1
|
Zhao W, Li W, Zuo J, Zhou H, Gao G, Ye Y, Chu Y. Exosomes secreted from amniotic mesenchymal stem cells modify trophoblast activities by delivering miR-18a-5p and regulating HRK-p53 interaction. Stem Cells 2025; 43:sxae087. [PMID: 39719876 DOI: 10.1093/stmcls/sxae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 12/11/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND Amniotic mesenchymal stem cells (AMSCs) have been demonstrated as effective in tissue repair and regeneration. Trophoblast dysfunction is associated with several types of pregnancy complications. The aim of this study is to investigate the effects of AMSCs on the biological activities of human trophoblasts, as well as their molecular mechanisms. METHODS Exosomes were isolated from AMSC supernatants, and characterized and quantified by transmission electron microscopy, nanoparticle tracking analysis and Western blotting assay. Immunofluorescence assay was performed to detect the uptake of AMSCs-derived exomes (AMSC-Exos) by human trophoblasts. Human trophoblasts were subjected to transcriptome analysis after being cocultured with AMSC-Exos. Lentiviral transfection was performed to construct the human trophoblast cell lines with stable HRK knockdown or overexpression. Immunohistochemistry was used to detect the HRK expression in preeclampsia (PE) patients. CCK8 and Transwell assays were, respectively, used to detect the trophoblast proliferation and migration. TUNEL flow cytometry assay was used to detect the apoptosis in trophoblasts. Quantitative real-time (qRT) PCR and Western blotting assays were used to detect the mRNA and protein levels of the genes. Dual luciferase reporter assays were used to detect the changes in gene-transcript levels. RESULTS AMSC-Exos could be absorbed by human trophoblasts. Transcriptome analysis showed that HRK was significantly reduced in human trophoblasts cocultured with AMSC-Exos. HRK inhibited cell proliferation and migration in human trophoblasts and promoted their apoptosis via p53 upregulation. miR-18a-5p, present at high levels in AMSC-Exos, improved trophoblast proliferation and migration, and inhibited their apoptosis by inhibiting the HRK expression. CONCLUSION miR-18a-5p present in AMSC-Exos could be absorbed by trophoblasts, in turn, improved their proliferation and migration, and inhibited their apoptosis by HRK downregulation.
Collapse
Affiliation(s)
- Wendi Zhao
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Wenting Li
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianxin Zuo
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Huansheng Zhou
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Guoqiang Gao
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yuanhua Ye
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Yijing Chu
- Department of Obstetrics, the Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
2
|
Sato M, Tokodai K, Okada K, Ogasawara H, Tanaka M, Hoshiai T, Saito M, Sugawara H, Akamatsu D, Unno M, Goto M, Kamei T. Effects of human amniotic membrane on the angiogenesis and healing of ischemic wounds in a rat model. J Biomater Appl 2025; 39:789-796. [PMID: 39365159 DOI: 10.1177/08853282241289919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Although the human amniotic membrane (hAM) has been demonstrated to promote angiogenesis, its efficacy in healing ischemic wounds remains unknown. Therefore, the current study aimed to evaluate the potential of hAM as a dressing for treating ischemic wounds. The inferior abdominal wall arteries and veins of male rats were divided, and an ischemic wound was created on each side of the abdominal wall. Of the two ischemic wounds created, only one was covered with hAM, and its wound healing effect was determined by measuring the wound area. Angiogenesis was assessed by measuring microvessel density (MVD). On day 5, the mean wound area changed from 400 mm2 to 335.4 (260-450) mm2 in the hAM group and to 459 (306-570) mm2 in the control group (p = 0.0051). MVD was 19.0 (10.4-24.6) in the hAM group and 15.1 (10.6-20.8) in the control group (p = 0.0026). No significant differences in local pro- and anti-inflammatory cytokine levels were observed between the two groups. Histological examination revealed no rejection of the transplanted hAM. Therefore, the hAM may serve as a novel wound dressing that can promote angiogenesis and healing in ischemic wounds.
Collapse
Affiliation(s)
- Masato Sato
- Department of Surgery, Tohoku University, Sendai, Japan
| | | | - Kaoru Okada
- Department of Surgery, Tohoku University, Sendai, Japan
| | | | - Miyako Tanaka
- Department of Surgery, Tohoku University, Sendai, Japan
| | - Tetsuro Hoshiai
- Department of Gynecology and Obstetrics, Tohoku University, Sendai, Japan
| | - Masatoshi Saito
- Department of Gynecology and Obstetrics, Tohoku University, Sendai, Japan
- Department of Maternal and Fetal Therapeutics, Tohoku University, Sendai, Japan
| | | | | | - Michiaki Unno
- Department of Surgery, Tohoku University, Sendai, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University, Sendai, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University, Sendai, Japan
| |
Collapse
|
3
|
Peserico A, Canciello A, Prencipe G, Gramignoli R, Melai V, Scortichini G, Bellocci M, Capacchietti G, Turriani M, Di Pancrazio C, Berardinelli P, Russo V, Mattioli M, Barboni B. Optimization of a nanoparticle uptake protocol applied to amniotic-derived cells: unlocking the therapeutic potential. J Mater Chem B 2024; 12:8977-8992. [PMID: 39140678 DOI: 10.1039/d4tb00607k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Stem cell-based therapy implementation relies heavily on advancements in cell tracking. The present research has been designed to develop a gold nanorod (AuNR) labeling protocol applied to amniotic epithelial cells (AECs) leveraging the pro-regenerative properties of this placental stem cell source which is widely used for both human and veterinary biomedical regenerative applications, although not yet exploited with tracking technologies. Ovine AECs, in native or induced mesenchymal (mAECs) phenotypes via epithelial-mesenchymal transition (EMT), served as the model. Initially, various uptake methods validated on other sources of mesenchymal stromal cells (MSCs) were assessed on mAECs before optimization for AECs. Furthermore, the protocol was implemented by adopting the biological strategy of MitoCeption to improve endocytosis. The results indicate that the most efficient, affordable, and easy protocol leading to internalization of AuNRs in living mAECs recognized the combination of the one-step uptake condition (cell in suspension), centrifugation-mediated internalization method (G-force) and MitoCeption (mitochondrial isolated from mAECs). This protocol produced labeled vital mAECs within minutes, suitable for preclinical and clinical trials. The optimized protocol has the potential to yield feasible labeled amniotic-derived cells for biomedical purposes: up to 10 million starting from a single amniotic membrane. Similar and even higher efficiency was found when the protocol was applied to ovine and human AECs, thereby demonstrating the transferability of the method to cells of different phenotypes and species-specificity, hence validating its great potential for the development of improved biomedical applications in cell-based therapy and diagnostic imaging.
