1
|
Syama KP, Blais E, Kumarathasan P. Maternal mechanisms in air pollution exposure-related adverse pregnancy outcomes: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:178999. [PMID: 40043646 DOI: 10.1016/j.scitotenv.2025.178999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Air pollution exposure is linked to various adverse health effects including cardiopulmonary, neurological and reproductive outcomes. Susceptible populations such as pregnant women and infants can be affected to a greater extent compared to healthy individuals. Thus, understanding air pollutant exposure-related toxicity pathways in pregnancy can provide information on developmental origin of health and diseases in both mothers and infants. The objective of this literature review was to explore maternal mechanisms underlying the association between air pollutant exposures and adverse maternal/infant health effects. A total of 209 articles published from 1996 until November 2024 were retrieved using PubMed, Scopus and Web of Science using relevant search terms (e.g. "Air Pollution" AND "Maternal" AND "Infant" AND "Health" AND "Biomarker"). After screening and removal of articles based on exclusion criteria, 36 observational studies were included for the final analysis. There were relatively fewer articles on air pollution exposure-related adverse maternal health effects compared to air-pollution-related adverse infant health effects. Of these articles selected for the final review, 32 studies compared the effects of particulate matter (PM), PM2.5, few on other (gaseous) pollutants and one study on effects of mixtures of air pollutants. Adverse maternal health effects included hypertensive disorders, gestational diabetes mellitus (GDM) and clinically recognized early pregnancy loss, while adverse infant health effects ranged from low birth weight, preterm birth, changes in fetal heart rate, crown rump length and fetal hyperinsulinism. Moreover, oxidative stress, inflammatory responses, endothelial and metabolic dysfunction were some of the mechanisms implicated in air pollution exposure-related adverse birth outcomes. These findings warrant further validation work and identification of maternal mechanism(s) constituting the causal pathway.
Collapse
Affiliation(s)
- Krishna Priya Syama
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada
| | - Erica Blais
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada
| | - Premkumari Kumarathasan
- Analytical Biochemistry and Proteomics Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch (HECSB), Health Canada, 251 Sir Frederick Banting Driveway, Ottawa K1A0K9, ON, Canada; Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Kaali S, Li M, Mujtaba MN, Colicino E, Awuni S, Wylie B, Osei M, Tsotetsi K, Yussif T, Chillrud S, Jack D, Asante KP, Lee A. Household Air Pollution Exposures Over Pregnancy and Maternal Blood Pressure Trajectories through 8 Years Postpartum: Evidence from the Ghana Randomized Air Pollution and Health Study (GRAPHS). MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.17.25320752. [PMID: 39867416 PMCID: PMC11759240 DOI: 10.1101/2025.01.17.25320752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background Household air pollution is a major contributor to cardiovascular disease burden in women in Sub-Saharan Africa. However, little is known about exposures during pregnancy or the effect of clean cooking interventions on postpartum blood pressure trajectories. Methods The Ghana Randomized Air Pollution and Health Study (GRAPHS) randomized 1414 non-smoking women in the first and second trimesters to liquefied petroleum gas (LPG) or improved biomass stoves - vs control (traditional three-stone open fire). Personal exposure to carbon monoxide was measured at four prenatal timepoints and three times over the first postpartum year. Participants were prospectively followed with annual resting BP measurements at 2, 4, 5, 6, 7, and 8 years postpartum. We employed linear mixed effects models to determine effect of GRAPHS interventions on postpartum BP, and to examine associations between prenatal and postnatal CO and postpartum BP. Results LPG intervention was associated with 3.54mmHg (95% CI -5.55, -1.53) lower change in systolic BP from enrolment through 8 years postpartum, and 2.27mmHg (95% CI -3.61, -0.93) lower change in diastolic BP from enrolment through 8 years postpartum, as compared to control. In exposure-response analysis, average prenatal CO was positively associated with change in systolic BP from enrolment (β=0.71mmHg, 95% CI 0.08, 1.30, per doubling of CO). Conclusions LPG cookstove intervention initiated in early pregnancy and maintained through the first postpartum year was associated with lower systolic and diastolic BP trajectories through 8 years postpartum. These findings support the need to integrate clean cooking solutions into existing antenatal care packages.
Collapse
Affiliation(s)
- Seyram Kaali
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, Bono East Region, Ghana
| | - Michelle Li
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mohamed Nuhu Mujtaba
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, Bono East Region, Ghana
| | - Elena Colicino
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sule Awuni
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, Bono East Region, Ghana
| | - Blair Wylie
- Department of Obstetrics and Gynecology, Columbia University Medical Centre, New York, NY, United States
| | - Musah Osei
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, Bono East Region, Ghana
| | - Kholiswa Tsotetsi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Tawfiq Yussif
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, Bono East Region, Ghana
| | - Steve Chillrud
- Lamont-Doherty Earth Observatory of Columbia University, New York, NY, United States
| | - Darby Jack
- Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Kwaku Poku Asante
- Kintampo Health Research Centre, Research and Development Division, Ghana Health Service, Kintampo, Bono East Region, Ghana
| | - Alison Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
3
|
Wies B, Valls I, Fernandes A, Ubalde-López M, Rocabois A, Vrijheid M, Slama R, Nieuwenhuijsen M. Urban environment and children's health: An umbrella review of exposure response functions for health impact assessment. ENVIRONMENTAL RESEARCH 2024; 263:120084. [PMID: 39369784 DOI: 10.1016/j.envres.2024.120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Urban settlements have become the main living environment. Understanding the impact of urban exposures on human health has therefore become a growing area of research. Up-to-date knowledge about the influence of urban exposures on pregnant women's and children's health is especially relevant, as they are particularly vulnerable to certain external influences. AIM This review aims to provide a synthesis of systematic reviews with meta-analyses reporting on an association between the urban environmental risk factors and health outcomes in pregnancy, infants, children and adolescents. METHODS We conducted an umbrella review, methodically analysing systematic reviews with meta-analyses, published between January 2016 and December 2022 in PubMed or Scopus. Adhering to the PRISMA checklist, we searched for free text using Medical Subject Headings (MeSH) terms related to air pollution, noise pollution, temperature, green space exposure, built and food environment, health outcomes, children (aged 0-18 years), pregnancy and systematic reviews with meta-analyses. We extracted key characteristics of each included study and assessed the quality of the included studies via the R-AMSTAR 2 tool. RESULTS Twenty-four studies met our inclusion criteria and identified 104 associations including 15 exposures and 60 health outcomes. The most frequently studied associations were related to air pollutants, followed by the built and food environment and noise. Birth outcomes (including low birth weight, pre-term birth or stillbirth) were the most commonly affected health outcomes, followed by respiratory outcomes such as asthma or respiratory infections. A total of 45 exposure-response function were reported to be statistically significant, including 10 exposures and 23 health effects. CONCLUSION This umbrella review provides an overview of the evidence and availability of exposure response functions between selected urban exposures and child health outcomes. This helps to identify research gaps and to build the basis for health impact assessment.
