1
|
Waye AA, Moeller J, Veiga-Lopez A. Epidermal growth factor receptor in placental health and disease: pathways, dysfunction, and chemical disruption. Toxicol Sci 2025; 205:11-27. [PMID: 39985453 PMCID: PMC12038240 DOI: 10.1093/toxsci/kfaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2025] Open
Abstract
Formation of the placenta during gestation is required to support fetal growth and development. Derived from the placenta, trophoblast cells express nuclear and membrane-bound receptors. Among these receptors is the epidermal growth factor receptor (EGFR) which plays a key role in placental development. Activation of EGFR-mediated signaling in trophoblast cells regulates critical processes, such as proliferation, differentiation, invasion, and fusion during pregnancy, making it essential for normal placental formation. Dysfunction of EGFR in placental trophoblast cells has been associated with adverse pregnancy outcomes, including intrauterine growth restriction, preeclampsia, and preterm birth. Ubiquitous environmental chemicals, like polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine pesticides, and bisphenols, have been reported to modulate EGFR signaling pathways, potentially contributing to placental dysfunction. This review explores the pivotal role of EGFR signaling in placental development and function, with a focus on how environmental chemicals interfere with EGFR-mediated pathways and placental cell functions as well as their implications for pregnancy outcomes. Findings presented herein underscore the need for further research into the effects of exposure to environmental chemicals on modulating EGFR signaling pathways in the context of placental health.
Collapse
Affiliation(s)
- Anita A Waye
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Jacob Moeller
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Almudena Veiga-Lopez
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, United States
- The Chicago Center for Health and Environment, University of Illinois at Chicago, Chicago, IL 60612, United States
| |
Collapse
|
2
|
Penugurti V, Dey O, Kalali S, Kashyap DK, Khumukcham SS, Kizhuvedath A, Satpathy S, Kiran M, Row AT, Surapaneni T, Manavathi B. Potential role of Hematopoietic PBX-Interacting Protein (HPIP) in trophoblast fusion and invasion: Implications in pre-eclampsia pathogenesis. Cell Signal 2025; 128:111633. [PMID: 39884641 DOI: 10.1016/j.cellsig.2025.111633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/06/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Pre-eclampsia is a known hypertensive disorder of pregnancy. While abnormal placentation and poor trophoblast invasion into maternal endometrium during blastocyst implantation are primary causes of pre-eclampsia, the underlying mechanisms remain elusive. Hematopoietic PBX-Interacting protein (HPIP) is an estrogen receptor (ER) interacting protein that plays a pivotal role in cell proliferation, migration, and differentiation; however, its role in trophoblast functions is largely unknown. In this study, we used BeWo cells as a model system to investigate trophoblast fusion and syncytialization, focusing on the role of HPIP in regulating these critical aspects of trophoblast functions. Herein, we report that HPIP expression declines during forskolin-induced trophoblast fusion in BeWo cells. In support of these observations, HPIP depletion enhanced forskolin-induced human chorionic gonadotropin-β (β-hCG), ERVWE1, and GCM1 expression, markers for trophoblast fusion. Furthermore, silencing of HPIP decreased cell invasion and epithelial to mesenchymal transition (EMT), a prerequisite for syncytialization in BeWo cells. Functional genomic studies further revealed a regulatory role for HPIP in a subset of gene networks involved in trophoblast fusion and EMT. We also uncovered that HPIP is a proteolytic substrate of furin, which is known to promote trophoblast cell fusion. Clinical data further indicated a significantly lower expression level of HPIP in pre-eclampsia subjects than in normal subjects. These findings imply that HPIP inhibits trophoblast fusion while promoting invasion and EMT, and its downregulation in trophoblasts might have implications for pre-eclampsia development.
