1
|
Knutsson L, Xu X, van Zijl PCM, Chan KWY. Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties. NMR IN BIOMEDICINE 2023; 36:e4784. [PMID: 35665547 PMCID: PMC9719573 DOI: 10.1002/nbm.4784] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 05/13/2023]
Abstract
The ability of CEST MRI to detect the presence of millimolar concentrations of non-metallic contrast agents has made it possible to study, non-invasively, important biological molecules such as proteins and sugars, as well as drugs already approved for clinical use. Here, we review efforts to use sugar and sugar polymers as exogenous contrast agents, which is possible based on the exchange of their hydroxyl protons with water protons. While this capability has raised early enthusiasm, for instance about the possibility of imaging D-glucose metabolism with MRI in a way analogous to PET, experience over the past decade has shown that this is not trivial. On the other hand, many studies have confirmed the possibility of imaging a large variety of sugar analogues, each with potentially interesting applications to assess tissue physiology. Some promising applications are the study of (i) sugar delivery and transport to assess blood-brain barrier integrity and (ii) sugar uptake by cells for their characterization (e.g., cancer versus healthy), as well as (iii) clearance of sugars to assess tissue drainage-for instance, through the glymphatic system. To judge these opportunities and their challenges, especially in the clinic, it is necessary to understand the technical aspects of detecting the presence of rapidly exchanging protons through the water signal in MRI, especially as a function of magnetic field strength. We expect that novel approaches in terms of MRI detection (both saturation transfer and relaxation based), MRI data analysis, and sugar design will push this young field forward in the next decade.
Collapse
Affiliation(s)
- Linda Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Xiang Xu
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Peter CM van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, US
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong
- City University of Hong Kong Shenzhen Institute, Shenzhen, China
| |
Collapse
|
2
|
Aghaei Z, Mercer GV, Schneider CM, Sled JG, Macgowan CK, Baschat AA, Kingdom JC, Helm PA, Simpson AJ, Simpson MJ, Jobst KJ, Cahill LS. Maternal exposure to polystyrene microplastics alters placental metabolism in mice. Metabolomics 2022; 19:1. [PMID: 36538272 DOI: 10.1007/s11306-022-01967-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The rapid growth in the worldwide use of plastics has resulted in a vast accumulation of microplastics in the air, soil and water. The impact of these microplastics on pregnancy and fetal development remains largely unknown. In pregnant mice, we recently demonstrated that exposure to micro- and nanoplastics throughout gestation resulted in significant fetal growth restriction. One possible explanation for reduced fetal growth is abnormal placental metabolism. OBJECTIVES To evaluate the effect of maternal exposure to microplastics on placental metabolism. METHODS In the present study, CD-1 pregnant mice were exposed to 5 μm polystyrene microplastics in filtered drinking water at one of four concentrations (0 ng/L (controls), 102 ng/L, 104 ng/L, 106 ng/L) throughout gestation (n = 7-11/group). At embryonic day 17.5, placental tissue samples were collected (n = 28-44/group). Metabolite profiles were determined using 1 H high-resolution magic angle spinning magnetic resonance spectroscopy. RESULTS The relative concentration of lysine (p = 0.003) and glucose (p < 0.0001) in the placenta were found to decrease with increasing microplastic concentrations, with a significant reduction at the highest exposure concentration. Multivariate analysis identified shifts in the metabolic profile with MP exposure and pathway analysis identified perturbations in the biotin metabolism, lysine degradation, and glycolysis/gluconeogenesis pathways. CONCLUSION Maternal exposure to microplastics resulted in significant alterations in placental metabolism. This study highlights the potential impact of microplastic exposure on pregnancy outcomes and that efforts should be made to minimize exposure to plastics, particularly during pregnancy.
Collapse
Affiliation(s)
- Zahra Aghaei
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue St. John's, A1C 5S7, Newfoundland, NL, Canada
| | - Grace V Mercer
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue St. John's, A1C 5S7, Newfoundland, NL, Canada
| | - Céline M Schneider
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue St. John's, A1C 5S7, Newfoundland, NL, Canada
| | - John G Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
| | - Christopher K Macgowan
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ahmet A Baschat
- Department of Gynecology & Obstetrics, Johns Hopkins Center for Fetal Therapy, Johns Hopkins University, Baltimore, MD, USA
| | - John C Kingdom
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, ON, Canada
| | - Paul A Helm
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | - André J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - Myrna J Simpson
- Environmental NMR Centre, Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue St. John's, A1C 5S7, Newfoundland, NL, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, Arctic Avenue St. John's, A1C 5S7, Newfoundland, NL, Canada.