Collapse
Affiliation(s)
- Alessia Peserico
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Angelo Canciello
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Giuseppe Prencipe
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Valeria Melai
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giampiero Scortichini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Mirella Bellocci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Maura Turriani
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Chiara Di Pancrazio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise 'G. Caporale', Campo Boario, 64100 Teramo, Italy
| | - Paolo Berardinelli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Valentina Russo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Mauro Mattioli
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| | - Barbara Barboni
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy.
| |
Collapse
|
4
|
Guo X, Zhang W, Lu J, Zhu Y, Sun H, Xu D, Xian S, Yao Y, Qian W, Lu B, Shi J, Ding X, Li Y, Tong X, Xiao S, Huang R, Ji S. Amniotic miracle: Investigating the unique development and applications of amniotic membrane in wound healing. Skin Res Technol 2024; 30:e13860. [PMID: 39073182 PMCID: PMC11283885 DOI: 10.1111/srt.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The perfect repair of damaged skin has always been a constant goal for scientists; however, the repair and reconstruction of skin is still a major problem and challenge in injury and burns medicine. Human amniotic membrane (hAM), with its good mechanical properties and anti-inflammatory, antioxidant and antimicrobial benefits, containing growth factors that promote wound healing, has evolved over the last few decades from simple skin sheets to high-tech dressings, such as being made into nanocomposites, hydrogels, powders, and electrostatically spun scaffolds. This paper aims to explore the historical development, applications, trends, and research hotspots of hAM in wound healing. METHODS We examined 2660 publications indexed in the Web of Science Core Collection (WoSCC) from January 1, 1975 to July 12, 2023. Utilizing bibliometric methods, we employed VOSviewer, CiteSpace, and R-bibliometrix to characterize general information, identify development trends, and highlight research hotspots. Subsequently, we identified a collection of high-quality English articles focusing on the roles of human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal stem cells (hAMSCs), and amniotic membrane (AM) scaffolds in regenerative medicine and tissue engineering. RESULTS Bibliometric analysis identified Udice-French Research Universities as the most productive affiliation and Tseng S.C.G. as the most prolific author. Keyword analysis, historical direct quotations network, and thematic analysis helped us review the historical and major themes in this field. Our examination included the knowledge structure, global status, trends, and research hotspots regarding the application of hAM in wound healing. Our findings indicate that contemporary research emphasizes the preparation and application of products derived from hAM. Notably, both hAM and the cells isolated from it - hADSCs and hAESCs are prominent and promising areas of research in regenerative medicine and tissue engineering. CONCLUSION This research delivers a comprehensive understanding of the knowledge frameworks, global dynamics, emerging patterns, and primary research foci in the realm of hAM applications for wound healing. The field is rapidly evolving, and our findings offer valuable insights for researchers. Future research outcomes are anticipated to be applied in clinical practice, enhancing methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xinya Guo
- School of Health Science and EngineeringUniversity of Shanghai for Science and TechnologyShanghaiChina
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Wei Zhang
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Jianyu Lu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Yushu Zhu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Hanlin Sun
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Dayuan Xu
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shuyuan Xian
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Yuntao Yao
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijin Qian
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bingnan Lu
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jiaying Shi
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyi Ding
- Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixu Li
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Xirui Tong
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shichu Xiao
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Runzhi Huang
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| | - Shizhao Ji
- Department of Burn SurgeryResearch Unit of key techniques for treatment of burns and combined burns and trauma injuryThe First Affiliated Hospital of Naval Medical UniversityShanghaiPeople's Republic of ChinaChinese Academy of Medical SciencesShanghaiChina
| |
Collapse
|
5
|
Bu X, Gao Y, Pan W, Liu L, Wang J, Yin Z, Ping B. Human Amniotic Membrane-Derived Mesenchymal Stem Cells Prevent Acute Graft-Versus-Host Disease in an Intestinal Microbiome-Dependent Manner. Transplant Cell Ther 2024; 30:189.e1-189.e13. [PMID: 37939900 DOI: 10.1016/j.jtct.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Acute graft-versus-host disease (aGVHD) represents a fatal severe complication after allogeneic hematopoietic stem cell transplantation. As a promising cell therapeutic strategy of aGVHD, the mechanism of mesenchymal stem cells (MSC) to ameliorate aGVHD has not been fully clarified, especially in the field of intestinal homeostasis including the intestinal microbiome involved in the pathogenesis of aGVHD. The present study aimed to explore the effect of MSC on intestinal homeostasis including the intestinal barrier and intestinal microbiome and its metabolites, as well as the role of intestinal microbiome in the preventive process of hAMSCs ameliorating aGVHD. The preventive effects of human amniotic membrane-derived MSC (hAMSCs) was assessed in humanized aGVHD mouse models. Immunohistochemistry and RT-qPCR were used to evaluate intestinal barrier function. The 16S rRNA sequencing and targeted metabolomics assay were performed to observe the alternation of intestinal microbiome and the amounts of medium-chain fatty acids (MCFAs) and short-chain fatty acids (SCFAs), respectively. Flow cytometry was performed to analyze the frequencies of T immune cells. Through animal experiments, we found that hAMSCs had the potential to prevent aGVHD. HAMSCs could repair the damage of intestinal barrier structure and function, as well as improve the dysbiosis of intestinal microbiome induced by aGVHD, and meanwhile, upregulate the concentration of metabolites SCFAs, so as to reshape intestinal homeostasis. Gut microbiota depletion and fecal microbial transplantation confirmed the involvement of intestinal microbiome in the preventive process of hAMSCs on aGVHD. Our findings showed that hAMSCs prevented aGVHD in an intestinal microbiome-dependent manner, which might shed light on a new mechanism of hAMSCs inhibiting aGVHD and promote the development of new prophylaxis regimes for aGVHD prevention.
Collapse
Affiliation(s)
- Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ya Gao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weifeng Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liping Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baohong Ping
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Iravani K, Mousavi S, Owji SM, Sani M, Owji SH. Effect of amniotic membrane/collagen scaffolds on laryngeal cartilage repair. Laryngoscope Investig Otolaryngol 2024; 9:e1222. [PMID: 38362193 PMCID: PMC10866587 DOI: 10.1002/lio2.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Objectives Laryngeal cartilage defects are a major problem that greatly impacts structural integrity and function. Cartilage repair is also a challenging issue. This study evaluated the efficacy of a collagen scaffold enveloped by amniotic membrane (AM/C) on laryngeal cartilage repair. Study Design Experimental animal study. Methods Fourteen Dutch rabbits were enrolled in the study. A 5 mm cartilage defect was created in the right and left thyroid lamina. The animals were divided into two groups randomly. Group 1 collagen scaffolds and group 2 AM/C were applied to the right side defects. Left side defects were not repaired, serving as control. Histologic evaluation was done 45 and 90 days following collagen and AM/C application with criteria of tissue and cell morphology, lacuna formation, vascularization, and inflammation. Results Significant improvement in cartilage repair was observed in the AM/C side compared to the control side in all histologic criteria after 45 days (p<.05). After 90 days, cartilage repair improved in cell morphology, lacuna formation, and inflammation significantly (p<.05). Conclusion The combination of amniotic membrane and collagen scaffolds provides a promising treatment modality for improving the repair of laryngeal cartilage defects. Level of Evidence NA.