Collapse
Affiliation(s)
- Vasudevarao Penugurti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Oindrilla Dey
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sruchytha Kalali
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Deepak Kumar Kashyap
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | | | - Ajnas Kizhuvedath
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sarthak Satpathy
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Anupama T Row
- University Health Centre, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Tarakeswari Surapaneni
- Department of Obstetrics and Gynaecology, Fernandez Hospital, Bogulakunta, Abids, Hyderabad 500001, Telangana, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
3
|
Guerrache A, Micheau O. TNF-Related Apoptosis-Inducing Ligand: Non-Apoptotic Signalling. Cells 2024; 13:521. [PMID: 38534365 PMCID: PMC10968836 DOI: 10.3390/cells13060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL or Apo2 or TNFSF10) belongs to the TNF superfamily. When bound to its agonistic receptors, TRAIL can induce apoptosis in tumour cells, while sparing healthy cells. Over the last three decades, this tumour selectivity has prompted many studies aiming at evaluating the anti-tumoral potential of TRAIL or its derivatives. Although most of these attempts have failed, so far, novel formulations are still being evaluated. However, emerging evidence indicates that TRAIL can also trigger a non-canonical signal transduction pathway that is likely to be detrimental for its use in oncology. Likewise, an increasing number of studies suggest that in some circumstances TRAIL can induce, via Death receptor 5 (DR5), tumour cell motility, potentially leading to and contributing to tumour metastasis. While the pro-apoptotic signal transduction machinery of TRAIL is well known from a mechanistic point of view, that of the non-canonical pathway is less understood. In this study, we the current state of knowledge of TRAIL non-canonical signalling.
Collapse
Affiliation(s)
- Abderrahmane Guerrache
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
| | - Olivier Micheau
- Université de Bourgogne, 21000 Dijon, France
- INSERM Research Center U1231, «Equipe DesCarTes», 21000 Dijon, France
- Laboratoire d’Excellence LipSTIC, 21000 Dijon, France
| |
Collapse
|
4
|
Vrzić Petronijević S, Vilotić A, Bojić-Trbojević Ž, Kostić S, Petronijević M, Vićovac L, Jovanović Krivokuća M. Trophoblast Cell Function in the Antiphospholipid Syndrome. Biomedicines 2023; 11:2681. [PMID: 37893055 PMCID: PMC10604227 DOI: 10.3390/biomedicines11102681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a complex thrombo-inflammatory autoimmune disease characterized by the presence of antiphospholipid antibodies (aPL). Women with APS are at high risk of recurrent early pregnancy loss as well as late obstetrical complications-premature birth due to placental insufficiency or severe preeclampsia. Accumulating evidence implies that vascular thrombosis is not the only pathogenic mechanism in obstetric APS, and that the direct negative effect of aPL on the placental cells, trophoblast, plays a major role. In this review, we summarize the current findings regarding the potential mechanisms involved in aPL-induced trophoblast dysfunction. Introduction on the APS and aPL is followed by an overview of the effects of aPL on trophoblast-survival, cell function and aPL internalization. Finally, the implication of several non-coding RNAs in pathogenesis of obstetric APS is discussed, with special emphasis of their possible role in trophoblast dysfunction and the associated mechanisms.