Collapse
Affiliation(s)
- Blanche Wies
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Inés Valls
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Amanda Fernandes
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Mònica Ubalde-López
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Audrey Rocabois
- French National Institute of Health and Medical Research (Inserm), University Grenoble Alpes, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Martine Vrijheid
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rémy Slama
- French National Institute of Health and Medical Research (Inserm), University Grenoble Alpes, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Grenoble, France
| | - Mark Nieuwenhuijsen
- Institute de Salud Global (ISGlobal), Barcelona, Spain; Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| |
Collapse
|
4
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
5
|
Chaiwangyen W, Khantamat O, Pintha K, Kangwan N, Onsa-Ard A, Nuntaboon P, Songkrao A, Thippraphan P, Chaiyasit D, de Sousa FLP. Cleistocalyx nervosum var. paniala mitigates oxidative stress and inflammation induced by PM 10 soluble extract in trophoblast cells via miR-146a-5p. Sci Rep 2024; 14:24265. [PMID: 39414845 PMCID: PMC11484928 DOI: 10.1038/s41598-024-73000-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024] Open
Abstract
Air pollution poses a significant global concern, notably impacting pregnancy outcomes through mechanisms such as DNA damage, oxidative stress, inflammation, and altered miRNA expression, all of which can adversely affect trophoblast functions. Cleistocalyx nervosum var. paniala, known for its abundance of anthocyanins with diverse biological activities including anti-mutagenic, antioxidant, and anti-inflammatory properties, is the focus of this study examining its effect on Particulate Matter 10 (PM10) soluble extract-induced trophoblast cell dysfunction via miRNA expression. The study involved the extraction of C. nervosum fruit using 70% ethanol, followed by fractionation with hexane, dichloromethane, and ethyl acetate. Subsequent testing for total phenolics, flavonoids, anthocyanins, and antioxidant activity revealed the ethyl acetate fraction (CN-EtOAcF) as possessing the highest phenolic and anthocyanin content along with potent antioxidant activity, prompting its selection for further investigation. In vitro studies on HTR-8/SVneo cells demonstrated that 5-10 µg/mL PM10 soluble extract exposure inhibited cell proliferation, migration, invasion, and induced apoptosis. However, pretreatment with 20-80 µg/mL CN-EtOAcF followed by 5 µg/mL PM10 soluble extract exposure exhibited protective effects against PM10 soluble extract-induced damage, including inflammation inhibition and intracellular ROS suppression. Notably, CN-EtOAcF down-regulated PM10-induced miR-146a-5p expression, with SOX5 identified as a potential target. Overall, CN-EtOAcF demonstrated the potential to protect against PM10-induced harm in trophoblast cells, suggesting its possible application in future therapeutic approaches.
Collapse
Affiliation(s)
- Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
| | - Orawan Khantamat
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Napapan Kangwan
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Amnart Onsa-Ard
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Piyawan Nuntaboon
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Angkana Songkrao
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Dana Chaiyasit
- Clinical Chemistry Laboratory, Chiang Rai Prachanukroh Hospital, Chiang Rai, 57000, Thailand
| | | |
Collapse
|
6
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
7
|
Lin Y, Chen R, Ge Y, Jessica B, Hopke PK, Miller RK, Thornburg LL, Stevens T, Barrett ES, Harrington DK, Thurston SW, Murphy SK, O’Connor TG, Rich DQ, Zhang J(J. Exposure to Low-Level Air Pollution and Hyperglycemia Markers during Pregnancy: A Repeated Measure Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15997-16005. [PMID: 39190315 PMCID: PMC11441759 DOI: 10.1021/acs.est.4c05612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Epidemiologic evidence has emerged showing an association between exposure to air pollution and increased risks of gestational diabetes mellitus (GDM). This study examines the effect of low-level air pollution exposure on a subclinical biomarker of hyperglycemia (i.e., HbA1c) in pregnant people without diabetes before conception. We measured HbA1c in 577 samples repeatedly collected from 224 pregnant people in Rochester, NY, and estimated residential concentrations of PM2.5 and NO2 using high-resolution spatiotemporal models. We observed a U-shaped trajectory of HbA1c during pregnancy with average HbA1c levels of 5.13 (±0.52), 4.97 (±0.54), and 5.43 (±0.40)% in early-, mid-, and late pregnancy, respectively. After adjustment for the U-shaped trajectory and classic GDM risk factors, each interquartile range increase in 10 week NO2 concentration (8.0 ppb) was associated with 0.09% (95% CI: 0.02 to 0.16%) and 0.18% (95% CI: 0.08 to 0.28%) increases in HbA1c over the entire pregnancy and in late pregnancy, respectively. These associations remained robust among participants without GDM. Using separate distributed lag models, we identified a period between 8th and 14th gestational weeks as critical windows responsible for increased levels of HbA1c measured at 14th, 22nd, and 30th gestational weeks. Our results suggest that low-level air pollution contributes to hyperglycemia in medically low-risk pregnant people.