Collapse
Affiliation(s)
- Kamyar Iravani
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| | - Simin Mousavi
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| | - Seyed Mohammad Owji
- Department of PathologySchool of Medicine, Shiraz University of Medical SciencesShirazIran
| | - Mahsa Sani
- Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical SciencesShirazIran
| | - Seyed Hossein Owji
- Otolaryngology Research Center, Department of OtolaryngologyShiraz University of Medical SciencesShirazIran
| |
Collapse
|
7
|
Garcia-Flores V, Romero R, Tarca AL, Peyvandipour A, Xu Y, Galaz J, Miller D, Chaiworapongsa T, Chaemsaithong P, Berry SM, Awonuga AO, Bryant DR, Pique-Regi R, Gomez-Lopez N. Deciphering maternal-fetal cross-talk in the human placenta during parturition using single-cell RNA sequencing. Sci Transl Med 2024; 16:eadh8335. [PMID: 38198568 PMCID: PMC11238316 DOI: 10.1126/scitranslmed.adh8335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Labor is a complex physiological process requiring a well-orchestrated dialogue between the mother and fetus. However, the cellular contributions and communications that facilitate maternal-fetal cross-talk in labor have not been fully elucidated. Here, single-cell RNA sequencing (scRNA-seq) was applied to decipher maternal-fetal signaling in the human placenta during term labor. First, a single-cell atlas of the human placenta was established, demonstrating that maternal and fetal cell types underwent changes in transcriptomic activity during labor. Cell types most affected by labor were fetal stromal and maternal decidual cells in the chorioamniotic membranes (CAMs) and maternal and fetal myeloid cells in the placenta. Cell-cell interaction analyses showed that CAM and placental cell types participated in labor-driven maternal and fetal signaling, including the collagen, C-X-C motif ligand (CXCL), tumor necrosis factor (TNF), galectin, and interleukin-6 (IL-6) pathways. Integration of scRNA-seq data with publicly available bulk transcriptomic data showed that placenta-derived scRNA-seq signatures could be monitored in the maternal circulation throughout gestation and in labor. Moreover, comparative analysis revealed that placenta-derived signatures in term labor were mirrored by those in spontaneous preterm labor and birth. Furthermore, we demonstrated that early in gestation, labor-specific, placenta-derived signatures could be detected in the circulation of women destined to undergo spontaneous preterm birth, with either intact or prelabor ruptured membranes. Collectively, our findings provide insight into the maternal-fetal cross-talk of human parturition and suggest that placenta-derived single-cell signatures can aid in the development of noninvasive biomarkers for the prediction of preterm birth.
Collapse
Affiliation(s)
- Valeria Garcia-Flores
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI 48201, USA
| | - Azam Peyvandipour
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Yi Xu
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile
| | - Derek Miller
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Piya Chaemsaithong
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Stanley M Berry
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roger Pique-Regi
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD 20892 and Detroit, MI 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Haneda Y, Miyagawa-Tomita S, Uchijima Y, Iwase A, Asai R, Kohro T, Wada Y, Kurihara H. Diverse contribution of amniogenic somatopleural cells to cardiovascular development: With special reference to thyroid vasculature. Dev Dyn 2024; 253:59-77. [PMID: 36038963 DOI: 10.1002/dvdy.532] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The somatopleure serves as the primordium of the amnion, an extraembryonic membrane surrounding the embryo. Recently, we have reported that amniogenic somatopleural cells (ASCs) not only form the amnion but also migrate into the embryo and differentiate into cardiomyocytes and vascular endothelial cells. However, detailed differentiation processes and final distributions of these intra-embryonic ASCs (hereafter referred to as iASCs) remain largely unknown. RESULTS By quail-chick chimera analysis, we here show that iASCs differentiate into various cell types including cardiomyocytes, smooth muscle cells, cardiac interstitial cells, and vascular endothelial cells. In the pharyngeal region, they distribute selectively into the thyroid gland and differentiate into vascular endothelial cells to form intra-thyroid vasculature. Explant culture experiments indicated sequential requirement of fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) signaling for endothelial differentiation of iASCs. Single-cell transcriptome analysis further revealed heterogeneity and the presence of hemangioblast-like cell population within ASCs, with a switch from FGF to VEGF receptor gene expression. CONCLUSION The present study demonstrates novel roles of ASCss especially in heart and thyroid development. It will provide a novel clue for understanding the cardiovascular development of amniotes from embryological and evolutionary perspectives.
Collapse
Affiliation(s)
- Yuka Haneda
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Animal Nursing Science, Yamazaki University of Animal Health Technology, Tokyo, Japan
| | - Yasunobu Uchijima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akiyasu Iwase
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rieko Asai
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, USA
| | - Takahide Kohro
- Department of Medical Informatics, Jichi Medical University, Tochigi, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Sandonà M, Esposito F, Cargnoni A, Silini A, Romele P, Parolini O, Saccone V. Amniotic Membrane-Derived Stromal Cells Release Extracellular Vesicles That Favor Regeneration of Dystrophic Skeletal Muscles. Int J Mol Sci 2023; 24:12457. [PMID: 37569832 PMCID: PMC10418925 DOI: 10.3390/ijms241512457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a muscle disease caused by mutations in the dystrophin gene characterized by myofiber fragility and progressive muscle degeneration. The genetic defect results in a reduced number of self-renewing muscle stem cells (MuSCs) and an impairment of their activation and differentiation, which lead to the exhaustion of skeletal muscle regeneration potential and muscle replacement by fibrotic and fatty tissue. In this study, we focused on an unexplored strategy to improve MuSC function and to preserve their niche based on the regenerative properties of mesenchymal stromal cells from the amniotic membrane (hAMSCs), that are multipotent cells recognized to have a role in tissue repair in different disease models. We demonstrate that the hAMSC secretome (CM hAMSC) and extracellular vesicles (EVs) isolated thereof directly stimulate the in vitro proliferation and differentiation of human myoblasts and mouse MuSC from dystrophic muscles. Furthermore, we demonstrate that hAMSC secreted factors modulate the muscle stem cell niche in dystrophic-mdx-mice. Interestingly, local injection of EV hAMSC in mdx muscles correlated with an increase in the number of activated Pax7+/Ki67+ MuSCs and in new fiber formation. EV hAMSCs also significantly reduced muscle collagen deposition, thus counteracting fibrosis and MuSCs exhaustion, two hallmarks of DMD. Herein for the first time we demonstrate that CM hAMSC and EVs derived thereof promote muscle regeneration by supporting proliferation and differentiation of resident muscle stem cells. These results pave the way for the development of a novel treatment to counteract DMD progression by reducing fibrosis and enhancing myogenesis in dystrophic muscles.
