1
|
Campol JR, Naing AH, Aung HM, Cho SB, Kang H, Chung MY, Kim CK. Production of genetically stable and Odontoglossum ringspot virus-free Cymbidium orchid 'New True' plants via meristem-derived protocorm-like body (PLB) subcultures. PLANT METHODS 2024; 20:145. [PMID: 39300484 DOI: 10.1186/s13007-024-01269-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND This study aimed to produce Odontoglossum ringspot virus (ORSV)-free Cymbidium orchid 'New True' plants from ORSV-infected mother plants by culturing their meristems and successively repeating subcultures of protocorm-like bodies (PLBs) derived from the meristems. RESULTS Initially, ORSV was confirmed as the causative agent of viral symptoms in orchid leaves via reverse transcription-polymerase chain reaction (RT-PCR) analysis. Meristems from infected plants were cultured to generate PLBs, which in sequence were repeatedly subcultured up to four times. RT-PCR and quantitative RT-PCR analyses revealed that while ORSV was undetectable in shoots derived from the first subculture, complete elimination of the virus required at least a second subculture. Genetic analysis using inter-simple sequence repeat markers indicated no somaclonal variation between regenerated plants and the mother plant, suggesting that genetic consistency was maintained. CONCLUSION Overall, our findings demonstrate that subculturing PLBs for a second time is ideal for producing genetically stable, ORSV-free Cymbidium orchids, thus offering a practical means of generating genetically stable, virus-free plants and enhancing plant health and quality in the orchid industry.
Collapse
Affiliation(s)
- Jova Riza Campol
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Aung Htay Naing
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea.
| | - Hay Mon Aung
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Su Bin Cho
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Hyunhee Kang
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticultural Science, Kyungpook National University, Daegu, South Korea.
| |
Collapse
|
2
|
Gu F, Xu F, Wu G, Zhu H, Ji C, Wang Y, Zhao Q, Zhang Z. Annual Accumulation of CymMV May Lead to Loss in Production of Asymptomatic Vanilla Propagated by Cuttings. PLANTS (BASEL, SWITZERLAND) 2024; 13:1505. [PMID: 38891313 PMCID: PMC11174479 DOI: 10.3390/plants13111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Vanilla (Vanilla planifolia Andrews) is a valuable orchid spice cultivated for its highly priced beans. Vanilla has been planted in Hainan province of China via cutting propagation for about 40 years. The yield has been decreasing annually for the past ten years due to pod numbers declining significantly even though it seems to grow normally without disease symptoms, while the reason is still unknown. In this study, we found that Cymbidium mosaic virus (CymMV), one of the most devastating viruses causing losses in the vanilla industry, massively presented within the pods and leaves of vanilla plants, so the virus infecting the vanilla seems to be a highly probable hypothesis of the main contributions to low yield via decreasing the number of pods. This represents the first speculation of CymMV possibly affecting the yield of vanilla in China, indicating the important role of virus elimination in restoring high yield in vanilla. This research can also serve as a warning to important economic crops that rely on cuttings for propagation, demonstrating that regular virus elimination is very important for these economically propagated crops through cuttings.
Collapse
Affiliation(s)
- Fenglin Gu
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Fei Xu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Guiping Wu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Hongying Zhu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Changmian Ji
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
| | - Yu Wang
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
| | - Qingyun Zhao
- Sanya Research Institute of Chinese Academy of Tropical Agricultural Sciences, Sanya 572025, China; (F.G.); (C.J.); (Y.W.)
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (F.X.); (G.W.); (H.Z.)
| | - Zhiyuan Zhang
- Hainan Institute, Zhejiang University, Sanya 572025, China
| |
Collapse
|
3
|
Lee HJ, Kim HJ, Cho IS, Jeong RD. Identification of Viruses Infecting Phalaenopsis Orchids Using Nanopore Sequencing and Development of an RT-RPA-CRISPR/Cas12a for Rapid Visual Detection of Nerine Latent Virus. Int J Mol Sci 2024; 25:2666. [PMID: 38473916 DOI: 10.3390/ijms25052666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Phalaenopsis orchids are one of the most popular ornamental plants. More than thirty orchid viruses have been reported, and virus-infected Phalaenopsis orchids significantly lose their commercial value. Therefore, the development of improved viral disease detection methods could be useful for quality control in orchid cultivation. In this study, we first utilized the MinION, a portable sequencing device based on Oxford Nanopore Technologies (ONT) to rapidly detect plant viruses in Phalaenopsis orchids. Nanopore sequencing revealed the presence of three plant viruses in Phalaenopsis orchids: odontoglossum ringspot virus, cymbidium mosaic virus, and nerine latent virus (NeLV). Furthermore, for the first time, we detected NeLV infection in Phalaenopsis orchids using nanopore sequencing and developed the reverse transcription-recombinase polymerase amplification (RT-RPA)-CRISPR/Cas12a method for rapid, instrument-flexible, and accurate diagnosis. The developed RT-RPA-CRISPR/Cas12a technique can confirm NeLV infection in less than 20 min and exhibits no cross-reactivity with other viruses. To determine the sensitivity of RT-RPA-CRISPR/Cas12a for NeLV, we compared it with RT-PCR using serially diluted transcripts and found a detection limit of 10 zg/μL, which is approximately 1000-fold more sensitive. Taken together, the ONT platform offers an efficient strategy for monitoring plant viral pathogens, and the RT-RPA-CRISPR/Cas12a method has great potential as a useful tool for the rapid and sensitive diagnosis of NeLV.
