1
|
Lian X, Zhong L, Bai Y, Guang X, Tang S, Guo X, Wei T, Yang F, Zhang Y, Huang G, Zhang J, Shao L, Lei G, Li Z, Sahu SK, Zhang S, Liu H, Hu F. Spatiotemporal transcriptomic atlas of rhizome formation in Oryza longistaminata. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1652-1668. [PMID: 38345936 PMCID: PMC11123419 DOI: 10.1111/pbi.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.
Collapse
Affiliation(s)
- Xiaoping Lian
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Liyuan Zhong
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Yixuan Bai
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Xuanmin Guang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Sijia Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Xing Guo
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Tong Wei
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Feng Yang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Yujiao Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Guangfu Huang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Jing Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Lin Shao
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Guijie Lei
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Zheng Li
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Shilai Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Fengyi Hu
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| |
Collapse
|
2
|
Jiadkong K, Fauzia AN, Yamaguchi N, Ueda A. Exogenous riboflavin (vitamin B2) application enhances salinity tolerance through the activation of its biosynthesis in rice seedlings under salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111929. [PMID: 38007197 DOI: 10.1016/j.plantsci.2023.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Salinity stress triggers the accumulation of reactive oxygen species (ROS), leading to impaired plant growth. Riboflavin (RIB; vitamin B2) is synthesized by plants, fungi, and microorganisms and is a precursor of the coenzymes, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which are important for cellular metabolism. In this study, we aimed to elucidate the mechanistic basis of the RIB-mediated alleviation of salinity stress in rice. We observed higher biomass accumulation and lower concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in RIB-pretreated seedlings under salinity stress. In vitro assays showed that H2O2 was scavenged as the RIB concentration increased, implying that RIB may function as a non-enzymatic antioxidant in ROS detoxification. RIB-pretreated seedlings accumulated more Na+ in the roots than in the leaf blades because of the contributions of OsHKT2;1, OsNHX1, and OsHKT1;4 in the roots and leaf sheaths, respectively. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed increased RIB concentration in roots and shoots and upregulation of key genes (OsRIBA1, OsGCHI, OsLS, and OsRS) involved in RIB biosynthesis in the roots of RIB-pretreated seedlings. Taken together, our findings suggest that RIB pretreatment ameliorates salinity stress in rice by improving (1) oxidative stress tolerance, as increased RIB concentration may function as a non-enzymatic antioxidant, and (2) ionic stress tolerance, as RIB pretreatment limits Na+ accumulation in the leaf blades and maintains a favorable Na+/K+ balance.
Collapse
Affiliation(s)
- Kamonthip Jiadkong
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Anisa Nazera Fauzia
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan; Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Sunan Kalijaga Yogyakarta, Jl. Laksda Adisucipto, Yogyakarta 55281, Indonesia
| | - Nobuo Yamaguchi
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
3
|
Liu Y, Zhang H, Feng W, Lin X, Gao A, Cao Y, Yang Q, Wang Y, Li W, Fu F, Yu H. The Maize ZmBES1/BZR1-9 Transcription Factor Accelerates Flowering in Transgenic Arabidopsis and Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:2995. [PMID: 37631206 PMCID: PMC10459471 DOI: 10.3390/plants12162995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
In model plants, the BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1 (BZR1) transcription factors play vital roles in regulating growth, development, and stimuli response. However, the roles of maize ZmBES1/BZR1 members are largely unknown. In this research, the ZmBES1/BZR1-9 gene was ectopically expressed in Arabidopsis and rice for the phenotyping of flowering. We found that the complementation and overexpression of ZmBES1/BZR1-9 in bes1-D mutant and wild type Arabidopsis both resulted in early flowering that was about 10 days shorter than in the untransformed control under long-day conditions. In addition, there was no difference in the rosette leaf number between all transgenic lines and the control. Subsequently, the ZmBES1/BZR1-9 gene was overexpressed in rice. It was found that overexpression lines of rice exhibited early flowering with heading dates that were 8 days shorter compared with untransformed