Collapse
Affiliation(s)
- Martina Sandonà
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
| | - Federica Esposito
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
- Unit of Histology and Medical Embryology, Division DAHFMO, University of Rome La Sapienza, 00185 Rome, Italy
| | - Anna Cargnoni
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Antonietta Silini
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Pietro Romele
- Centro di Ricerca “E. Menni”, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy; (A.C.); (A.S.); (P.R.)
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli, 00168 Rome, Italy
| | - Valentina Saccone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Fondazione Santa Lucia, Via Fosso di Fiorano 64, 00143 Rome, Italy; (M.S.); (F.E.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy
| |
Collapse
|
10
|
Sacco R, Akintola O, Sacco N, Acocella A, Calasans-Maia MD, Maranzano M, Olate S. The Use of Human Amniotic Membrane (hAM) as a Treatment Strategy of Medication-Related Osteonecrosis of the Jaw (MRONJ): A Systematic Review and Meta-Analysis of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050968. [PMID: 37241200 DOI: 10.3390/medicina59050968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Background and objectives: Although it is very uncommon, medication-induced osteonecrosis of the jaw (also known as MRONJ) can have serious consequences. Traditionally, this adverse event has been recognised in patients who were treated with bisphosphonate (BP) drugs. Nevertheless, in recent years, it has been established that individuals having treatment with various types of medications, such as a receptor activator of nuclear factor kappa-Β ligand inhibitor (denosumab) and antiangiogenic agents, have had the same issue. The purpose of this research is to determine if the application of human amniotic membrane (hAM) may be used as a therapy for MRONJ. Material and Methods: A multi-source database (MEDLINE, EMBASE, AMED, and CENTRAL) systematic search was performed. The major objective of this study is to obtain an understanding of the efficacy of hAM when it is employed as a treatment modality for MRONJ. The protocol of this review was registered in the INPLASY register under the number NPLASY202330010. Results: The authors were able to include a total of five studies for the quality analysis, whereas for the quantity evaluation, only four studies were eligible. A total of 91 patients were considered for the investigation. After treatment with human amniotic membrane (hAM), a recurrence of osteonecrosis was observed in n = 6 cases (8.8%). The combined efficacy of surgical therapy and the use of hAM resulted in an overall success rate of 91.2%. Intraoperative complications were only documented in one article, and they were mostly caused by the positioning of the hAM, which led to wound breakdown at the surgical site. Conclusions: Based on the small amount of data and low-quality research included in this study, using human amniotic membranes to treat MRONJ might represent a feasible option. Nevertheless, further studies with a wider patient population are required to understand the long-term impacts.
Collapse
Affiliation(s)
- Roberto Sacco
- Oral Surgery Department, School of Medical Sciences, Division of Dentistry, The University of Manchester, Manchester M13 9PL, UK
- FACOP-Faculdade do Centro Oeste Paulista, Dental School, Oral Surgery Department, Bauru 17499-010, Brazil
- Oral Surgery Department, King's College Hospital NHS Trust, London SE5 9RW, UK
| | - Oladapo Akintola
- Oral Surgery Department, King's College Hospital NHS Trust, London SE5 9RW, UK
| | - Nicola Sacco
- Anaesthetic & Critical Care, University of Campania Luigi Vanvitelli, 80138 Caserta, Italy
| | | | | | - Massimo Maranzano
- Oral and Maxillofacial Surgery Department, Manchester University NHS Foundation Trust (MFT), Manchester M13 9WL, UK
| | - Sergio Olate
- Division of Oral and Maxillofacial Surgery, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
11
|
Effects of Ginsenoside Rg1 on the Biological Behavior of Human Amnion-Derived Mesenchymal Stem/Stromal Cells (hAD-MSCs). Stem Cells Int 2023; 2023:7074703. [PMID: 36845966 PMCID: PMC9946746 DOI: 10.1155/2023/7074703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Ginsenoside Rg1 (Rg1) is purified from ginseng with various pharmacological effects, which might facilitate the biological behavior of human amnion-derived mesenchymal stem/stromal cells (hAD-MSCs). This study is aimed at investigating the effects of Rg1 on the biological behavior, such as viability, proliferation, apoptosis, senescence, migration, and paracrine, of hAD-MSCs. hAD-MSCs were isolated from human amnions. The effects of Rg1 on the viability, proliferation, apoptosis, senescence, migration, and paracrine of hAD-MSCs were detected by CCK-8, EdU, flow cytometry, SA-β-Gal staining, wound healing, and ELISA assays, respectively. The protein expression levels were detected by western blot. Cell cycle distribution was evaluated using flow cytometry. We found that Rg1 promoted hAD-MSC cycle progression from G0/G1 to S and G2/M phases and significantly increased hAD-MSC proliferation rate. Rg1 activated PI3K/AKT signaling pathway and significantly upregulated the expressions of cyclin D, cyclin E, CDK4, and CDK2 in hAD-MSCs. Inhibition of PI3K/AKT signaling significantly downregulated the expressions of cyclin D, cyclin E, CDK4, and CDK2, prevented cell cycle progression, and reduced hAD-MSC proliferation induced by Rg1. hAD-MSC senescence rate was significantly increased by D-galactose, while the elevated hAD-MSC senescence rate induced by D-galactose was significantly decreased by Rg1 treatment. D-galactose significantly induced the expressions of senescence markers, p16INK4a, p14ARF, p21CIP1, and p53 in hAD-MSCs, while Rg1 significantly reduced the expressions of those markers induced by D-galactose in hAD-MSCs. Rg1 significantly promoted the secretion of IGF-I in hAD-MSCs. Rg1 reduced the hAD-MSC apoptosis rate. However, the difference was not significant. Rg1 had no influence on hAD-MSC migration. Altogether, our results demonstrate that Rg1 can promote the viability, proliferation, and paracrine and relieve the senescence of hAD-MSCs. PI3K/AKT signaling pathway is involved in the promotive effect of Rg1 on hAD-MSC proliferation. The protective effect of Rg1 on hAD-MSC senescence may be achieved via the downregulation of p16INK4A and p53/p21CIP1 pathway.