Collapse
Affiliation(s)
- Hyo-Jeong Lee
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| | - Hae-Jun Kim
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| | - In-Sook Cho
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Rae-Dong Jeong
- Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju 61185, Republic of Korea
| |
Collapse
|
4
|
Nishikawa M, Katsu K, Koinuma H, Hashimoto M, Neriya Y, Matsuyama J, Yamamoto T, Suzuki M, Matsumoto O, Matsui H, Nakagami H, Maejima K, Namba S, Yamaji Y. Interaction of EXA1 and eIF4E Family Members Facilitates Potexvirus Infection in Arabidopsis thaliana. J Virol 2023; 97:e0022123. [PMID: 37199623 PMCID: PMC10308960 DOI: 10.1128/jvi.00221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Plant viruses depend on a number of host factors for successful infection. Deficiency of critical host factors confers recessively inherited viral resistance in plants. For example, loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. However, the molecular mechanism of how EXA1 assists potexvirus infection remains largely unknown. Previous studies reported that the salicylic acid (SA) pathway is upregulated in exa1 mutants, and EXA1 modulates hypersensitive response-related cell death during EDS1-dependent effector-triggered immunity. Here, we show that exa1-mediated viral resistance is mostly independent of SA and EDS1 pathways. We demonstrate that Arabidopsis EXA1 interacts with three members of the eukaryotic translation initiation factor 4E (eIF4E) family, eIF4E1, eIFiso4E, and novel cap-binding protein (nCBP), through the eIF4E-binding motif (4EBM). Expression of EXA1 in exa1 mutants restored infection by the potexvirus Plantago asiatica mosaic virus (PlAMV), but EXA1 with mutations in 4EBM only partially restored infection. In virus inoculation experiments using Arabidopsis knockout mutants, EXA1 promoted PlAMV infection in concert with nCBP, but the functions of eIFiso4E and nCBP in promoting PlAMV infection were redundant. By contrast, the promotion of PlAMV infection by eIF4E1 was, at least partially, EXA1 independent. Taken together, our results imply that the interaction of EXA1-eIF4E family members is essential for efficient PlAMV multiplication, although specific roles of three eIF4E family members in PlAMV infection differ. IMPORTANCE The genus Potexvirus comprises a group of plant RNA viruses, including viruses that cause serious damage to agricultural crops. We previously showed that loss of Essential for poteXvirus Accumulation 1 (EXA1) in Arabidopsis thaliana confers resistance to potexviruses. EXA1 may thus play a critical role in the success of potexvirus infection; hence, elucidation of its mechanism of action is crucial for understanding the infection process of potexviruses and for effective viral control. Previous studies reported that loss of EXA1 enhances plant immune responses, but our results indicate that this is not the primary mechanism of exa1-mediated viral resistance. Here, we show that Arabidopsis EXA1 assists infection by the potexvirus Plantago asiatica mosaic virus (PlAMV) by interacting with the eukaryotic translation initiation factor 4E family. Our results imply that EXA1 contributes to PlAMV multiplication by regulating translation.
Collapse
Affiliation(s)
- Masanobu Nishikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Katsu
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Koinuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masayoshi Hashimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaro Neriya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Juri Matsuyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Toya Yamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masato Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Oki Matsumoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | | | - Kensaku Maejima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Sun A, Wang L, Zhang Y, Yang X, Wei Y, Yang D, Li W, Wu X. Establishment of a triplex TaqMan quantitative real-time PCR assay for simultaneous detection of Cymbidium mosaic virus, Odontoglossum ringspot virus and Cymbidium ringspot virus. Front Microbiol 2023; 14:1129259. [PMID: 37275143 PMCID: PMC10235546 DOI: 10.3389/fmicb.2023.1129259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/08/2023] [Indexed: 06/07/2023] Open
Abstract
Orchids are significant ornamental plants whose viral infection results in substantial economic damage. Cymbidium mosaic virus (CymMV), Odontoglossum ringspot virus (ORSV), and Cymbidium ringspot virus (CymRSV) represent three important and prevalent orchid viruses. The detection system proposed in this study uses a triplex TaqMan quantitative real-time PCR assay to identify CymMV, ORSV, and CymRSV in a simultaneous manner. We designed specific primers and probes for CymMV, ORSV, and CymRSV, with amplified sequences of 156 bp, 148 bp, and 145 bp, respectively. The minimum detection limit of the triplex qRT-PCR assay for CymMV and CymRSV was 1 copy/assay, and the minimum detection limit was 10 copies/assay for ORSV. The minimum stable detection limits for CymMV, ORSV, and CymRSV were 10, 102, and 102 copies/assay, respectively. Therefore, this system exhibited higher sensitivity (approximately 10 to 104-fold) than RT-PCR. The intra-and interassay CVs of Cq values are less than 0.55 and 0.95%, respectively, indicating that the triplex assay is highly reliable and accurate. In addition, 66 samples from five different orchid genera were analyzed using the established assay and gene chip. The detection results demonstrated that the triplex probe qRT-PCR demonstrated higher sensitivity than the gene chip, indicating that the triplex real-time PCR assay could be used for the detection of field samples. Our findings suggest that the triplex real-time RT-PCR detection system represents a rapid, simple, and accurate tool for detecting CymMV, ORSV, and CymRSV on orchids.