Collapse
Affiliation(s)
- Svetlana Vrzić Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Aleksandra Vilotić
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Žanka Bojić-Trbojević
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Sanja Kostić
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Miloš Petronijević
- University of Belgrade, Faculty of Medicine, University Clinical Center of Serbia Clinic for Obstetrics and Gynecology, Koste Todorovića 26, 11000 Belgrade, Serbia
| | - Ljiljana Vićovac
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| | - Milica Jovanović Krivokuća
- University of Belgrade, Institute for the Application of Nuclear Energy, Department for Biology of Reproduction, Banatska 31b, 11080 Belgrade, Serbia
| |
Collapse
|
5
|
Shi J, Wang J, Jia N, Sun Q. A network pharmacology study on mechanism of resveratrol in treating preeclampsia via regulation of AGE-RAGE and HIF-1 signalling pathways. Front Endocrinol (Lausanne) 2023; 13:1044775. [PMID: 36686428 PMCID: PMC9849370 DOI: 10.3389/fendo.2022.1044775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Background Preeclampsia (PE) is a hypertensive disorder of pregnancy that threatens the lives of millions of pregnant women and their babies worldwide. Without effective medications, there are thousands of maternal and child mortalities every year. Resveratrol (RSV), a non-flavonoid polyphenol extracted from multiple plants, has shown positive effects in treating hypertension, cardiovascular disorders, and even PE. This study aimed to explore the pharmacological mechanism of RSV in treating PE by using network pharmacology and bioinformatics. Methods With the use of multiple databases, 66 intersecting targets were obtained from the 347 putative targets of RSV and 526 PE-related genes. Then, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted to investigate the functions of the intersecting targets. The protein-protein interaction network and target-pathway network were drawn and analyzed to illustrate the correlation between targets and pathways. Finally, molecular docking was conducted to calculate the binding energy between RSV and core targets. Results The results showed that the core targets of RSV were IL6, TNF, IL1B, VEGFA, STAT3, and EGFR. There existed good binding between RSV and IL6, TNF, IL1B, VEGFA, and EGFR. In addition, we found that RSV mainly functioned in the AGE-RAGE and HIF-1 signaling pathways, which are associated with the occurrence and development of PE. Conclusion In conclusion, our findings indicated that RSV has the effects of regulating angiogenesis and anti-inflammation and can be a candidate medicine for treating PE.
Collapse
Affiliation(s)
- Jiamiao Shi
- Health Science Center, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiahao Wang
- Health Science Center, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| | - Ning Jia
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qinru Sun
- College of Medicine & Forensics, Health Science Center, Xi'an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Dai H, Lu X. MGST1 alleviates the oxidative stress of trophoblast cells induced by hypoxia/reoxygenation and promotes cell proliferation, migration, and invasion by activating the PI3K/AKT/mTOR pathway. Open Med (Wars) 2022; 17:2062-2071. [PMID: 36568515 PMCID: PMC9755705 DOI: 10.1515/med-2022-0617] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
Preeclampsia (PE) is a common pregnancy-specific syndrome with an incidence of 4.6% in all pregnant women. Numerous studies have uncovered the functions and mechanisms of microsomal glutathione transferase 1 (MGST1) in different diseases and cellular processes, but whether MGST1 plays a role in PE remains unclear. Our study aimed to investigate the regulatory role of MGST1 in PE progression. In this study, the HTR8/SVneo cells were incubated with CoCl2 (250 µM) to mimic hypoxia in trophoblasts. Real-time quantitative polymerase chain reaction revealed that MGST1 was dramatically reduced in the placenta of PE patients. The proliferation of HTR8/SVneo cells was assessed via the Cell Counting Kit-8 and colony formation assays, and the results showed that MGST1 upregulation increased the cell viability of HTR8/SVneo cells. In addition, wound healing and Transwell assays unveiled that the elevation of MGST1 enhanced trophoblast cell migration and invasion. Moreover, the upregulation of MGST1 alleviated the hypoxia-induced oxidative stress in trophoblast cell. Mechanically, we found that MGST1 regulated PE progression by activating the phosphoinositide-3-kinase/protein kinase B/mechanistic target of rapamycin (PI3K/AKT/mTOR) pathway. In conclusion, MGST1 alleviated the oxidative stress of trophoblast cells induced by hypoxia/reoxygenation and promoted cell proliferation, migration, and invasion via the activation of the PI3K/AKT/mTOR pathway in PE. These results suggested that MGST1 can be a potential target for the prevention and treatment of PE.