Collapse
|
12
|
Liu N, Bowen CM, Shoja MM, Castro de Pereira KL, Dongur LP, Saad A, Russell WK, Broderick TC, Fair JH, Fagg WS. Comparative Analysis of Co-Cultured Amniotic Cell-Conditioned Media with Cell-Free Amniotic Fluid Reveals Differential Effects on Epithelial–Mesenchymal Transition and Myofibroblast Activation. Biomedicines 2022; 10:biomedicines10092189. [PMID: 36140291 PMCID: PMC9495976 DOI: 10.3390/biomedicines10092189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Myofibroblast activation is a cellular response elicited by a variety of physiological or pathological insults whereby cells initiate a coordinated response intended to eradicate the insult and then revert back to a basal state. However, an underlying theme in various disease states is persistent myofibroblast activation that fails to resolve. Based on multiple observations, we hypothesized that the secreted factors harvested from co-culturing amniotic stem cells might mimic the anti-inflammatory state that cell-free amniotic fluid (AF) elicits. We optimized an amnion epithelial and amniotic fluid cell co-culture system, and tested this hypothesis in the context of myofibroblast activation. However, we discovered that co-cultured amniotic cell conditioned media (coACCM) and AF have opposing effects on myofibroblast activation: coACCM activates the epithelial–mesenchymal transition (EMT) and stimulates gene expression patterns associated with myofibroblast activation, while AF does the opposite. Intriguingly, extracellular vesicles (EVs) purified from AF are necessary and sufficient to activate EMT and inflammatory gene expression patterns, while the EV-depleted AF potently represses these responses. In summary, these data indicate that coACCM stimulates myofibroblast activation, while AF represses it. We interpret these findings to suggest that coACCM, AF, and fractionated AF represent unique biologics that elicit different cellular responses that are correlated with a wide variety of pathological states, and therefore could have broad utility in the clinic and the lab.
Collapse
Affiliation(s)
- Naiyou Liu
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Charles M. Bowen
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mohammadali M. Shoja
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Laxmi Priya Dongur
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonio Saad
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas Christopher Broderick
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, NC 27709, USA
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Jeffrey H. Fair
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William Samuel Fagg
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, NC 27709, USA
- Correspondence: ; Tel.: +1-(409)-772-2412; Fax: +1-(409)-747-7364
| |
Collapse
|
13
|
Abstract
Background Hepatic and adrenocortical choristomas are unusual findings in the placenta. This meta-analysis includes our own case report and 23 previously reported cases. We searched for patterns of associated placental, fetal and maternal aberrations in order to determine whether these choristomas are clinically relevant. Case report: In our case, abortion was induced due to fetal central nervous system and renal malformations. In the placenta a hepatic choristoma (<0.1 cm), thrombangiitis obliterans and a single umbilical artery were found. Results: In the literature, the majority of lesions were ≤1.0 cm (n = 21/24, 87.5%) and two hepatic choristomas manifested within chorangiomas. In a subfraction of cases, we found an association with twin/triple pregnancies (n = 6/24, 25%) and heterogeneous non-hepatic/non-adrenal malformations in fetuses (n = 4/24, 17%). Conclusion: Hepatic and adrenocortical choristomas are benign, could be based on focal epigenetic changes and might be related to chorangiomas but are not associated with a particular disease pattern or risk profile.
Collapse
Affiliation(s)
- Nora Schaumann
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| | - Kais Hussein
- Hannover Medical School, Institute of Pathology, Hannover, Germany
| |
Collapse
|
14
|
Ji J, Yang L. Amniotic stem cells and their exosomes. REGENERATIVE NEPHROLOGY 2022:169-188. [DOI: 10.1016/b978-0-12-823318-4.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Maekawa K, Natsuda K, Hidaka M, Uematsu M, Soyama A, Hara T, Takatsuki M, Nagai K, Miura K, Eguchi S. Long-term culture of rat hepatocytes using human amniotic membrane as a culture substrate. Regen Ther 2021; 18:384-390. [PMID: 34660855 PMCID: PMC8488178 DOI: 10.1016/j.reth.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
Amniotic membrane is attracting attention as a new material for regenerative medicine. We herein report that the culture of primary rat hepatocytes on human amniotic membrane maintained their morphology and their production of albumin for at least two months. Human amniotic membrane was collected during planned cesarean section and kept frozen until usage. Primary rat hepatocytes were plated on human amniotic membrane. Hepatocytes accumulated as colonies on amniotic membrane, and their rat albumin level was maintained for two months. Their three-dimensional structure on extracellular matrix, which is abundant in amniotic membranes might influence the maintenance of the hepatocyte-specific function. Long-term primary culture of rat hepatocyte on the human amniotic membrane was successful. Albumin production from primary isolated hepatocytes was maintained for the long term. Amniotic membrane provided the situation of 3D structure for isolated rat hepatocyte.
Collapse
Key Words
- AM, amniotic membrane
- Albumin synthesis
- DMSO, dimethyl sulfoxide
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- HBV, hepatitis-B virus
- HCV, hepatitis-C virus
- HGF, hepatocyte growth factor
- HIV, human immunodeficiency virus
- HTLV-1, human T-cell leukemia virus type 1
- Human amniotic membrane
- LT, liver transplantation
- PBS, phosphate-buffered saline
- Rat hepatocyte
Collapse
Affiliation(s)
- Kyoichiro Maekawa
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koji Natsuda
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masafumi Uematsu
- Department of Ophthalmology and Visual Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuhisa Takatsuki
- Department of Digestive and General Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, Japan
| | - Kiyonori Miura
- Department of Obstetrics and Gynecology, Nagasaki University Graduate School of BioMedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
16
|
Chu Y, Zhu C, Yue C, Peng W, Chen W, He G, Liu C, Lv Y, Gao G, Yao K, Han R, Hu X, Zhang Y, Ye Y. Chorionic villus-derived mesenchymal stem cell-mediated autophagy promotes the proliferation and invasiveness of trophoblasts under hypoxia by activating the JAK2/STAT3 signalling pathway. Cell Biosci 2021; 11:182. [PMID: 34645519 PMCID: PMC8513187 DOI: 10.1186/s13578-021-00681-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trophoblast dysfunction during pregnancy is fundamentally involved in preeclampsia. Several studies have revealed that human chorionic villous mesenchymal stem cells (CV-MSCs) could regulate trophoblasts function. RESULTS To understand how human chorionic villous mesenchymal stem cells (CV-MSCs) regulate trophoblast function, we treated trophoblasts with CV-MSC supernatant under hypoxic conditions. Treatment markedly enhanced proliferation and invasion and augmented autophagy. Transcriptome and pathway analyses of trophoblasts before and after treatment revealed JAK2/STAT3 signalling as an upstream regulator. In addition, STAT3 mRNA and protein levels increased during CV-MSC treatment. Consistent with these findings, JAK2/STAT3 signalling inhibition reduced the autophagy, survival and invasion of trophoblasts, even in the presence of CV-MSCs, and blocking autophagy did not affect STAT3 activation in trophoblasts treated with CV-MSCs. Importantly, STAT3 overexpression increased autophagy levels in trophoblasts; thus, it positively regulated autophagy in hypoxic trophoblasts. Human placental explants also proved our findings by showing that STAT3 was activated and that LC3B-II levels were increased by CV-MSC treatment. CONCLUSION In summary, our data suggest that CV-MSC-dependent JAK2/STAT3 signalling activation is a prerequisite for autophagy upregulation in trophoblasts.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chongyu Yue
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Wei Peng
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Weiping Chen
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Guifang He
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changchang Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Lv
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Guoqiang Gao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Ke Yao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Rendong Han
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Xiaoyu Hu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Yan Zhang
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China.