plants. Moreover, the results of RNA-seq and qRT-PCR showed that five flowering-regulated genes, namely At2-MMP, AtPCC1, AtMYB56, AtPELPK1, and AtPRP10, were significantly up-regulated in all complementary and overexpressing lines of Arabidopsis. Meanwhile, the results of RNA-seq showed that 69 and 33 differentially expressed genes (DEGs) were up- and down-regulated in transgenic rice, respectively. Four flowering-related genes, namely OsGA20OX1, OsCCR19, OsBTBN19, and OsRNS4 were significantly up-regulated in transgenic lines. To sum up, our findings demonstrate that ZmBES1/BZR1-9 is involved in controlling flowering and provide insights into further underlying roles of BES1/BZR1s in regulating growth and development in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region; Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Hong J, Su S, Wang L, Bai S, Xu J, Li Z, Betts N, Liang W, Wang W, Shi J, Zhang D. Combined genome-wide association study and epistasis analysis reveal multifaceted genetic architectures of plant height in Asian cultivated rice. PLANT, CELL & ENVIRONMENT 2023; 46:1295-1311. [PMID: 36734269 DOI: 10.1111/pce.14557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/08/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Plant height (PH) in rice (Oryza sativa) is an important trait for its adaptation and agricultural performance. Discovery of the semi-dwarf1 (SD1) mutation initiated the Green Revolution, boosting rice yield and fitness, but the underlying genetic regulation of PH in rice remains largely unknown. Here, we performed genome-wide association study (GWAS) and identified 12 non-repetitive QTL/genes regulating PH variation in 619 Asian cultivated rice accessions. One of these was an SD1 structural variant, not normally detected in standard GWAS analyses. Given the strong effect of SD1 on PH, we also divided 619 accessions into subgroups harbouring distinct SD1 haplotypes, and found a further 85 QTL/genes for PH, revealing genetic heterogeneity that may be missed by analysing a broad, diverse population. Moreover, we uncovered two epistatic interaction networks of PH-associated QTL/genes in the japonica (Geng)-dominant SD1NIP subgroup. In one of them, the hub QTL/gene qphSN1.4/GAMYB interacted with qphSN3.1/OsINO80, qphSN3.4/HD16/EL1, qphSN6.2/LOC_Os06g11130, and qphSN10.2/MADS56. Sequence variations in GAMYB and MADS56 were associated with their expression levels and PH variations, and MADS56 was shown to physically interact with MADS57 to coregulate expression of gibberellin (GA) metabolic genes OsGA2ox3 and Elongated Uppermost Internode1 (EUI1). Our study uncovered the multifaceted genetic architectures of rice PH, and provided novel and abundant genetic resources for breeding semi-dwarf rice and new candidates for further mechanistic studies on regulation of PH in rice.
Collapse
Affiliation(s)
- Jun Hong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Su Su
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoxing Bai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Natalie Betts
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
| |
Collapse
|
5
|
Pant BD, Lee S, Lee HK, Krom N, Pant P, Jang Y, Mysore KS. Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice. PLANT PHYSIOLOGY 2022; 189:988-1004. [PMID: 35260897 PMCID: PMC9157171 DOI: 10.1093/plphys/kiac078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/27/2022] [Indexed: 05/19/2023]
Abstract
As a major adverse environmental factor in most parts of the world, drought causes substantial crop yield losses. Rice (Oryza sativa) is one of the staple foods for more than one-half of the world's population. Rice plants are sensitive to even mild drought stress and need almost twice the amount of water compared to wheat (Triticum aestivum) or maize (Zea mays). Arabidopsis (Arabidopsis thaliana) small GTPase Nucleolar GTP-binding protein 1 (AtNOG1) plays a role in biotic stress tolerance. Here, we created transgenic rice lines constitutively overexpressing AtNOG1-1 or AtNOG1-2. We also developed rice RNA interference (RNAi) lines that show downregulation of OsNOG1. AtNOG1-1 and AtNOG1-2 overexpressors showed enhanced drought tolerance without compromising grain yield, whereas OsNOG1-RNAi was more susceptible to drought when compared to wild-type plants. Analysis of physiological parameters showed increased cell sap osmolality, relative water content, and abscisic acid (ABA) level, but decreased leaf water loss in AtNOG1-1 or AtNOG1-2 overexpressor lines compared to the control. We found upregulation of several genes involved in ABA and jasmonic acid (JA) signaling, stomata regulation, osmotic potential maintenance, stress protection, and disease resistance in AtNOG1-1 and AtNOG1-2 overexpressor lines compared to the control. We elucidated the role of NOG1-2 and NOG1-1 in regulation of silica body formation around stomata to prevent transpirational water loss. These results provide an avenue to confer drought tolerance in rice.