Collapse
Affiliation(s)
- Hu Dai
- Department of Obstetrics and Gynecology, Hongsheng Community Health Service Center, Wuxi, Jiangsu, 214111, China
| | - Xianmei Lu
- Department of Medical Center of Diagnosis and Treatment for Cervical Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, No. 48, Huaishu Lane, Liangxi District, Wuxi, Jiangsu, 214000, China
| |
Collapse
|
7
|
Rong W, Shukun W, Xiaoqing W, Wenxin H, Mengyuan D, Chenyang M, Zhang H. Regulatory roles of non-coding RNAs and m6A modification in trophoblast functions and the occurrence of its related adverse pregnancy outcomes. Crit Rev Toxicol 2022; 52:681-713. [PMID: 36794364 DOI: 10.1080/10408444.2022.2144711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Adverse pregnancy outcomes, such as preeclampsia, gestational diabetes mellitus, fetal growth restriction, and recurrent miscarriage, occur frequently in pregnant women and might further induce morbidity and mortality for both mother and fetus. Increasing studies have shown that dysfunctions of human trophoblast are related to these adverse pregnancy outcomes. Recent studies also showed that environmental toxicants could induce trophoblast dysfunctions. Moreover, non-coding RNAs (ncRNAs) have been reported to play important regulatory roles in various cellular processes. However, the roles of ncRNAs in the regulation of trophoblast dysfunctions and the occurrence of adverse pregnancy outcomes still need to be further investigated, especially with exposure to environmental toxicants. In this review, we analyzed the regulatory mechanisms of ncRNAs and m6A methylation modification in the dysfunctions of trophoblast cells and the occurrence of adverse pregnancy outcomes and also summarized the harmful effects of environmental toxicants. In addition to DNA replication, mRNA transcription, and protein translation, ncRNAs and m6A modification might be considered as the fourth and fifth elements that regulate the genetic central dogma, respectively. Environmental toxicants might also affect these processes. In this review, we expect to provide a deeper scientific understanding of the occurrence of adverse pregnancy outcomes and to discover potential biomarkers for the diagnosis and treatment of these outcomes.
Collapse
Affiliation(s)
- Wang Rong
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Wan Shukun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wang Xiaoqing
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huang Wenxin
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dai Mengyuan
- Department of Toxicology, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Mi Chenyang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health & West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
8
|
Fang Y, Fang D. Comprehensive analysis of placental gene-expression profiles and identification of EGFR-mediated autophagy and ferroptosis suppression in intrahepatic cholestasis of pregnancy. Gene 2022; 834:146594. [PMID: 35643225 DOI: 10.1016/j.gene.2022.146594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) was the most common liver disease specific to pregnancy. The symptoms of ICP were maternal pruritus and increased bile acid level in serum which was related to preterm birth, fetal distress, meconium-stained amniotic fluid and stillbirth. However, the mechanism of ICP progression on fetal development remained obscure. Sequencing data of 2 normal placenta samples and 4 intrahepatic cholestasis samples during pregnancy was analyzed by GEO2R. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for analysis of differentially expressed genes. MCODE - A plug-in of Cytoscape was used for molecular complex detection. STRING, Cytoscape, GeneMANIA, NetworkAnalyst, TransmiR, JASPAR, DGIdb and DrugBank were used in this study. Furthermore, histopathological and cell experiments were used to verify our results. Our study identified the key KEGG pathway and four MCODEs which were closely with ICP development, further, sorted by degree centrality, we showed top 30 genes from 7209 differential genes, such as TP53, SRC, EGFR, ESR1, IL10, CD8A, MAPK3, PTPRC, EGF, KIT, ITGAM, LEP and CSF2, etc. Moreover, these hub genes participated in JAK-STAT3 signaling pathway and STAT1/3 regulated these genes expression in a direct way or miRNA-mediated manner. Drug-target analysis about up-regulated genes among hub genes showed that these genes contained multiple drug action site. Furthermore, hub gene-EGFR was associated with destroyed autophagy and ferroptosis. In conclusion, our study analyzed key genes and pathways in ICP development. JAK-STAT3 pathway and EGFR might be a potential target for ICP therapy.