Collapse
Affiliation(s)
- Yan Lin
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Ruoxue Chen
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Yihui Ge
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| | - Brunner Jessica
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Philip K. Hopke
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| | - Richard K. Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Pathology and Clinical Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Loralei L. Thornburg
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Timothy Stevens
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Emily S. Barrett
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Epidemiology and Biostatistics, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, 08854, USA
| | - Donald K. Harrington
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Sally W. Thurston
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Thomas G. O’Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Psychology, University of Rochester, Rochester, NY, 14627, USA
| | - David Q. Rich
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment & Duke Global Health Institute, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
8
|
Grabowski B, Feduniw S, Orzel A, Drab M, Modzelewski J, Pruc M, Gaca Z, Szarpak L, Rabijewski M, Baran A, Scholz A. Does Exposure to Ambient Air Pollution Affect Gestational Age and Newborn Weight?-A Systematic Review. Healthcare (Basel) 2024; 12:1176. [PMID: 38921290 PMCID: PMC11203000 DOI: 10.3390/healthcare12121176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
Current evidence suggests that airborne pollutants have a detrimental effect on fetal growth through the emergence of small for gestational age (SGA) or term low birth weight (TLBW). The study's objective was to critically evaluate the available literature on the association between environmental pollution and the incidence of SGA or TLBW occurrence. A comprehensive literature search was conducted across Pubmed/MEDLINE, Web of Science, Cochrane Library, EMBASE, and Google Scholar using predefined inclusion and exclusion criteria. The methodology adhered to the PRISMA guidelines. The systematic review protocol was registered in PROSPERO with ID number: CRD42022329624. As a result, 69 selected papers described the influence of environmental pollutants on SGA and TLBW occurrence with an Odds Ratios (ORs) of 1.138 for particulate matter ≤ 10 μm (PM10), 1.338 for particulate matter ≤ 2.5 μm (PM2.5), 1.173 for ozone (O3), 1.287 for sulfur dioxide (SO2), and 1.226 for carbon monoxide (CO). All eight studies analyzed validated that exposure to volatile organic compounds (VOCs) is a risk factor for SGA or TLBW. Pregnant women in the high-risk group of SGA occurrence, i.e., those living in urban areas or close to sources of pollution, are at an increased risk of complications. Understanding the exact exposure time of pregnant women could help improve prenatal care and timely intervention for fetuses with SGA. Nevertheless, the pervasive air pollution underscored in our findings suggests a pressing need for adaptive measures in everyday life to mitigate worldwide environmental pollution.
Collapse
Affiliation(s)
- Bartlomiej Grabowski
- Department of Urology, Military Institute of Medicine, Szaserow 128, 04-349 Warsaw, Poland;
| | - Stepan Feduniw
- Department of Gynecology, University Hospital Zürich, Frauenklinikstrasse 10, 8091 Zürich, Switzerland
| | - Anna Orzel
- I Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland; (A.O.); (M.D.); (A.B.)
| | - Marcin Drab
- I Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland; (A.O.); (M.D.); (A.B.)
| | - Jan Modzelewski
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (J.M.); (M.R.); (A.S.)
| | - Michal Pruc
- Research Unit, Polish Society of Disaster Medicine, 05-806 Warsaw, Poland; (M.P.); (Z.G.)
- Department of Public Health, International European University, 03187 Kyiv, Ukraine
- Department of Clinical Research and Development, LUXMED Group, 02-676 Warsaw, Poland;
| | - Zuzanna Gaca
- Research Unit, Polish Society of Disaster Medicine, 05-806 Warsaw, Poland; (M.P.); (Z.G.)
| | - Lukasz Szarpak
- Department of Clinical Research and Development, LUXMED Group, 02-676 Warsaw, Poland;
- Henry JN Taub Department of Emergency Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michal Rabijewski
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (J.M.); (M.R.); (A.S.)
| | - Arkadiusz Baran
- I Department of Obstetrics and Gynecology, Centre of Postgraduate Medical Education, 01-004 Warsaw, Poland; (A.O.); (M.D.); (A.B.)
| | - Anna Scholz
- Department of Reproductive Health, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (J.M.); (M.R.); (A.S.)
| |
Collapse
|
9
|
Hung TH, Hsu TY, Hsu J, Ou CY, Liu PH, Lo LM, Shaw SW, Wan GH. Influence of gestational hypertension and maternal air pollutant exposure on birth outcomes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42264-42276. [PMID: 38865044 DOI: 10.1007/s11356-024-33944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
The relationship between exposure to air pollutants and fetal growth outcomes has shown inconsistency, and only a limited number of studies have explored the impact of air pollution on gestational hypertension and birth outcomes. This study aimed to evaluate how maternal exposure to air pollutants and blood pressure could influence fetal birth outcomes. A total of 55 women with gestational hypertension and 131 healthy pregnant women were enrolled in this study. Data pertaining to personal characteristics, prenatal examinations, outdoor air pollutant exposure, and fetal birth outcomes were collected. The study revealed that fetal birth weight and abdominal circumference exhibited a significant reduction among women with gestational hypertension compared to healthy pregnant women, even after adjustments for body mass index, gestational age, and exposure to air pollutants had been made. Moreover, maternal exposure to outdoor air pollutants displayed a notable correlation with decreased birth length of fetuses. Consequently, the study concluded that maternal blood pressure and exposure to outdoor air pollutants during pregnancy potentially stand as pivotal factors influencing fetal birth outcomes.