- Discipline of Radiology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
3
|
Markovic S, Roussel T, Neeman M, Frydman L. Deuterium Magnetic Resonance Imaging and the Discrimination of Fetoplacental Metabolism in Normal and L-NAME-Induced Preeclamptic Mice. Metabolites 2021; 11:metabo11060376. [PMID: 34200839 PMCID: PMC8230481 DOI: 10.3390/metabo11060376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Recent magnetic resonance studies in healthy and cancerous organs have concluded that deuterated metabolites possess highly desirable properties for mapping non-invasively and, as they happen, characterizing glycolysis and other biochemical processes in animals and humans. A promising avenue of this deuterium metabolic imaging (DMI) approach involves looking at the fate of externally administered 2H6,6′-glucose, as it is taken up and metabolized into different products as a function of time. This study employs deuterium magnetic resonance to follow the metabolism of wildtype and preeclamptic pregnant mice models, focusing on maternal and fetoplacental organs over ≈2 h post-injection. 2H6,6′-glucose uptake was observed in the placenta and in specific downstream organs such as the fetal heart and liver. Main metabolic products included 2H3,3′-lactate and 2H-water, which were produced in individual fetoplacental organs with distinct time traces. Glucose uptake in the organs of most preeclamptic animals appeared more elevated than in the control mice (p = 0.02); also higher was the production of 2H-water arising from this glucose. However, the most notable differences arose in the 2H3,3′-lactate concentration, which was ca. two-fold more abundant in the placenta (p = 0.005) and in the fetal (p = 0.01) organs of preeclamptic-like animals, than in control mice. This is consistent with literature reports about hypoxic conditions arising in preeclamptic and growth-restricted pregnancies, which could lead to an enhancement in anaerobic glycolysis. Overall, the present measurements suggest that DMI, a minimally invasive approach, may offer new ways of studying and characterizing health and disease in mammalian pregnancies, including humans.
Collapse
Affiliation(s)
- Stefan Markovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Tangi Roussel
- Center for Magnetic Resonance in Biology and Medicine, 13385 Marseille, France;
| | - Michal Neeman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel;
- Correspondence: ; Tel.: +972-8934-4093
| |
Collapse
|
4
|
Chen L, Wei Z, Chan KWY, Li Y, Suchal K, Bi S, Huang J, Xu X, Wong PC, Lu H, van Zijl PCM, Li T, Xu J. D-Glucose uptake and clearance in the tauopathy Alzheimer's disease mouse brain detected by on-resonance variable delay multiple pulse MRI. J Cereb Blood Flow Metab 2021; 41:1013-1025. [PMID: 32669023 PMCID: PMC8054725 DOI: 10.1177/0271678x20941264] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
In this study, we applied on-resonance variable delay multiple pulse (onVDMP) MRI to study D-glucose uptake in a mouse model of Alzheimer's disease (AD) tauopathy and demonstrated its feasibility in discriminating AD mice from wild-type mice. The D-glucose uptake in the cortex of AD mice (1.70 ± 1.33%) was significantly reduced compared to that of wild-type mice (5.42 ± 0.70%, p = 0.0051). Also, a slower D-glucose uptake rate was found in the cerebrospinal fluid (CSF) of AD mice (0.08 ± 0.01 min-1) compared to their wild-type counterpart (0.56 ± 0.1 min-1, p < 0.001), which suggests the presence of an impaired glucose transporter on both blood-brain and blood-CSF barriers of these AD mice. Clearance of D-glucose was observed in the CSF of wild-type mice but not AD mice, which suggests dysfunction of the glymphatic system in the AD mice. The results in this study indicate that onVDMP MRI could be a cost-effective and widely available method for simultaneously evaluating glucose transporter and glymphatic function of AD. This study also suggests that tau protein affects the D-glucose uptake and glymphatic impairment in AD at a time point preceding neurofibrillary tangle pathology.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kannie WY Chan
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kapil Suchal
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiang Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip C Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter CM van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Liu G, van Zijl PC. CEST (Chemical Exchange Saturation Transfer) MR Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
6
|
Repurposing Clinical Agents for Chemical Exchange Saturation Transfer Magnetic Resonance Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2020; 14:ph14010011. [PMID: 33374213 PMCID: PMC7824058 DOI: 10.3390/ph14010011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022] Open
Abstract
Molecular imaging is becoming an indispensable tool to pursue precision medicine. However, quickly translating newly developed magnetic resonance imaging (MRI) agents into clinical use remains a formidable challenge. Recently, Chemical Exchange Saturation Transfer (CEST) MRI is emerging as an attractive approach with the capability of directly using low concentration, exchangeable protons-containing agents for generating quantitative MRI contrast. The ability to utilize diamagnetic compounds has been extensively exploited to detect many clinical compounds, such as FDA approved drugs, X-ray/CT contrast agents, nutrients, supplements, and biopolymers. The ability to directly off-label use clinical compounds permits CEST MRI to be rapidly translated to clinical settings. In this review, the current status of CEST MRI based on clinically available compounds will be briefly introduced. The advancements and limitations of these studies are reviewed in the context of their pre-clinical or clinical applications. Finally, future directions will be briefly discussed.