Collapse
Affiliation(s)
- Bikram D Pant
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - Seonghee Lee
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401, USA
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Balm, Florida 33598, USA
| | - Hee-Kyung Lee
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401, USA
| | - Nick Krom
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401, USA
| | - Pooja Pant
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - YoonJeong Jang
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Balm, Florida 33598, USA
| | - Kirankumar S Mysore
- Noble Research Institute, LLC, Ardmore, Oklahoma 73401, USA
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma 73401, USA
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA
- Author for correspondence:
| |
Collapse
|
6
|
Tissue-specific enhancement of OsRNS1 with root-preferred expression is required for the increase of crop yield. J Adv Res 2022; 42:69-81. [PMID: 35609869 PMCID: PMC9788951 DOI: 10.1016/j.jare.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Root development is a fundamental process that supports plant survival and crop productivity. One of the essential factors to consider when developing biotechnology crops is the selection of a promoter that can optimize the spatial-temporal expression of introduced genes. However, there are insufficient cases of suitable promoters in crop plants, including rice. OBJECTIVES This study aimed to verify the usefulness of a new rice root-preferred promoter to optimize the function of a target gene with root-preferred expression in rice. METHODS osrns1 mutant had defects in root development based on T-DNA insertional mutant screening and CRISPR technology. To optimize the function of OsRNS1, we generated OsRNS1-overexpression plants under two different promoters: a whole-plant expression promoter and a novel root-preferred expression promoter. Root growth, yield-related agronomic traits, RNA-seq, and reactive oxygen species (ROS) accumulation were analyzed for comparison. RESULTS OsRNS1 was found to be involved in root development through T-DNA insertional mutant analysis and gene editing mutant analysis. To understand the gain of function of OsRNS1, pUbi1::OsRNS1 was generated for the whole-plant expression, and both root growth defects and overall growth defects were found. To overcome this problem, a root-preferential overexpression line using Os1-CysPrxB promoter (Per) was generated and showed an increase in root length, plant height, and grain yield compared to wild-type (WT). RNA-seq analysis revealed that the response to oxidative stress-related genes was significantly up-regulated in both overexpression lines but was more obvious in pPer::OsRNS1. Furthermore, ROS levels in the roots were drastically decreased in pPer::OsRNS1 but were increased in the osrns1 mutants compared to WT. CONCLUSION The results demonstrated that the use of a root-preferred promoter effectively optimizes the function of OsRNS1 and is a useful strategy for improving root-related agronomic traits as well as ROS regulation.
Collapse
|
7
|
Lim C, Kang K, Shim Y, Yoo SC, Paek NC. Inactivating transcription factor OsWRKY5 enhances drought tolerance through abscisic acid signaling pathways. PLANT PHYSIOLOGY 2022; 188:1900-1916. [PMID: 34718775 PMCID: PMC8968288 DOI: 10.1093/plphys/kiab492] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 05/18/2023]
Abstract
During crop cultivation, water-deficit conditions retard growth, thus reducing crop productivity. Therefore, uncovering the mechanisms behind drought tolerance is a critical task for crop improvement. Here, we show that the rice (Oryza sativa) WRKY transcription factor OsWRKY5 negatively regulates drought tolerance. We determined that OsWRKY5 was mainly expressed in developing leaves at the seedling and heading stages, and that its expression was reduced by drought stress and by treatment with NaCl, mannitol, and abscisic acid (ABA). Notably, the genome-edited loss-of-function alleles oswrky5-2 and oswrky5-3 conferred enhanced drought tolerance, measured as plant growth under water-deficit conditions. Conversely, the overexpression of OsWRKY5 in the activation-tagged line oswrky5-D resulted in higher susceptibility under the same conditions. The loss of OsWRKY5 activity increased sensitivity to ABA, thus promoting ABA-dependent stomatal closure. Transcriptome deep sequencing and reverse transcription quantitative polymerase chain reaction analyses demonstrated that the expression of abiotic stress-related genes including rice MYB2 (OsMYB2) was upregulated in oswrky5 knockout mutants and downregulated in oswrky5-D mutants. Moreover, dual-luciferase, yeast one-hybrid, and chromatin immunoprecipitation assays showed that OsWRKY5 directly binds to the W-box sequences in the promoter region of OsMYB2 and represses OsMYB2 expression, thus downregulating genes downstream of OsMYB2 in the ABA signaling pathways. Our results demonstrate that OsWRKY5 functions as a negative regulator of ABA-induced drought stress tolerance, strongly suggesting that inactivation of OsWRKY5 or manipulation of key OsWRKY5 targets could be useful to improve drought tolerance in rice cultivars.