| | - Yuanhua Ye
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
17
|
Gao Y, Li W, Bu X, Xu Y, Cai S, Zhong J, Du M, Sun H, Huang L, He Y, Hu X, Liu Q, Jin H, Wang Q, Ping B. Human Amniotic Mesenchymal Stem Cells Inhibit aGVHD by Regulating Balance of Treg and T Effector Cells. J Inflamm Res 2021; 14:3985-3999. [PMID: 34429630 PMCID: PMC8378934 DOI: 10.2147/jir.s323054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Acute graft versus host disease (aGVHD) remains a leading cause of transplant-related mortality following allogeneic haematopoietic cell transplantation (allo-HCT). Human amniotic mesenchymal stem cells (hAMSCs) are a novel mesenchymal stem cells (MSCs), which have stronger proliferation and immunomodulatory ability compared with bone marrow mesenchymal stem cells (BM-MSCs). Besides, as the amniotic membrane is often treated as medical waste after delivery, hAMSCs can be obtained conveniently and noninvasively. The aim of this study was to explore the therapeutic efficacy and underlying mechanisms of hAMSCs transplantation for the humanized aGVHD mouse model. Methods We established a humanized aGVHD mouse model by transplanting human peripheral blood mononuclear cells (PBMCs) into NOD-PrkdcscidIL2rγnull (NPG) mice, human amniotic membrane collected from discarded placenta of healthy pregnant women after delivery and hAMSCs were extracted from amniotic membrane and expanded in vitro. Mice were divided into untreated group (Control), aGVHD group (aGVHD), and hAMSCs treatment group (aGVHD+hAMSCs), the hAMSCs labeled with GFP were administered to aGVHD mice to explore the homing ability of hAMSCs. T effector and regulatory T cells (Tregs) levels and cytokines of each group in target organs were detected by flow cytometry and cytometric bead array (CBA), respectively. Results We successfully established a humanized aGVHD mouse model using NPG mice. The hAMSCs have the ability to inhibit aGVHD in this mouse model through reduced villous blunting and lymphocyte infiltration of the gut while reducing inflammatory edema, tissue destruction and lymphocyte infiltration into the parenchyma of the liver and lung. hAMSCs suppressed CD3+CD4+ T and CD3+CD8+ T cell expression and increased the proportion of Tregs, and besides, hAMSCs can reduce the levels of IL-17A, INF-γ, and TNF in aGVHD target organs. Conclusion The NPG murine environment was capable of activating human T cells to produce aGVHD pathology to mimic aGVHD as in humans. The hAMSCs controlled aGVHD by decreasing inflammatory cytokine secretion within target organs by modulating the balance of Tregs and T effector cells in humanized mice.
Collapse
Affiliation(s)
- Ya Gao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Weiru Li
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiaoyin Bu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ying Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shengchun Cai
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jinman Zhong
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Meixue Du
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haitao Sun
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yongjian He
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Qian Wang
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Baohong Ping
- Department of Hematology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| |
Collapse
|
18
|
Val M, Ragazzo M, Bendini M, Manfredini D, Trojan D, Guarda Nardini L. Computer-assisted surgery with custom prostheses and human amniotic membrane in a patient with bilateral class IV TMJ reankylosis: a case report. Cell Tissue Bank 2021; 23:395-400. [PMID: 34176055 DOI: 10.1007/s10561-021-09940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/20/2021] [Indexed: 11/29/2022]
Abstract
A gold-standard technique has yet to be found for the treatment of temporomandibular joint ankylosis (TMJa), particularly in patients with recurring ankylosis. A 58-year-old male patient, with a history of multiple TMJ surgeries and severe limitation of mouth opening (maximum interincisal distance [MID] was 10 mm). Computerised tomography (CT) imaging highlighted a bilateral type IV ankylosis. The surgical guides were manufactured using a 3D printing method after obtaining a proper design of the osteotomy lines. The positioning of the fossa and condyle components of the custom TMJ prosthesis was digitally performed. Osteotomies were carried out using surgical guides and TMJ prostheses were placed as per the virtual planning. A human amniotic mambrana is inserted between the two prosthetic components to avoid ranchylosis. The post-operative CT showed the correct positioning of the condylar prosthesis. MID after 10 days was 37 mm. Total joint reconstruction surgery using 3D virtual surgical planning may be an effective surgical option for achieving a precise surgical outcome and making use of a single-stage approach in cases of TMJa and the use of the amniotic membrane, thanks to its healing properties and reduction of pain perception, seems to improve the quality of the immediate post-operative period.
Collapse
Affiliation(s)
- Matteo Val
- Unit of Oral and Maxillofacial surgery, Ca Foncello Hospital, 31100, Treviso, Italy.