Collapse
|
7
|
Huang J, van Zijl PCM, Han X, Dong CM, Cheng GWY, Tse KH, Knutsson L, Chen L, Lai JHC, Wu EX, Xu J, Chan KWY. Altered d-glucose in brain parenchyma and cerebrospinal fluid of early Alzheimer's disease detected by dynamic glucose-enhanced MRI. SCIENCE ADVANCES 2020; 6:eaba3884. [PMID: 32426510 PMCID: PMC7220384 DOI: 10.1126/sciadv.aba3884] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/09/2023]
Abstract
Altered cerebral glucose uptake is one of the hallmarks of Alzheimer's disease (AD). A dynamic glucose-enhanced (DGE) magnetic resonance imaging (MRI) approach was developed to simultaneously monitor d-glucose uptake and clearance in both brain parenchyma and cerebrospinal fluid (CSF). We observed substantially higher uptake in parenchyma of young (6 months) transgenic AD mice compared to age-matched wild-type (WT) mice. Notably lower uptakes were observed in parenchyma and CSF of old (16 months) AD mice. Both young and old AD mice had an obviously slower CSF clearance than age-matched WT mice. This resembles recent reports of the hampered CSF clearance that leads to protein accumulation in the brain. These findings suggest that DGE MRI can identify altered glucose uptake and clearance in young AD mice upon the emergence of amyloid plaques. DGE MRI of brain parenchyma and CSF has potential for early AD stratification, especially at 3T clinical field strength MRI.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Peter C. M. van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Xiongqi Han
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Celia M. Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Gerald W. Y. Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Linda Knutsson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Lin Chen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jiadi Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Corresponding author. (K.W.Y.C.); (J.X.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
- Corresponding author. (K.W.Y.C.); (J.X.)
| |
Collapse
|
8
|
Luo J, Abaci Turk E, Gagoski B, Copeland N, Zhou IY, Young V, Bibbo C, Robinson JN, Zera C, Barth WH, Roberts DJ, Sun PZ, Grant PE. Preliminary evaluation of dynamic glucose enhanced MRI of the human placenta during glucose tolerance test. Quant Imaging Med Surg 2019; 9:1619-1627. [PMID: 31728306 DOI: 10.21037/qims.2019.09.16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background To investigate dynamic glucose enhanced (DGE) chemical exchange saturation transfer (CEST) MRI as a means to non-invasively image glucose transport in the human placenta. Methods Continuous wave (CW) CEST MRI was performed at 3.0 Tesla. The glucose contrast enhancement (GCE) was calculated based on the magnetization transfer asymmetry (MTRasym), and the DGE was calculated with the positive side of Z-spectra in reference to the first time point. The glucose CEST (GlucoCEST) was optimized using a glucose solution phantom. Glucose solution perfused ex vivo placenta tissue was used to demonstrate GlucoCEST MRI effect. The vascular density of ex vivo placental tissue was evaluated with yellow dye after MRI scans. Finally, we preliminarily demonstrated GlucoCEST MRI in five pregnant subjects who received a glucose tolerance test. For human studies, the dynamic R2* change was captured with T2*-weighted echo planar imaging (EPI). Results The GCE effect peaks at a saturation B1 field of about 2 μT, and the GlucoCEST effect increases linearly with the glucose concentration between 4-20 mM. In ex vivo tissue, the GlucoCEST MRI was sensitive to the glucose perfusate and the placenta vascular density. Although the in vivo GCE baseline was sensitive to field inhomogeneity and motion artifacts, the temporal evolution of the GlucoCEST effect showed a consistent and positive response after oral glucose tolerance drink. Conclusions Despite the challenges of placental motion and field inhomogeneity, our study demonstrated the feasibility of DGE placenta MRI at 3.0 Tesla.
Collapse
Affiliation(s)
- Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Natalie Copeland
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Iris Y Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Vanessa Young
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| | - Carolina Bibbo
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Julian N Robinson
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - Chloe Zera
- Department of Obstetrics and Gynecology, Brigham and Women's Hospital, Boston, MA, USA
| | - William H Barth
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|