Collapse
Affiliation(s)
| | | | - Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo-Cheul Yoo
- Department of Plant Life and Environmental Science, Hankyong National University, Anseong 17579, Republic of Korea
| | | |
Collapse
|
8
|
Singh PK, Indoliya Y, Agrawal L, Awasthi S, Deeba F, Dwivedi S, Chakrabarty D, Shirke PA, Pandey V, Singh N, Dhankher OP, Barik SK, Tripathi RD. Genomic and proteomic responses to drought stress and biotechnological interventions for enhanced drought tolerance in plants. CURRENT PLANT BIOLOGY 2022; 29:100239. [DOI: 10.1016/j.cpb.2022.100239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
9
|
Azizkhani N, Mirzaei S, Torkzadeh-Mahani M. Genome-wide identification and characterization of legume T2 Ribonuclease gene family and analysis of GmaRNS9, a soybean T2 Ribonuclease gene, function in nodulation. 3 Biotech 2021; 11:495. [PMID: 34881158 DOI: 10.1007/s13205-021-03025-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 10/08/2021] [Indexed: 01/30/2023] Open
Abstract
T2 ribonuclease family (RNaseT2) proteins are secretory and nonspecific endoribonucleases that have a large conserved biological role. Family members of RNaseT2 are found in every organism and carry out important biological functions. However, little is known about the functions of these proteins in legumes, including potential roles in symbiotic nodulation. This study aimed to characterize and perform bioinformatic analysis of RNaseT2 genes in four legume species that their genome was sequenced. In total, 60 RNaseT2 genes were identified and characterized. By analyzing their phylogeny, we divided these RNaseT2 into five clades. Expression analysis of RNaseT2 genes indicated that these genes are expressed in various tissues, and the most expression level was related to the pod, flower, and root. Moreover, GmaRNS9 expression analysis in soybean was consistent with in silico studies and demonstrated that this gene usually has high root tip expression. GmaRNS9 expression was reduced by Bradyrhizobium japonicum inoculation and nodule formation. Reduced expression of this gene was possibly controlled by the GmNARK gene either directly or pleiotropically through increased phosphorus requirements during increased nodulation. However, the nutrient stress (phosphate and nitrate starvation) led to an increase in the expression level of GmRNS9. In silico and quantitative gene expression analyses showed that RNaseT2 genes could play important roles in the growth and development of legumes as well as nodulation.
Collapse
Affiliation(s)
- Negin Azizkhani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, 7631885356 Kerman, Iran
| | - Saeid Mirzaei
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, 7631885356 Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, 7631885356 Kerman, Iran
| |
Collapse
|
10
|
Kumar N, Bharadwaj C, Sahu S, Shiv A, Shrivastava AK, Reddy SPP, Soren KR, Patil BS, Pal M, Soni A, Roorkiwal M, Varshney RK. Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (lncRNAs) in chickpea ( Cicer arietinum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2605-2619. [PMID: 34916736 PMCID: PMC8639897 DOI: 10.1007/s12298-021-01093-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92-3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01093-0.
Collapse
Affiliation(s)
- Neeraj Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi 110012 India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
- Present Address: ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | | | | | - Khela Ram Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 282 004 India
| | | | - Madan Pal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Anjali Soni
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Manish Roorkiwal
- Centre of Excellence in Genomics, ICRISAT, Hyderabad, 502324 India
| | | |
Collapse
|
11
|
Genome-wide identification and expression pattern analysis of the ribonuclease T2 family in Eucommia ulmoides. Sci Rep 2021; 11:6900. [PMID: 33767357 PMCID: PMC7994793 DOI: 10.1038/s41598-021-86337-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
The 2′,3′-cycling ribonuclease (RNase) genes are catalysts of RNA cleavage and include the RNase T2 gene family. RNase T2 genes perform important roles in plants and have been conserved in the genome of eukaryotic organisms. In this study we identified 21 EURNS genes in Eucommia ulmoides Oliver (E. ulmoides) and analyzed their structure, chromosomal location, phylogenetic tree, gene duplication, stress-related cis-elements, and expression patterns in different tissues. The length of 21 predicted EURNS proteins ranged from 143 to 374 amino acids (aa), their molecular weight (MW) ranged from 16.21 to 42.38 kDa, and their isoelectric point (PI) value ranged from 5.08 to 9.09. Two classifications (class I and class III) were obtained from the conserved domains analysis and phylogenetic tree. EURNS proteins contained a total of 15 motifs. Motif 1, motif 2, motif 3, and motif 7 were distributed in multiple sequences and were similar to the conserved domain of RNase T2. EURNS genes with similar structure and the predicted EURNS proteins with conserved motif compositions are in the same group in the phylogenetic tree. The results of RT-PCR and transcription data showed that EURNS genes have tissue-specific expression and exhibited obvious trends in different developmental stages. Gene duplication analysis results indicated that segment duplication may be the dominant duplication mode in this gene family. This study provides a theoretical basis for research on the RNase T2 gene family and lays a foundation for the further study of EURNS genes.
Collapse
|
12
|
Sega P, Kruszka K, Bielewicz D, Karlowski W, Nuc P, Szweykowska-Kulinska Z, Pacak A. Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses. BMC Genomics 2021; 22:165. [PMID: 33750301 PMCID: PMC7941915 DOI: 10.1186/s12864-021-07481-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are 20-30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. RESULTS In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3'-5' exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools. CONCLUSIONS Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.