Collapse
Affiliation(s)
- Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Jie Hsu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yu Ou
- Department of Obstetrics, Po-Jen Hospital, Kaohsiung, Taiwan
| | - Pi-Hua Liu
- Clinical Informatics and Medical Statistics Research Center, Chang Gung University, Taoyuan, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Liang-Ming Lo
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Steven W Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gwo-Hwa Wan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
- Department of Respiratory Therapy, College of Medicine, Chang Gung University, 259, Wen-Hwa 1st Road, Kwei-Shan, Taoyuan, 333, Taiwan.
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi, Taiwan.
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, Taiwan.
| |
Collapse
|
10
|
Pandipati S, Leong M, Basu R, Abel D, Hayer S, Conry J. Climate change: Overview of risks to pregnant persons and their offspring. Semin Perinatol 2023; 47:151836. [PMID: 37863676 DOI: 10.1016/j.semperi.2023.151836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Climate change is one of the greatest challenges confronting humanity. Pregnant persons, their unborn children, and offspring are particularly vulnerable, as evidenced by adverse perinatal outcomes and increased rates of childhood illnesses. Environmental inequities compound the problem of maternal health inequities, and have given rise to the environmental justice movement. The International Federation of Gynecology and Obstetrics and other major medical societies have worked to heighten awareness and address the deleterious health effects of climate change and toxic environmental exposures. As part of routine prenatal, neonatal, and pediatric care, neonatal-perinatal care providers should incorporate discussions with their patients and families on potential harms and also identify actions to mitigate climate change effects on their health. This article provides clinicians with an overview of how climate change affects their patients, practical guidance in caring for them, and a frame setting of the articles to follow. Clinicians have a critical role to play, and the time to act is now.
Collapse
Affiliation(s)
- Santosh Pandipati
- Maternal-Fetal Medicine, Obstetrix of San Jose, e-Lōvu Health, United States.
| | - Melanie Leong
- Attending Neonatologist, Neonatal ECMO Services, The Regional Neonatal Center of Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, United States; Assistant Professor of Pediatrics, New York Medical College, United States
| | - Rupa Basu
- Air and Climate Epidemiology Section, Office of Environmental Health Hazard Assessment, California EPA, United States
| | - David Abel
- Maternal-Fetal Medicine, Oregon Health Sciences University, United States
| | - Sarena Hayer
- Obstetrics & Gynecology, Oregon Health Sciences University, United States
| | - Jeanne Conry
- International Federation of Gynecology and Obstetrics, United States
| |
Collapse
|
11
|
Song S, Gao Z, Zhang X, Zhao X, Chang H, Zhang J, Yu Z, Huang C, Zhang H. Ambient fine particulate matter and pregnancy outcomes: An umbrella review. ENVIRONMENTAL RESEARCH 2023; 235:116652. [PMID: 37451569 DOI: 10.1016/j.envres.2023.116652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The available evidence on the effects of ambient fine particulate matter (PM2.5) and pregnancy outcomes (birth outcomes and pregnancy complications) has increased substantially. The purpose of this umbrella review is to refine the evidence of the association between birth outcome (birth defects) and PM2.5; and summarize the credibility of existing research on the association between pregnancy complications and PM2.5. We searched PubMed, Web of Science, Embase, and Cochrane databases for relevant systematic reviews and meta-analyses up to March 16, 2022 in accordance with PRISMA guidelines. Two independent investigators conducted data extraction. AMSTAR 2 and GRADE assessment criteria were used to evaluate the methodological and evidence quality. We performed subgroup analyses by trimesters of pregnancy. The review protocol for this study has been registered in PROSPERO (CRD42022325550). This umbrella review identified a total of 41 systematic reviews, including 28 articles evaluating the influence of PM2.5 on birth outcomes and 13 on pregnancy complications. Positive associations between perinatal PM2.5 exposure and adverse birth outcomes were found, including low birth weight, preterm birth, stillbirth, small for gestational age, and birth defects. Pregnant women exposed to PM2.5 had a significantly higher risk of developing hypertensive disorder of pregnancy, gestational diabetes mellitus, gestational hypertension, and preeclampsia. The findings of subgroup analysis demonstrated that the effects of ambient PM2.5 exposure on pregnancy outcomes varied by trimesters. The findings of this extensive umbrella review provide convincing proof that exposure to ambient PM2.5 raises the risks of unfavorable birth outcomes and pregnancy complications. Some associations show considerable disparity between trimesters. These findings have implications for strengthen perinatal health care on air pollution and improving intergenerational equity.
Collapse
Affiliation(s)
- Shuaixing Song
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China; College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junxi Zhang
- NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China; NHC Key Laboratory of Birth Defects Prevention & Henan Key Laboratory of Population Defects Prevention, Zhengzhou, China.
| |
Collapse
|
12
|
Leong M, Karr CJ, Shah SI, Brumberg HL. Before the first breath: why ambient air pollution and climate change should matter to neonatal-perinatal providers. J Perinatol 2023; 43:1059-1066. [PMID: 36038659 PMCID: PMC9421104 DOI: 10.1038/s41372-022-01479-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/14/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
Common outdoor air pollutants present threats to fetal and neonatal health, placing neonatal-perinatal clinical specialists in an important role for harm reduction through patient counseling and advocacy. Climate change is intertwined with air pollution and influences air quality. There is increasing evidence demonstrating the unique vulnerability in the development of adverse health consequences from exposures during the preconception, prenatal, and early postnatal periods, as well as promising indications that policies aimed at addressing these toxicants have improved birth outcomes. Advocacy by neonatal-perinatal providers articulating the potential impact of pollutants on newborns and mothers is essential to promoting improvements in air quality and reducing exposures. The goal of this review is to update neonatal-perinatal clinical specialists on the key ambient air pollutants of concern, their sources and health effects, and to outline strategies for protecting patients and communities from documented adverse health consequences.