| | - Mirko Ragazzo
- Unit of Neuroradiology, Ca Foncello Hospital, 31100, Treviso, Italy
| | - Matteo Bendini
- Department of Biomedical Technologies, School of Dentistry, University of Siena, Siena, Italy
| | - Daniele Manfredini
- Treviso Tissue Bank Foundation, Via dell'Ospedale 3, 31100, Treviso, Italy
| | - Diletta Trojan
- Unit of Oral and Maxillofacial surgery, Ca Foncello Hospital, 31100, Treviso, Italy
| | - Luca Guarda Nardini
- Unit of Oral and Maxillofacial surgery, Ca Foncello Hospital, 31100, Treviso, Italy
| |
Collapse
|
19
|
Yazawa T, Sato T, Nemoto T, Nagata S, Imamichi Y, Kitano T, Sekiguchi T, Uwada J, Islam MS, Mikami D, Nakajima I, Takahashi S, Khan MRI, Suzuki N, Umezawa A, Ida T. 11-Ketotestosterone is a major androgen produced in porcine adrenal glands and testes. J Steroid Biochem Mol Biol 2021; 210:105847. [PMID: 33609691 DOI: 10.1016/j.jsbmb.2021.105847] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Porcine steroid hormone profiles have some unique characteristics. We previously studied human and murine steroidogenesis using steroidogenic cells-derived from mesenchymal stem cells (MSCs). To investigate porcine steroidogenesis, we induced steroidogenic cells from porcine subcutaneous preadipocytes (PSPA cells), which originate from MSCs. Using cAMP, adenovirus-mediated introduction of steroidogenic factor-1 (SF-1)/adrenal 4-binding protein (Ad4BP) induced the differentiation of PSPA cells into sex steroid-producing cells. Introducing SF-1/Ad4BP also induced the aldo-keto reductase 1C1 (AKR1C1) gene. Porcine AKR1C1 had 17β-hydroxysteroid dehydrogenase activity, which converts androstenedione and 11-ketoandrostenedione into testosterone (T) and 11-ketotestosteorne (11KT). Furthermore, differentiated cells expressed hydroxysteroid 11β-dehydrogenase 2 (HSD11B2) and produced 11KT. HSD11B2 was expressed in testicular Leydig cells and the adrenal cortex. 11KT was present in the plasma of both immature male and female pigs, with slightly higher levels in the male pigs. T levels were much higher in the male pigs. It is noteworthy that in the female pigs, the 11KT levels were >10-fold higher than the T levels. However, castration altered the 11KT and T plasma profiles in the male pigs to near those of the females. 11KT induced endothelial nitric oxide synthase (eNOS) in porcine vascular endothelial cells. These results indicate that 11KT is produced in porcine adrenal glands and testes, and may regulate cardiovascular functions through eNOS expression.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan.
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka 830-0011, Japan
| | - Takahiro Nemoto
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sayaka Nagata
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshitaka Imamichi
- Department of Pharmacology, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Junsuke Uwada
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | | | - Daisuke Mikami
- Department of Nephrology, University of Fukui, Fukui 910-1193, Japan
| | - Ikuyo Nakajima
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki 305-0901, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Md Rafiqul Islam Khan
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan; Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Takanori Ida
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
20
|
Ragazzo M, Val M, Montagner G, Trojan D, Fusetti S, Guarda Nardini L. Human amniotic membrane: an improvement in the treatment of Medication-related osteonecrosis of the jaw (MRONJ)? A case-control study. Cell Tissue Bank 2021; 23:129-141. [PMID: 33856589 PMCID: PMC8854299 DOI: 10.1007/s10561-021-09922-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/30/2021] [Indexed: 11/30/2022]
Abstract
The aim of this article is to report the results obtained by the use of HAM in surgical wound healing and the reduction of relapse in patients affected by Medication-related osteonecrosis of the jaw (MRONJ).The study involved patients with the diagnosis of MRONJ, surgically treated between October 2016 and April 2019, in a case-control setting. Enrolled patients were randomly divided into 2 groups. One group will be treated with resective surgery and with the insertion of HAM patch (Group A), while the second group had been treated exclusively with resective surgery (Group B).The patients underwent MRONJ surgical treatment with the placement of amniotic membrane patches at the wound site. Data regarding the long-term complications/functions were evaluated at 3, 6, 12, and 24 months after surgery. Pain measurements were performed before the intervention (T0), 7(T1) and 30(T2) days after surgery. 49 patients were included in the study. 2 patients of GROUP A after 30 days since they were surgically treated showed persistent bone exposure. 5 patients of group B demonstrated a lack of healing of the surgical wound with the persistence of bone exposed to 30 days after surgery. Statistical analysis ruled out any difference in OUTCOME (relapse) between GROUP A and B (p = 0.23). However, the Fisher test highlighted a significant difference between the use of HAM and only surgical treatment in pain at rest (p = 0.032). The use of amniotic membrane implement the patient's quality of life and reduce pain perception. has a learning curve that is fast enough to justify its routine use.
Collapse
Affiliation(s)
- Mirko Ragazzo
- Unit of Oral and Maxillofacial Surgery, Ca Foncello Hospital, 31100, Treviso, Italy.
| | - Matteo Val
- Unit of Oral and Maxillofacial Surgery, Ca Foncello Hospital, 31100, Treviso, Italy.
| | - Giulia Montagner
- Treviso Tissue Bank Foundation, Via dell'Ospedale 3, 31100, Treviso, Italy
| | - Diletta Trojan
- Treviso Tissue Bank Foundation, Via dell'Ospedale 3, 31100, Treviso, Italy
| | - Stefano Fusetti
- Department of Neuroscience, University of Padua, Maxillofacial Surgery Unit, Padova, Italy
| | - Luca Guarda Nardini
- Unit of Oral and Maxillofacial Surgery, Ca Foncello Hospital, 31100, Treviso, Italy
| |
Collapse
|
21
|
Chia WK, Cheah FC, Abdul Aziz NH, Kampan NC, Shuib S, Khong TY, Tan GC, Wong YP. A Review of Placenta and Umbilical Cord-Derived Stem Cells and the Immunomodulatory Basis of Their Therapeutic Potential in Bronchopulmonary Dysplasia. Front Pediatr 2021; 9:615508. [PMID: 33791258 PMCID: PMC8006350 DOI: 10.3389/fped.2021.615508] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating lung disorder of preterm infants as a result of an aberrant reparative response following exposures to various antenatal and postnatal insults. Despite sophisticated medical treatment in this modern era, the incidence of BPD remains unabated. The current strategies to prevent and treat BPD have met with limited success. The emergence of stem cell therapy may be a potential breakthrough in mitigating this complex chronic lung disorder. Over the last two decades, the human placenta and umbilical cord have gained increasing attention as a highly potential source of stem cells. Placenta-derived stem cells (PDSCs) and umbilical cord-derived stem cells (UCDSCs) display several advantages such as immune tolerance and are generally devoid of ethical constraints, in addition to their stemness qualities. They possess the characteristics of both embryonic and mesenchymal stromal/stem cells. Recently, there are many preclinical studies investigating the use of these cells as therapeutic agents in neonatal disease models for clinical applications. In this review, we describe the preclinical and clinical studies using PDSCs and UCDSCs as treatment in animal models of BPD. The source of these stem cells, routes of administration, and effects on immunomodulation, inflammation and regeneration in the injured lung are also discussed. Lastly, a brief description summarized the completed and ongoing clinical trials using PDSCs and UCDSCs as therapeutic agents in preventing or treating BPD. Due to the complexity of BPD, the development of a safe and efficient therapeutic agent remains a major challenge to both clinicians and researchers.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fook Choe Cheah
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Teck Yee Khong
- Department of Pathology, SA Pathology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Berishvili E, Kaiser L, Cohen M, Berney T, Scholz H, Floisand Y, Mattsson J. Treatment of COVID-19 Pneumonia: the Case for Placenta-derived Cell Therapy. Stem Cell Rev Rep 2021; 17:63-70. [PMID: 32696426 PMCID: PMC7372209 DOI: 10.1007/s12015-020-10004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly 500'000 fatalities due to COVID-19 have been reported globally and the death toll is still rising. Most deaths are due to acute respiratory distress syndrome (ARDS), as a result of an excessive immune response and a cytokine storm elicited by severe SARS-CoV-2 lung infection, rather than by a direct cytopathic effect of the virus. In the most severe forms of the disease therapies should aim primarily at dampening the uncontrolled inflammatory/immune response responsible for most fatalities. Pharmacological agents - antiviral and anti-inflammatory molecules - have not been able so far to achieve compelling results for the control of severe COVID-19 pneumonia. Cells derived from the placenta and/or fetal membranes, in particular amniotic epithelial cells (AEC) and decidual stromal cells (DSC), have established, well-characterized, potent anti-inflammatory and immune-modulatory properties that make them attractive candidates for a cell-based therapy of COVID19 pneumonia. Placenta-derived cells are easy to procure from a perennial source and pose minimal ethical issues for their utilization. In view of the existing clinical evidence for the innocuousness and efficiency of systemic administration of DSCs or AECs in similar conditions, we advocate for the initiation of clinical trials using this strategy in the treatment of severe COVID-19 disease.