Collapse
Affiliation(s)
- Pawel Sega
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Katarzyna Kruszka
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
- Center for Advanced Technology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
| | - Wojciech Karlowski
- Department of Computational Biology, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
13
|
Gho YS, Choi H, Moon S, Song MY, Park HE, Kim DH, Ha SH, Jung KH. Phosphate-Starvation-Inducible S-Like RNase Genes in Rice Are Involved in Phosphate Source Recycling by RNA Decay. FRONTIERS IN PLANT SCIENCE 2020; 11:585561. [PMID: 33424882 PMCID: PMC7793952 DOI: 10.3389/fpls.2020.585561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/02/2020] [Indexed: 05/16/2023]
Abstract
The fine-tuning of inorganic phosphate (Pi) for enhanced use efficiency has long been a challenging subject in agriculture, particularly in regard to rice as a major crop plant. Among ribonucleases (RNases), the RNase T2 family is broadly distributed across kingdoms, but little has been known on its substrate specificity compared to RNase A and RNase T1 families. Class I and class II of the RNase T2 family are defined as the S-like RNase (RNS) family and have showed the connection to Pi recycling in Arabidopsis. In this study, we first carried out a phylogenetic analysis of eight rice and five Arabidopsis RNS genes and identified mono-specific class I and dicot-specific class I RNS genes, suggesting the possibility of functional diversity between class I RNS family members in monocot and dicot species through evolution. We then compared the in silico expression patterns of all RNS genes in rice and Arabidopsis under normal and Pi-deficient conditions and further confirmed the expression patterns of rice RNS genes via qRT-PCR analysis. Subsequently, we found that most of the OsRNS genes were differentially regulated under Pi-deficient treatment. Association of Pi recycling by RNase activity in rice was confirmed by measuring total RNA concentration and ribonuclease activity of shoot and root samples under Pi-sufficient or Pi-deficient treatment during 21 days. The total RNA concentrations were decreased by < 60% in shoots and < 80% in roots under Pi starvation, respectively, while ribonuclease activity increased correspondingly. We further elucidate the signaling pathway of Pi starvation through upregulation of the OsRNS genes. The 2-kb promoter region of all OsRNS genes with inducible expression patterns under Pi deficiency contains a high frequency of P1BS cis-acting regulatory element (CRE) known as the OsPHR2 binding site, suggesting that the OsRNS family is likely to be controlled by OsPHR2. Finally, the dynamic transcriptional regulation of OsRNS genes by overexpression of OsPHR2, ospho2 mutant, and overexpression of OsPT1 lines involved in Pi signaling pathway suggests the molecular basis of OsRNS family in Pi recycling via RNA decay under Pi starvation.
Collapse
Affiliation(s)
- Yun-Shil Gho
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Heebak Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Sunok Moon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Min Yeong Song
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ha Eun Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Doh-Hoon Kim
- Department of Life Science, College of Life Science and Natural Resources, Dong-A University, Busan, South Korea
| | - Sun-Hwa Ha
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Ki-Hong Jung
- Graduate School of Biotechnology, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
14
|
Zheng C, Zhou J, Zhang F, Yin J, Zhou G, Li Y, Chen F, Xie X. OsABAR1, a novel GRAM domain-containing protein, confers drought and salt tolerance via an ABA-dependent pathway in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:138-146. [PMID: 32416343 DOI: 10.1016/j.plaphy.2020.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 05/05/2023]
Abstract
Glucosyltransferases-like GTPase activators and Myotubularin (GRAM) domain-containing proteins are important for plant development and responses to biotic stresses. However, the effects of GRAM proteins on abiotic stress responses remain unclear. In this study, we identified a novel GRAM protein-encoding gene, OsABAR1, and characterized its regulatory functions related to rice drought and salt tolerance. The OsABAR1 protein was localized in the cytoplasm and nucleus. Among all examined organs, the OsABAR1 transcript level was highest in the roots. Moreover, OsABAR1 expression was up-regulated by drought and salinity stresses. The OsABAR1-overexpressing (OsABAR1-OX) lines exhibited enhanced tolerance to drought and salinity, whereas the knock-out lines (Osabar1) had the opposite phenotypes. We further analyzed the involvement of OsABAR1 in the abscisic acid (ABA) signaling pathway. The OsABAR1 expression level was up-regulated by ABA. In turn, OsABAR1 regulated the expression of ABA metabolic genes and responsive genes. Furthermore, OsABAR1-OX seedlings were hypersensitive to exogenous ABA, whereas Osabar1 seedlings were hyposensitive. These results imply that OsABAR1 is a positive regulator of the ABA pathway and confirm that OsABAR1 improves rice drought and salt tolerance via an ABA-dependent pathway. This study is the first to clarify the regulatory roles of GRAM proteins in rice responses to abiotic stresses.