Collapse
Affiliation(s)
- Melanie Leong
- Division of Neonatology, Maria Fareri Children's Hospital, Westchester Medical Center and Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| | - Catherine J Karr
- Departments of Pediatrics and Environmental and Occupational Health Sciences and Northwest Pediatric Environmental Health Specialty Unit, University of Washington, Seattle, WA, USA
| | - Shetal I Shah
- Division of Neonatology, Maria Fareri Children's Hospital, Westchester Medical Center and Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Heather L Brumberg
- Division of Neonatology, Maria Fareri Children's Hospital, Westchester Medical Center and Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
13
|
Li C, Xu JJ, Zhou FY, Ge YZ, Qin KZ, Huang HF, Wu YT. Effects of Particulate Matter on the Risk of Gestational Hypertensive Disorders and Their Progression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4930-4939. [PMID: 36913485 PMCID: PMC10061918 DOI: 10.1021/acs.est.2c06573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Associations between particulate matter (PM) and gestational hypertensive disorders (GHDs) are well documented, but there is no evidence on the associations between PM and GHD progression, especially among those with assisted reproductive technology (ART) conceptions. To explore the effects of PM on the risk of GHDs and their progression among pregnant women with natural or ART conception, we enrolled 185,140 pregnant women during 2014-2020 in Shanghai and estimated the associations during different periods using multivariate logistic regression. During the 3 months of preconception, 10 μg/m3 increases in PM concentrations were associated with increased risks of gestational hypertension (GH) (PM2.5: aOR = 1.076, 95% CI: 1.034-1.120; PM10: aOR = 1.042, 95% CI: 1.006-1.079) and preeclampsia (PM2.5: aOR = 1.064, 95% CI: 1.008-1.122; PM10: aOR = 1.048, 95% CI: 1.006-1.092 ) among women with natural conception. Furthermore, for women with ART conceptions who suffered current GHD, 10 μg/m3 increases in PM concentrations in the third trimester elevated the risk of progression (PM2.5: aOR = 1.156, 95% CI: 1.022-1.306 ; PM10: aOR = 1.134, 95% CI: 1.013-1.270). In summary, women with natural conception should avoid preconceptional PM exposure to protect themselves from GH and preeclampsia. For women with ART conceptions suffering from GHD, it is necessary to avoid PM exposure in late pregnancy to prevent the disease from progressing.
Collapse
Affiliation(s)
- Cheng Li
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Jing-Jing Xu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Fang-Yue Zhou
- International
Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ying-Zhou Ge
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Kai-Zhou Qin
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - He-Feng Huang
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences, Shanghai 200011, China
- International
Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yan-Ting Wu
- Obstetrics
and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
- Research
Units of Embryo Original Diseases, Chinese
Academy of Medical Sciences, Shanghai 200011, China
| |
Collapse
|
14
|
Abstract
Pre-eclampsia is a life-threatening disease of pregnancy unique to humans and a leading cause of maternal and neonatal morbidity and mortality. Women who survive pre-eclampsia have reduced life expectancy, with increased risks of stroke, cardiovascular disease and diabetes, while babies from a pre-eclamptic pregnancy have increased risks of preterm birth, perinatal death and neurodevelopmental disability and cardiovascular and metabolic disease later in life. Pre-eclampsia is a complex multisystem disease, diagnosed by sudden-onset hypertension (>20 weeks of gestation) and at least one other associated complication, including proteinuria, maternal organ dysfunction or uteroplacental dysfunction. Pre-eclampsia is found only when a placenta is or was recently present and is classified as preterm (delivery <37 weeks of gestation), term (delivery ≥37 weeks of gestation) and postpartum pre-eclampsia. The maternal syndrome of pre-eclampsia is driven by a dysfunctional placenta, which releases factors into maternal blood causing systemic inflammation and widespread maternal endothelial dysfunction. Available treatments target maternal hypertension and seizures, but the only 'cure' for pre-eclampsia is delivery of the dysfunctional placenta and baby, often prematurely. Despite decades of research, the aetiology of pre-eclampsia, particularly of term and postpartum pre-eclampsia, remains poorly defined. Significant advances have been made in the prediction and prevention of preterm pre-eclampsia, which is predicted in early pregnancy through combined screening and is prevented with daily low-dose aspirin, starting before 16 weeks of gestation. By contrast, the prediction of term and postpartum pre-eclampsia is limited and there are no preventive treatments. Future research must investigate the pathogenesis of pre-eclampsia, in particular of term and postpartum pre-eclampsia, and evaluate new prognostic tests and treatments in adequately powered clinical trials.