Collapse
Affiliation(s)
- Ekaterine Berishvili
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland.
- Institute of Medical and Public Health Research, Ilia State University, Tbilisi, Georgia.
- Cell Isolation and Transplantation Center, Centre Médical Universitaire, 1, rue Michel-Servet, CH-1211, Geneva 4, Switzerland.
| | - Laurent Kaiser
- Division of Infectious Diseases, Virology Laboratory and Geneva Centre for Emerging Viral Diseases, University of Geneva Hospitals, Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, University of Geneva School of Medicine, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva School of Medicine, Geneva, Switzerland
- Division of Transplantation, University of Geneva Hospitals, Geneva, Switzerland
| | - Hanne Scholz
- Department of Transplant Medicine, Department of Cellular Therapy, University of Oslo, Oslo, Norway
- Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yngvar Floisand
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Center for Cancer Cell Reprogramming, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jonas Mattsson
- Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Liu QW, Huang QM, Wu HY, Zuo GSL, Gu HC, Deng KY, Xin HB. Characteristics and Therapeutic Potential of Human Amnion-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms22020970. [PMID: 33478081 PMCID: PMC7835733 DOI: 10.3390/ijms22020970] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
Stem cells including embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs) and adult stem cells (ASCs) are able to repair/replace damaged or degenerative tissues and improve functional recovery in experimental model and clinical trials. However, there are still many limitations and unresolved problems regarding stem cell therapy in terms of ethical barriers, immune rejection, tumorigenicity, and cell sources. By reviewing recent literatures and our related works, human amnion-derived stem cells (hADSCs) including human amniotic mesenchymal stem cells (hAMSCs) and human amniotic epithelial stem cells (hAESCs) have shown considerable advantages over other stem cells. In this review, we first described the biological characteristics and advantages of hADSCs, especially for their high pluripotency and immunomodulatory effects. Then, we summarized the therapeutic applications and recent progresses of hADSCs in treating various diseases for preclinical research and clinical trials. In addition, the possible mechanisms and the challenges of hADSCs applications have been also discussed. Finally, we highlighted the properties of hADSCs as a promising source of stem cells for cell therapy and regenerative medicine and pointed out the perspectives for the directions of hADSCs applications clinically.
Collapse
Affiliation(s)
- Quan-Wen Liu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Qi-Ming Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Han-You Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Guo-Si-Lang Zuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
| | - Hao-Cheng Gu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
| | - Hong-Bo Xin
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, China; (Q.-W.L.); (Q.-M.H.); (H.-Y.W.); (G.-S.-L.Z.); (H.-C.G.); (K.-Y.D.)
- School of Life and Science, Nanchang University, Nanchang 330031, China
- Correspondence: ; Tel.: +86-791-8396-9015
| |
Collapse
|
24
|
Chu Y, Chen W, Peng W, Liu Y, Xu L, Zuo J, Zhou J, Zhang Y, Zhang N, Li J, Liu L, Yao K, Gao G, Wang X, Han R, Liu C, Li Y, Zhou H, Huang Y, Ye Y. Amnion-Derived Mesenchymal Stem Cell Exosomes-Mediated Autophagy Promotes the Survival of Trophoblasts Under Hypoxia Through mTOR Pathway by the Downregulation of EZH2. Front Cell Dev Biol 2020; 8:545852. [PMID: 33304896 PMCID: PMC7693549 DOI: 10.3389/fcell.2020.545852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/21/2020] [Indexed: 12/28/2022] Open
Abstract
Human amnion-derived mesenchymal stem cells (AD-MSCs) have been reported as a promising effective treatment to repair tissue. Trophoblast dysfunction during pregnancy is significantly involved in the pathogenesis of preeclampsia (PE). To understand how AD-MSCs regulated trophoblast function, we treated trophoblasts with AD-MSC-derived exosomes under hypoxic conditions. The treatment markedly enhanced the trophoblast proliferation and autophagy. Furthermore, significant decrease of EZH2 levels and inactivation of mTOR signaling were observed in AD-MSC exosomes-treated trophoblasts. Consistent with these findings, overexpression of EZH2 activated the mTOR signaling in trophoblasts, and reduced the autophagy and survival of trophoblasts, even in the presence of AD-MSC-derived exosomes. In addition, EZH2 inhibition exhibited the same trophoblast autophagy-promoting effect as induced by AD-MSC-derived exosomes, also accompanied by the inactivation of mTOR signaling. Importantly, when EZH2 was overexpressed in trophoblasts treated with PQR620, a specific mTOR signaling inhibitor, the autophagy and proliferation in trophoblasts were decreased. Studies on human placental explants also confirmed our findings by showing that the expression levels of EZH2 and mTOR were decreased while the autophagy-associated protein level was increased by AD-MSC-derived exosome treatment. In summary, our results suggest that EZH2-dependent mTOR signaling inactivation mediated by AD-MSC-derived exosomes is a prerequisite for autophagy augmentation in hypoxic trophoblasts.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weiping Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Peng
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lin Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jianxin Zuo
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ke Yao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqiang Gao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaofei Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rendong Han
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Liu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huansheng Zhou
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Yuanhua Ye
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|