Collapse
Affiliation(s)
- Yan Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, People's Republic of China
| | - Dajun Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, People's Republic of China.
| |
Collapse
|
9
|
Sharma C, Purohit P, Khokhar M, Modi A, Singh P, Shekhar S, Sharma S, Gothwal M, Sharma P. A clinical and in-silico study exploring the association of CASP-3, NF-kB, miR-187, and miR-146 in pre-eclampsia. Hypertens Pregnancy 2021; 40:288-302. [PMID: 34727826 DOI: 10.1080/10641955.2021.1983592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Apoptosis is involved in pathogenesis of Pre-eclampsia (PE), further research is needed to determine its molecular mechanism. METHODS The study recruited two groups (controls; 09, PE; 11). Biochemical tests, RT-PCR and ELISA were employed for analysis of genes and MicroRNAs (miRNA). Bioinformatics tools were employed for interactomics analysis. RESULTS There was increased apoptosis in maternal placental tissue (MPT) and Maternal Blood Cells (MBC) as demonstrated by expression of CASP3 and NF-κB1. miR-146-5p and 187-5p were downregulated in MBC and MPT but upregulated in fetal placental tissue (FPT).. DISCUSSION An increased apoptosis in MBC and MPT is a significant contributory factor for PE in pregnancy, while FPT is immune to the aforementioned effects.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Manoj Khokhar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Anupama Modi
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Pratibha Singh
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Shashank Shekhar
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| | - Meenakshi Gothwal
- Department of Obstetrics & Gynecology, AIIMS Jodhpur, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, India
| |
Collapse
|
10
|
Peng P, Song H, Xie C, Zheng W, Ma H, Xin D, Zhan J, Yuan X, Chen A, Tao J, Qin J. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia. Biol Res 2021; 54:30. [PMID: 34517910 PMCID: PMC8438983 DOI: 10.1186/s40659-021-00351-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Objective This study aims to identify the effect of miR-146a-5p on trophoblast cell invasion as well as the mechanism in preeclampsia (PE). Methods Expression levels of miR-146a-5p and Wnt2 in preeclamptic and normal placentae were quantified. Trophoblast cells (HTR-8) were separately transfected with miR-146a-5p mimic, miR-146a-5p inhibitor, pcDNA3.1-Wnt2 or sh-Wnt2, and then the expression levels of miR-146a-5p, Wnt2, and epithelial-mesenchymal transition (EMT)-related proteins (Vimentin, N-cadherin and E-cadherin) were measured. Moreover, the proliferative, migratory and invasive capacities of trophoblast cells were detected, respectively. Dual luciferase reporter assay determined the binding of miR-146a-5p and Wnt2. Results Compared with normal placental tissues, the placentae from PE patients showed higher miR-146a-5p expression and lower Wnt2 expression. Transfection of miR-146a-5p inhibitor or pcDNA3.1-Wnt2 exerted pro-migratory and pro-invasive effects on HTR-8 cells and encouraged EMT in HTR-8 cells; transfection with miR-146a-5p mimic or sh-Wnt2 weakened the proliferative, migratory and invasive capacities as well as reduced EMT process of HTR-8 cells. Moreover, Wnt2 overexpression could partially counteract the suppressive effects of miR-146a-5p overexpression on the progression and EMT of HTR-8 cells. Conclusion miR-146a-5p mediates trophoblast cell proliferation and invasion through regulating Wnt2 expression.
Collapse
Affiliation(s)
- Pingping Peng
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Huamei Song
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Chenghong Xie
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Wenfei Zheng
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Huigai Ma
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Dandan Xin
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Jingqiong Zhan
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Xiaoqing Yuan
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Aihua Chen
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Jing Tao
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China.,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China
| | - Jufang Qin
- Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, Yichang, 443000, Hubei, People's Republic of China. .,Department of Gynecology and Obstetrics, the People's Hospital of China Three Gorges University, Yichang, 443000, Hubei, People's Republic of China. .,Department of Gynecology and Obstetrics, the First People's Hospital of Yichang, the People's Hospital of China Three Gorges University, No. 4, Hudi Street, Xiling District, Yichang, 443000, Hubei, People's Republic of China.