Collapse
|
15
|
Hufnagel A, Grant ID, Aiken CEM. Glucose and oxygen in the early intrauterine environment and their role in developmental abnormalities. Semin Cell Dev Biol 2022; 131:25-34. [PMID: 35410716 DOI: 10.1016/j.semcdb.2022.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
The early life environment can have profound impacts on the developing conceptus in terms of both growth and morphogenesis. These impacts can manifest in a variety of ways, including congenital fetal anomalies, placental dysfunction with subsequent effects on fetal growth, and adverse perinatal outcomes, or via effects on long-term health outcomes that may not be detected until later childhood or adulthood. Two key examples of environmental influences on early development are explored: maternal hyperglycaemia and gestational hypoxia. These are increasingly common pregnancy exposures worldwide, with potentially profound impacts on population health. We explore what is known regarding the mechanisms by which these environmental exposures can impact early intrauterine development and thus result in adverse outcomes in the immediate, short, and long term.
Collapse
Affiliation(s)
- Antonia Hufnagel
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Imogen D Grant
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK
| | - Catherine E M Aiken
- Department of Obstetrics and Gynaecology, University of Cambridge, Box 223, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Cambridge CB2 0SW, UK; University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| |
Collapse
|
16
|
The preventive effects of aspirin on preeclampsia based on network pharmacology and bioinformatics. J Hum Hypertens 2022; 36:753-759. [PMID: 34168274 DOI: 10.1038/s41371-021-00568-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
This study aimed to reveal the key targets and molecular mechanisms of aspirin in preventing preeclampsia. We used bioinformatics databases to collect the candidate targets for aspirin and preeclampsia. The biological functions and signaling pathways of the intersecting targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Then, the hub targets were identified by cytoscape plugin cytoHubba from the protein-protein interaction network. We collected 90 targets for aspirin in preventing preeclampsia. The biological processes of the intersecting targets are mainly involved in xenobiotic metabolic process, inflammatory response, negative regulation of apoptotic process, and protein phosphorylation. The highly enriched pathways were FoxO signaling pathway, circadian rhythm, insulin resistance, arachidonic acid metabolism, and drug metabolism-cytochrome P450. The hub targets for aspirin in preventing preeclampsia were tumor protein p53 (TP53), C-X-C motif chemokine ligand 8 (CXCL8), mitogen-activated protein kinase 3 (MAPK3), mitogen-activated protein kinase 1 (MAPK1), mitogen-activated protein kinase 14 (MAPK14), epidermal growth factor receptor (EGFR), estrogen receptor (ESR1), and prostaglandin-endoperoxide synthase 2 (PTGS2). Molecular docking results showed good bindings between the proteins and aspirin. In conclusion, these findings highlight the key targets and molecular mechanisms of aspirin in preventing preeclampsia.
Collapse
|
17
|
Flanagan E, Oudin A, Walles J, Abera A, Mattisson K, Isaxon C, Malmqvist E. Ambient and indoor air pollution exposure and adverse birth outcomes in Adama, Ethiopia. ENVIRONMENT INTERNATIONAL 2022; 164:107251. [PMID: 35533531 DOI: 10.1016/j.envint.2022.107251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Air pollution poses a threat to human health, with pregnant women and their developing fetuses being particularly vulnerable. A high dual burden of ambient and indoor air pollution exposure has been identified in Ethiopia, but studies investigating their effects on adverse birth outcomes are currently lacking. This study explores the association between ambient air pollution (NOX and NO2) and indoor air pollution (cooking fuel type) and fetal and neonatal death in Adama, Ethiopia. A prospective cohort of mothers and their babies was used, into which pregnant women were recruited at their first antenatal visit (n = 2085) from November 2015 to February 2018. Previously developed land-use regression models were utilized to assess ambient concentrations of NOX and NO2 at the residential address, whereas data on cooking fuel type was derived from questionnaires. Birth outcome data was obtained from self-reported questionnaire responses during the participant's postnatal visit or by phone if an in-person meeting was not possible. Binary logistic regression was employed to assess associations within the final study population (n = 1616) using both univariate and multivariate models; the latter of which adjusted for age, education, parity, and HIV status. Odds ratios (OR) and their corresponding 95% confidence intervals (CI) were reported. Within the cohort, 69 instances of fetal death (n = 16 miscarriages; n = 53 stillbirths) and 16 cases of neonatal death were identified. The findings suggest a tendency towards an association between ambient NOX and NO2 exposure during pregnancy and an increased risk of fetal death overall as well as stillbirth, specifically. However, statistical significance was not observed. Results for indoor air pollution and neonatal death were inconclusive. As limited evidence on the effects of exposure to ambient air pollution on adverse birth outcomes exists in Sub-Saharan Africa and Ethiopia, additional studies with larger study populations should be conducted.