Collapse
Affiliation(s)
- Chongke Zheng
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Jinjun Zhou
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Fang Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Jingjing Yin
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Guanhua Zhou
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Yaping Li
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China; College of Life Science, Shandong Normal University, Jinan 250014, PR China.
| | - Fan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Xianzhi Xie
- Shandong Rice Engineering Technology Research Center, Shandong Rice Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| |
Collapse
|
15
|
Diaz-Baena M, Galvez-Valdivieso G, Delgado-Garcia E, Pineda M, Piedras P. Nuclease and ribonuclease activities in response to salt stress: Identification of PvRNS3, a T2/S-like ribonuclease induced in common bean radicles by salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:235-241. [PMID: 31881432 DOI: 10.1016/j.plaphy.2019.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 05/28/2023]
Abstract
The increase in soil salinization due to global climate change could cause large losses in crop productivity affecting, among other biological processes, to germination and seedling development. We have studied how salt stress affects nucleic acid degrading activities in radicles of common bean during seedling development. In radicles of common bean, a main nuclease of 37 kDa and two ribonucleases of 17 and 19 kDa were detected. Saline stress did not alter these three activities but induced a new ribonuclease of 16 kDa. All three ribonucleases are acidic enzymes that were inhibited by Zn. The 16 and 17 kDa ribonucleases are inhibited by guanilates. In the genome of common bean, we have identified 13 genes belonging to the T2 ribonuclease family and that are grouped in the 3 classes of T2 ribonucleases. The analysis of the expression of the 3 genes belonging to Class I (PvRNS1 to 3) and the unique gene from Class II (PvRNS4) in radicles showed that PvRNS3 is highly induced under salt stress.
Collapse
Affiliation(s)
- Mercedes Diaz-Baena
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Gregorio Galvez-Valdivieso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Elena Delgado-Garcia
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Pineda
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain
| | - Pedro Piedras
- Departamento de Botánica, Ecología y Fisiología Vegetal, Plants Molecular Physiology and Biotechnology Group, Campus de Rabanales, Edif. Severo Ochoa, Universidad de Córdoba, Córdoba, Spain.
| |
Collapse
|
16
|
Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. THE NEW PHYTOLOGIST 2019; 223:853-866. [PMID: 30913300 PMCID: PMC6618152 DOI: 10.1111/nph.15815] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/20/2019] [Indexed: 05/10/2023]
Abstract
The wheat Lr34res allele, coding for an ATP-binding cassette transporter, confers durable resistance against multiple fungal pathogens. The Lr34sus allele, differing from Lr34res by two critical nucleotide polymorphisms, is found in susceptible wheat cultivars. Lr34res is functionally transferrable as a transgene into all major cereals, including rice, barley, maize, and sorghum. Here, we used transcriptomics, physiology, genetics, and in vitro and in vivo transport assays to study the molecular function of Lr34. We report that Lr34res results in a constitutive induction of transcripts reminiscent of an abscisic acid (ABA)-regulated response in transgenic rice. Lr34-expressing rice was altered in biological processes that are controlled by this phytohormone, including dehydration tolerance, transpiration and seedling growth. In planta seedling and in vitro yeast accumulation assays revealed that both LR34res and LR34sus act as ABA transporters. However, whereas the LR34res protein was detected in planta the LR34sus version was not, suggesting a post-transcriptional regulatory mechanism. Our results identify ABA as a substrate of the LR34 ABC transporter. We conclude that LR34res-mediated ABA redistribution has a major effect on the transcriptional response and physiology of Lr34res-expressing plants and that ABA is a candidate molecule that contributes to Lr34res-mediated disease resistance.