| |
Collapse
|
11
|
Saei H, Govahi A, Abiri A, Eghbali M, Abiri M. Comprehensive transcriptome mining identified the gene expression signature and differentially regulated pathways of the late-onset preeclampsia. Pregnancy Hypertens 2021; 25:91-102. [PMID: 34098523 DOI: 10.1016/j.preghy.2021.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/11/2021] [Accepted: 05/08/2021] [Indexed: 01/18/2023]
Abstract
Preeclampsia (PE) is categorized as a pregnancy-related hypertensive disorder and is a serious concern in pregnancies. Several factors, including genetic factors (placenta gene expression, and imprinting), oxidative stress, the inaccurate immune response of the mother, and the environmental factors are responsible for PE development, but still, the exact mechanism of the pathogenesis has remained unknown. The main aim of the present study is to identify the gene expression signature in placenta tissue, to unveil disease etiology mechanisms. The GEO, PubMed, and ArrayExpress databases have selected to identify gene expression datasets on placenta samples of both preeclampsia and the normotensive controls. A comprehensive gene expression meta-analysis of fourteen publicly available microarray data of preeclampsia disease has performed to identify gene expression signature and responsible biological pathways and processes. Using two different meta-analysis pipeline (in-house and INMEX) we have identified a total of 1234 differentially expressed genes (DEGs) with in-house method, including 713 overexpressed and 356 under-expressed genes whereas 272 DEGs (131 over and 141 under-expressed) have identified with INMEX, across PEs and healthy controls. Comprehensive functional enrichment and pathway analysis was performed by EnrichR library, whic revealed "Asparagine N-linked glycosylation Homo sapiens", "Nef and signal transduction", "Hemostasis", and "immune system" among the most enriched terms. The present study sets out to explain a novel database of candidate genetic markers and biological pathways that play a critical role in PE development, which might aid in the identification of diagnostic, prognostic, and therapeutic informative molecules.
Collapse
Affiliation(s)
- Hassan Saei
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Govahi
- Department of Medical Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Abiri
- Perinatology Department, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Eghbali
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Abiri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Yu Y, An X, Fan D. Histone Deacetylase Sirtuin 2 Enhances Viability of Trophoblasts Through p65-Mediated MicroRNA-146a/ACKR2 Axis. Reprod Sci 2021; 28:1370-1381. [PMID: 33409877 DOI: 10.1007/s43032-020-00398-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023]
Abstract
Reduced activity of trophoblast cells is well-recognized to lead to preeclampsia (PE) progression. This study aims to evaluate the roles of histone deacetylase sirtuin 2 (SIRT2) in activity of trophoblast cells and the molecules involved. Differentially expressed genes in placental tissues between PE patients and healthy individuals were screened using microarray analyses. SIRT2 and atypical chemokine receptor 2 (ACKR2) were downregulated while miR-146a was upregulated in PE patients. SIRT2 was localized in placental syncytiotrophoblasts. Upregulation of SIRT2 enhanced viability, migration and invasion, while reduced apoptosis of HTR-8/SVneo cells. SIRT2 was found to trigger p65 deacetylation level and suppress miR-146a expression according to the luciferase and ChIP assays, whereas miR-146a was found to target ACKR2. Downregulation of p65 promoted migration and invasion of cells. Overexpression of miR-146a inhibited cell viability and blocked the function of SIRT2. ACKR2 was downregulated in tissues from PE women and its upregulation blocked the role of miR-146a. To conclude, SIRT2 promotes p65 deacetylation to suppress miR-146a expression and upregulates ACKR2 expression, therefore enhancing proliferation, migration, and invasion of HTR-8/SVneo cells. This study may offer novel thoughts into the management of PE.
Collapse
Affiliation(s)
- Yingchun Yu
- Department of Obstetrics, Zibo Maternal and Child Health Hospital, Zibo, 255000, Shandong, People's Republic of China
| | - Xiaoqin An
- Department of Neurology, Jinan No.7 People's Hospital, Jinan, 251400, Shandong, People's Republic of China
| | - Dongmei Fan
- Department of Obstetrics, Qingdao Women and Children's Hospital, No. 6, Tongfu Road, Shibei District, Qingdao, 266034, Shandong, People's Republic of China.
| |
Collapse
|