Collapse
Affiliation(s)
- Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - John Walles
- Clinical Infection Medicine, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Asmamaw Abera
- Ethiopia Institute of Water Resources, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kristoffer Mattisson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Christina Isaxon
- Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, LTH, Lund University, Lund, Sweden
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
18
|
Tosevska A, Ghosh S, Ganguly A, Cappelletti M, Kallapur SG, Pellegrini M, Devaskar SU. Integrated analysis of an in vivo model of intra-nasal exposure to instilled air pollutants reveals cell-type specific responses in the placenta. Sci Rep 2022; 12:8438. [PMID: 35589747 PMCID: PMC9119931 DOI: 10.1038/s41598-022-12340-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
The placenta is a heterogeneous organ whose development involves complex interactions of trophoblasts with decidual, vascular, and immune cells at the fetal-maternal interface. It maintains a critical balance between maternal and fetal homeostasis. Placental dysfunction can lead to adverse pregnancy outcomes including intra-uterine growth restriction, pre-eclampsia, or pre-term birth. Exposure to environmental pollutants contributes to the development of placental abnormalities, with poorly understood molecular underpinning. Here we used a mouse (C57BL/6) model of environmental pollutant exposure by administration of a particulate matter (SRM1649b at 300 μg/day/mouse) suspension intra-nasally beginning 2 months before conception and during gestation, in comparison to saline-exposed controls. Placental transcriptomes, at day 19 of gestation, were determined using bulk RNA-seq from whole placentas of exposed (n = 4) and control (n = 4) animals and scRNAseq of three distinct placental layers, followed by flow cytometry analysis of the placental immune cell landscape. Our results indicate a reduction in vascular placental cells, especially cells responsible for structural integrity, and increase in trophoblast proliferation in animals exposed to particulate matter. Pollution-induced inflammation was also evident, especially in the decidual layer. These data indicate that environmental exposure to air pollutants triggers changes in the placental cellular composition, mediating adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Anela Tosevska
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA USA ,grid.22937.3d0000 0000 9259 8492Present Address: Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Shubhamoy Ghosh
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Amit Ganguly
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Monica Cappelletti
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Suhas G. Kallapur
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| | - Matteo Pellegrini
- grid.19006.3e0000 0000 9632 6718Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA USA
| | - Sherin U. Devaskar
- grid.19006.3e0000 0000 9632 6718Division of Neonatology & Developmental Biology, Department of Pediatrics, and the UCLA Children’s Discovery & Innovation Institute, David Geffen School of Medicine at University of California Los Angeles, 10883, Le Conte Avenue, MDCC-22-412, Los Angeles, CA 90095-1752 USA
| |
Collapse
|
19
|
Holme JA, Valen H, Brinchmann BC, Vist GE, Grimsrud TK, Becher R, Holme AM, Øvrevik J, Alexander J. Polycyclic aromatic hydrocarbons (PAHs) may explain the paradoxical effects of cigarette use on preeclampsia (PE). Toxicology 2022; 473:153206. [PMID: 35550401 DOI: 10.1016/j.tox.2022.153206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/21/2022]
Abstract
Tobacco smoking and use of snus (smokeless tobacco) are associated with adverse effects on pregnancy and neonatal outcomes. Nicotine is considered a key toxicant involved in effects caused by both smoking and snus, while pyrolysis products including polycyclic aromatic hydrocarbons (PAHs) in cigarette smoke represents the constituents most unequally divided between these two groups of tobacco products. The aim of this review was: i) to compare the impact, in terms of relative effect estimates, of cigarette smoking and use of Swedish snus on pregnancy outcomes using similar non-tobacco user controls, and ii) to examine whether exposure to PAHs from smoking could explain possible differences in impact on pregnancy outcomes. We systematically searched MEDLINE, Embase, PsycInfo, Web of Science and the Cochrane Database of Systematic Reviews up to October 2021 and identified studies reporting risks for adverse pregnancy and neonatal outcomes associated with snus use and with smoking relative to pregnant women with no use of tobacco. Both snus use and smoking were associated with increased risk of stillbirth, preterm birth, and oral cleft malformation, with comparable point estimates. These effects were likely due to comparable nicotine exposure. We also found striking differences. While both smoking and snus increased the risk of having small for gestational age (SGA) infants, risk from maternal smoking was markedly higher as was the reduction in birthweight. In contrast, the risk of preeclampsia (PE) was markedly lower in smokers than in controls, while snus use was associated with a slightly increased risk. We suggest that PAHs acting via AhR may explain the stronger effects of tobacco smoking on SGA and also to the apparent protective effect of cigarette smoking on PE. Possible mechanisms involved include: i) disrupted endocrine control of fetal development as well as placental development and function, and ii) stress adaption and immune suppression in placenta and mother.
Collapse
Affiliation(s)
- Jørn A Holme
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Håkon Valen
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Bendik C Brinchmann
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway.
| | - Gunn E Vist
- Division for Health Services, Norwegian Institute of Public Health, Oslo, Norway.
| | - Tom K Grimsrud
- Department of Research, Cancer Registry of Norway, Oslo, Norway.
| | - Rune Becher
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Ane M Holme
- Department of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway.
| | - Johan Øvrevik
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jan Alexander
- Division of Climate and Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
20
|
Zhuang J, Hu J, Bei F, Huang J, Wang L, Zhao J, Qian R, Sun J. Exposure to air pollutants during pregnancy and after birth increases the risk of neonatal hyperbilirubinemia. ENVIRONMENTAL RESEARCH 2022; 206:112523. [PMID: 34929187 DOI: 10.1016/j.envres.2021.112523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/02/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES Exposure to air pollution is associated with increased risks of several adverse conditions in newborns, such as preterm birth. Whether air pollution is associated with neonatal hyperbilirubinemia remains unclear. We aimed to develop and validate an air-quality-based model to better predict neonatal hyperbilirubinemia. METHODS A multicenter, population-based cohort of neonates with a gestational age (GA) ≥35 weeks and birth weight ≥2000 g was enrolled in the study. The study was conducted in Shanghai, China, from July 2017 to December 2018. The daily average concentrations of particulate matter (PM) with aerodynamic diameters≤2.5 μm (PM2.5) and ≤10 μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2) and carbon monoxide (CO) were measured. Neonatal hyperbilirubinemia was diagnosed according to the American Academy of Pediatrics (AAP) guidelines by trained neonatologists. We used logistic least absolute shrinkage and selection operator (LASSO) regression to screen air pollutant indicators related to neonatal hyperbilirubinemia and build an air-quality signature for each patient. An air-quality-based nomogram was then established to predict the risk of neonatal hyperbilirubinemia. RESULTS A total of 11196 neonates were evaluated. Prenatal PM10, CO and NO2 exposure and postpartum SO2 exposure were significantly associated with neonatal hyperbilirubinemia. The air-quality score was calculated according to the hyperbilirubinemia-related pollutants. The air-quality score of the hyperbilirubinemia group was significantly higher than that of the nonhyperbilirubinemia group (P < .01, odds ratio = 2.97). An air-quality-based logistic regression model was built and showed good discrimination (C-statistic of 0.675 [95% CI (confidence interval), 0.658 to 0.692]) and good calibration. Decision curve analysis showed that the air-quality-based model was better than the traditional clinical model in predicting neonatal hyperbilirubinemia. CONCLUSIONS The findings of this study suggest that ambient air pollution exposure is associated with an increased risk of neonatal hyperbilirubinemia. Our results encourage further exploration of this possibility in future studies.
