Agriculture, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska
| | | | - John J Parrish
- Department of Animal Science, University of Wisconsin, Madison, Wisconsin
| | - Jeremy R Miles
- U.S. Department of Agriculture, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska
| |
Collapse
|
14
|
Loch-Caruso R, Hassan I, Harris SM, Kumar A, Bjork F, Lash LH. Trichloroethylene exposure in mid-pregnancy decreased fetal weight and increased placental markers of oxidative stress in rats. Reprod Toxicol 2018; 83:38-45. [PMID: 30468822 DOI: 10.1016/j.reprotox.2018.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 12/29/2022]
Abstract
Although epidemiology studies have associated maternal trichloroethylene (TCE) exposure with decreased birth weight and preterm birth, mechanistic explanations for these associations are currently lacking. We hypothesized that TCE targets the placenta with adverse consequences for pregnancy outcomes. Pregnant Wistar rats were exposed orally to vehicle or 480 mg TCE/kg body weight from gestational days (gd) 6-16, and tissues were collected on gd 16. Exposure to TCE significantly decreased average fetal weight without reducing maternal weight. In placenta, TCE significantly increased 8-hydroxy-deoxyguanosine, global 5-hydroxymethylcytosine, and mRNA expression of Tet3, which codes for an enzyme involved in 5-hydroxymethylcytosine formation. Furthermore, glutathione S-transferase activity and immunohistochemical staining were increased in placentas of TCE-exposed rats. The present study provides the first evidence that TCE increases markers of oxidative stress in placenta in a fetal growth restriction rat model, providing new insight into the placenta as a potentially relevant target for TCE-induced adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Rita Loch-Caruso
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Iman Hassan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Sean M Harris
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Anjana Kumar
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Faith Bjork
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109-2029, USA.
| | - Lawrence H Lash
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|