Collapse
Affiliation(s)
- Simon G. Krattinger
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
- Biological and Environmental Science & Engineering DivisionKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Joohyun Kang
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Stephanie Bräunlich
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Rainer Boni
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Harsh Chauhan
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Liselotte L. Selter
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Mark D. Robinson
- Institute of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- SIB Swiss Institute of BioinformaticsUniversity of ZurichZurichSwitzerland
| | - Marc W. Schmid
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Elena Wiederhold
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Goetz Hensel
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland/OT, GaterslebenGermany
| | - Jochen Kumlehn
- Plant Reproductive BiologyLeibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland/OT, GaterslebenGermany
| | - Justine Sucher
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Enrico Martinoia
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| | - Beat Keller
- Department of Plant and Microbial BiologyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
17
|
Byun MY, Cui LH, Lee J, Park H, Lee A, Kim WT, Lee H. Identification of Rice Genes Associated With Enhanced Cold Tolerance by Comparative Transcriptome Analysis With Two Transgenic Rice Plants Overexpressing DaCBF4 or DaCBF7, Isolated From Antarctic Flowering Plant Deschampsia antarctica. FRONTIERS IN PLANT SCIENCE 2018; 9:601. [PMID: 29774046 PMCID: PMC5943562 DOI: 10.3389/fpls.2018.00601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/16/2018] [Indexed: 05/25/2023]
Abstract
Few plant species can survive in Antarctica, the harshest environment for living organisms. Deschampsia antarctica is the only natural grass species to have adapted to and colonized the maritime Antarctic. To investigate the molecular mechanism of the Antarctic adaptation of this plant, we identified and characterized D. antarctica C-repeat binding factor 4 (DaCBF4), which belongs to monocot CBF group IV. The transcript level of DaCBF4 in D. antarctica was markedly increased by cold and dehydration stress. To assess the roles of DaCBF4 in plants, we generated a DaCBF4-overexpressing transgenic rice plant (Ubi:DaCBF4) and analyzed its abiotic stress response phenotype. Ubi:DaCBF4 displayed enhanced tolerance to cold stress without growth retardation under any condition compared to wild-type plants. Because the cold-specific phenotype of Ubi:DaCBF4 was similar to that of Ubi:DaCBF7 (Byun et al., 2015), we screened for the genes responsible for the improved cold tolerance in rice by selecting differentially regulated genes in both transgenic rice lines. By comparative transcriptome analysis using RNA-seq, we identified 9 and 15 genes under normal and cold-stress conditions, respectively, as putative downstream targets of the two D. antarctica CBFs. Overall, our results suggest that Antarctic hairgrass DaCBF4 mediates the cold-stress response of transgenic rice plants by adjusting the expression levels of a set of stress-responsive genes in transgenic rice plants. Moreover, selected downstream target genes will be useful for genetic engineering to enhance the cold tolerance of cereal plants, including rice.
Collapse
Affiliation(s)
- Mi Young Byun
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Li Hua Cui
- Department of Systems Biology, Yonsei University, Seoul, South Korea
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science & Technology, Daejeon, South Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science & Technology, Daejeon, South Korea
| | - Andosung Lee
- Department of Systems Biology, Yonsei University, Seoul, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, Yonsei University, Seoul, South Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
- Polar Science, University of Science & Technology, Daejeon, South Korea
| |
Collapse
|
18
|
Ganesan M, Lee HY, Kim JI, Song PS. Development of transgenic crops based on photo-biotechnology. PLANT, CELL & ENVIRONMENT 2017; 40:2469-2486. [PMID: 28010046 DOI: 10.1111/pce.12887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
The phenotypes associated with plant photomorphogenesis such as the suppressed shade avoidance response and de-etiolation offer the potential for significant enhancement of crop yields. Of many light signal transducers and transcription factors involved in the photomorphogenic responses of plants, this review focuses on the transgenic overexpression of the photoreceptor genes at the uppermost stream of the signalling events, particularly phytochromes, crytochromes and phototropins as the transgenes for the genetic engineering of crops with improved harvest yields. In promoting the harvest yields of crops, the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the tolerance to abiotic stresses such as drought, salinity and heavy metal ions. As a genetic engineering approach, the term photo-biotechnology has been coined to convey the idea that the greater the photosynthetic efficiency that crop plants can be engineered to possess, the stronger the resistance to biotic and abiotic stresses. Development of GM crops based on photoreceptor transgenes (mainly phytochromes, crytochromes and phototropins) is reviewed with the proposal of photo-biotechnology that the photoreceptors mediate the light regulation of photosynthetically important genes, and the improved yields often come with the added benefits of crops' tolerance to environmental stresses.
Collapse
Affiliation(s)
- Markkandan Ganesan
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
- Department of Life Sciences, Presidency University, Kolkata, 700073, India
| | - Hyo-Yeon Lee
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| | - Jeong-Il Kim
- Department of Biotechnology and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Korea
| | - Pill-Soon Song
- Subtropical Horticulture Research Institute and Faculty of Biotechnology, Jeju National University, Jeju, 63243, Korea
| |
Collapse
|
19
|
Zhou Q, Wang A, Duan R, Yan J, Zhao G, Nevo E, Chen G. Comparative transcriptome profile of the leaf elongation zone of wild barley (Hordeum spontaneum) eibi1 mutant and its isogenic wild type. Genet Mol Biol 2017; 40:834-843. [PMID: 29064514 PMCID: PMC5738607 DOI: 10.1590/1678-4685-gmb-2016-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 08/13/2017] [Indexed: 11/21/2022] Open
Abstract
The naturally occurring wild barley mutant eibi1/hvabcg31
suffers from severe water loss due to the permeable leaf cuticle.