Collapse
Affiliation(s)
- Jialu Zhuang
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Jie Hu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Fei Bei
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Jiahu Huang
- Department of Pediatrics,Shanghai Children's Hospital, Shanghai Jiaotong University School of Medicine, 355 Luding Road, Shanghai, China.
| | - Liangjun Wang
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Junjie Zhao
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| | - Ruiying Qian
- Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, 3333 Bingsheng Road, Hangzhou, China.
| | - Jianhua Sun
- Department of Neonatology, Shanghai Children's Medical Center, National Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, China.
| |
Collapse
|
21
|
Environmental Nanoparticles Reach Human Fetal Brains. Biomedicines 2022; 10:biomedicines10020410. [PMID: 35203619 PMCID: PMC8962421 DOI: 10.3390/biomedicines10020410] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 12/10/2022] Open
Abstract
Anthropogenic ultrafine particulate matter (UFPM) and industrial and natural nanoparticles (NPs) are ubiquitous. Normal term, preeclamptic, and postconceptional weeks(PCW) 8–15 human placentas and brains from polluted Mexican cities were analyzed by TEM and energy-dispersive X-ray spectroscopy. We documented NPs in maternal erythrocytes, early syncytiotrophoblast, Hofbauer cells, and fetal endothelium (ECs). Fetal ECs exhibited caveolar NP activity and widespread erythroblast contact. Brain ECs displayed micropodial extensions reaching luminal NP-loaded erythroblasts. Neurons and primitive glia displayed nuclear, organelle, and cytoplasmic NPs in both singles and conglomerates. Nanoscale Fe, Ti, and Al alloys, Hg, Cu, Ca, Sn, and Si were detected in placentas and fetal brains. Preeclamptic fetal blood NP vesicles are prospective neonate UFPM exposure biomarkers. NPs are reaching brain tissues at the early developmental PCW 8–15 stage, and NPs in maternal and fetal placental tissue compartments strongly suggests the placental barrier is not limiting the access of environmental NPs. Erythroblasts are the main early NP carriers to fetal tissues. The passage of UFPM/NPs from mothers to fetuses is documented and fingerprinting placental single particle composition could be useful for postnatal risk assessments. Fetal brain combustion and industrial NPs raise medical concerns about prenatal and postnatal health, including neurological and neurodegenerative lifelong consequences.
Collapse
|
22
|
Chen X, Zhao X, Jones MB, Harper A, de Seymour JV, Yang Y, Xia Y, Zhang T, Qi H, Gulliver J, Cannon RD, Saffery R, Zhang H, Han TL, Baker PN. The relationship between hair metabolites, air pollution exposure and gestational diabetes mellitus: A longitudinal study from pre-conception to third trimester. Front Endocrinol (Lausanne) 2022; 13:1060309. [PMID: 36531491 PMCID: PMC9755849 DOI: 10.3389/fendo.2022.1060309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a metabolic condition defined as glucose intolerance with first presentation during pregnancy. Many studies suggest that environmental exposures, including air pollution, contribute to the pathogenesis of GDM. Although hair metabolite profiles have been shown to reflect pollution exposure, few studies have examined the link between environmental exposures, the maternal hair metabolome and GDM. The aim of this study was to investigate the longitudinal relationship (from pre-conception through to the third trimester) between air pollution exposure, the hair metabolome and GDM in a Chinese cohort. METHODS A total of 1020 women enrolled in the Complex Lipids in Mothers and Babies (CLIMB) birth cohort were included in our study. Metabolites from maternal hair segments collected pre-conception, and in the first, second, and third trimesters were analysed using gas chromatography-mass spectrometry (GC-MS). Maternal exposure to air pollution was estimated by two methods, namely proximal and land use regression (LUR) models, using air quality data from the air quality monitoring station nearest to the participant's home. Logistic regression and mixed models were applied to investigate associations between the air pollution exposure data and the GDM associated metabolites. RESULTS Of the 276 hair metabolites identified, the concentrations of fourteen were significantly different between GDM cases and non-GDM controls, including some amino acids and their derivatives, fatty acids, organic acids, and exogenous compounds. Three of the metabolites found in significantly lower concentrations in the hair of women with GDM (2-hydroxybutyric acid, citramalic acid, and myristic acid) were also negatively associated with daily average concentrations of PM2.5, PM10, SO2, NO2, CO and the exposure estimates of PM2.5 and NO2, and positively associated with O3. CONCLUSIONS This study demonstrated that the maternal hair metabolome reflects the longitudinal metabolic changes that occur in response to environmental exposures and the development of GDM.
Collapse
Affiliation(s)
- Xuyang Chen
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xue Zhao
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Mary Beatrix Jones
- Department of Statistics, The University of Auckland, Auckland, New Zealand
| | - Alexander Harper
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | | | - Yang Yang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yinyin Xia
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - John Gulliver
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Richard D. Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard Saffery
- Molecular Immunity, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Zhang, ; Ting-Li Han,
| | - Ting-Li Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Hua Zhang, ; Ting-Li Han,
| | - Philip N. Baker
- College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|