Eibi1/HvABCG31 encodes a full ATP-binding cassette (ABC)
transporter, HvABCG31, playing a role in cutin deposition in the elongation zone
of growing barley leaves. The eibi1 allele has pleiotropic
effects on the appearance of leaves, plant stature, fertility, spike and grain
size, and rate of germination. Comparative transcriptome profile of the leaf
elongation zone of the eibi1 mutant as well as its isogenic
wild type showed that various pathogenesis-related genes were up-regulated in
the eibi1 mutant. The known cuticle-related genes that we
analyzed did not show significant expression difference between the mutant and
wild type. These results suggest that the pleiotropic effects may be a
compensatory consequence of the activation of defense genes in the
eibi1 mutation. Furthermore, we were able to find the
mutation of the eibi1/hvabcg31 allele by comparing transcript
sequences, which indicated that the RNA-Seq is useful not only for researches on
general molecular mechanism but also for the identification of possible mutant
genes.
Collapse
Affiliation(s)
- Qin Zhou
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Aidong Wang
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Ruijun Duan
- College of Eco-Environmental Engineering, Qinghai University, Xining, Qinghai, China
| | - Jun Yan
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan. China
| | - Gang Zhao
- School of Pharmacy and Bioengineering, Chengdu University, Chengdu, Sichuan. China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa Israel
| | - Guoxiong Chen
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
20
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
21
|
Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC PLANT BIOLOGY 2016; 16:188. [PMID: 27576435 PMCID: PMC5006382 DOI: 10.1186/s12870-016-0871-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. RESULTS A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. CONCLUSIONS This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Qiang He
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Huijun Li
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Wuwei Agricultural and Animal Husbandry Bureau, Wuwei, China
| | - Xiaojing Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Gansu Dingxi Academy of Agricultural Science, Dingxi, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
22
|
Zhou L, Liu Z, Liu Y, Kong D, Li T, Yu S, Mei H, Xu X, Liu H, Chen L, Luo L. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. Sci Rep 2016; 6:30264. [PMID: 27453463 PMCID: PMC4958981 DOI: 10.1038/srep30264] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/04/2016] [Indexed: 12/22/2022] Open
Abstract
A novel gene, OsAHL1, containing an AT-hook motif and a PPC domain was identified through genome-wide profiling and analysis of mRNAs by comparing the microarray of drought-challenged versus normally watered rice. The results indicated OsAHL1 has both drought avoidance and drought tolerance that could greatly improve drought resistance of the rice plant. Overexpression of OsAHL1 enhanced multiple stress tolerances in rice plants during both seedling and panicle development stages. Functional studies revealed that OsAHL1 regulates root development under drought condition to enhance drought avoidance, participates in oxidative stress response and also regulates the content of chlorophyll in rice leaves. OsAHL1 specifically binds to the A/T rich sequence region of promoters or introns, and hence directly regulates the expression of many stress related downstream genes.
Collapse
Affiliation(s)
- Liguo Zhou
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaochang Liu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yunhua Liu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Deyan Kong
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Tianfei Li
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Shunwu Yu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hanwei Mei
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiaoyan Xu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| |
Collapse
|
23
|
Sun X, Jia Q, Guo Y, Zheng X, Liang K. Whole-genome analysis revealed the positively selected genes during the differentiation of indica and temperate japonica rice. PLoS One 2015; 10:e0119239. [PMID: 25774680 PMCID: PMC4361536 DOI: 10.1371/journal.pone.0119239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
To investigate the selective pressures acting on the protein-coding genes during the differentiation of indica and japonica, all of the possible orthologous genes between the Nipponbare and 93–11 genomes were identified and compared with each other. Among these genes, 8,530 pairs had identical sequences, and 27,384 pairs shared more than 90% sequence identity. Only 2,678 pairs of genes displaying a Ka/Ks ratio significantly greater than one were revealed, and most of these genes contained only nonsynonymous sites. The genes without synonymous site were further analyzed with the SNP data of 1529 O. sativa and O. rufipogon accessions, and 1068 genes were identified to be under positive selection during the differentiation of indica and temperate japonica. The positively selected genes (PSGs) are unevenly distributed on 12 chromosomes, and the proteins encoded by the PSGs are dominant with binding, transferase and hydrolase activities, and especially enriched in the plant responses to stimuli, biological regulations, and transport processes. Meanwhile, the most PSGs of the known function and/or expression were involved in the regulation of biotic/abiotic stresses. The evidence of pervasive positive selection suggested that many factors drove the differentiation of indica and japonica, which has already started in wild rice but is much lower than in cultivated rice. Lower differentiation and less PSGs revealed between the Or-It and Or-IIIt wild rice groups implied that artificial selection provides greater contribution on the differentiation than natural selection. In addition, the phylogenetic tree constructed with positively selected sites showed that the japonica varieties exhibited more diversity than indica on differentiation, and Or-III of O. rufipogon exhibited more than Or-I.
Collapse
Affiliation(s)
- Xinli Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
- * E-mail:
| | - Qi Jia
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Yuchun Guo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Xiujuan Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| | - Kangjing Liang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture & Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture & Forestry University, Fuzhou, China
| |
Collapse
|