Collapse
Affiliation(s)
- Aiqing Sun
- Flower Research Institute, Yunnan Agriculture Academy of Science Kunming, Kunming, Yunnan, China
- Yunnan University, Kunming, Yunnan, China
| | - Lihua Wang
- Flower Research Institute, Yunnan Agriculture Academy of Science Kunming, Kunming, Yunnan, China
| | - Yiping Zhang
- Flower Research Institute, Yunnan Agriculture Academy of Science Kunming, Kunming, Yunnan, China
| | - Xiumei Yang
- Flower Research Institute, Yunnan Agriculture Academy of Science Kunming, Kunming, Yunnan, China
| | - Yi Wei
- Yunnan University, Kunming, Yunnan, China
| | - Dong Yang
- Yunnan University, Kunming, Yunnan, China
| | - Wenhan Li
- Yunnan University, Kunming, Yunnan, China
| | - Xuewei Wu
- Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
6
|
Ovcharenko OO, Rudas VA. Modern Approaches to Genetic Engineering in the Orchidaceae Family. CYTOL GENET+ 2023. [DOI: 10.3103/s0095452723020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Tsai CF, Huang CH, Wu FH, Lin CH, Lee CH, Yu SS, Chan YK, Jan FJ. Intelligent image analysis recognizes important orchid viral diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:1051348. [PMID: 36531380 PMCID: PMC9755359 DOI: 10.3389/fpls.2022.1051348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Phalaenopsis orchids are one of the most important exporting commodities for Taiwan. Most orchids are planted and grown in greenhouses. Early detection of orchid diseases is crucially valuable to orchid farmers during orchid cultivation. At present, orchid viral diseases are generally identified with manual observation and the judgment of the grower's experience. The most commonly used assays for virus identification are nucleic acid amplification and serology. However, it is neither time nor cost efficient. Therefore, this study aimed to create a system for automatically identifying the common viral diseases in orchids using the orchid image. Our methods include the following steps: the image preprocessing by color space transformation and gamma correction, detection of leaves by a U-net model, removal of non-leaf fragment areas by connected component labeling, feature acquisition of leaf texture, and disease identification by the two-stage model with the integration of a random forest model and an inception network (deep learning) model. Thereby, the proposed system achieved the excellent accuracy of 0.9707 and 0.9180 for the image segmentation of orchid leaves and disease identification, respectively. Furthermore, this system outperformed the naked-eye identification for the easily misidentified categories [cymbidium mosaic virus (CymMV) and odontoglossum ringspot virus (ORSV)] with the accuracy of 0.842 using two-stage model and 0.667 by naked-eye identification. This system would benefit the orchid disease recognition for Phalaenopsis cultivation.
Collapse
Affiliation(s)
- Cheng-Feng Tsai
- Department of Management Information Systems, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Hung Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Fu-Hsing Wu
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chuen-Horng Lin
- Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Chia-Hwa Lee
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taipei, Taiwan
| | - Shyr-Shen Yu
- Department of Computer Science and Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Yung-Kuan Chan
- Department of Management Information Systems, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taipei, Taiwan
| |
Collapse
|
8
|
Yang J, Xiong C, Li S, Zhou C, Li L, Xue Q, Liu W, Niu Z, Ding X. Evolution patterns of NBS genes in the genus Dendrobium and NBS-LRR gene expression in D. officinale by salicylic acid treatment. BMC PLANT BIOLOGY 2022; 22:529. [PMID: 36376794 PMCID: PMC9661794 DOI: 10.1186/s12870-022-03904-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.
Collapse
Affiliation(s)
- Jiapeng Yang
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Caijun Xiong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Siyuan Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Cheng Zhou
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Lingli Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobiums, Nanjing, 210023, China.
| |
Collapse
|
9
|
Ahmad S, Chen G, Huang J, Yang K, Hao Y, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Beauty and the pathogens: A leaf-less control presents a better image of Cymbidium orchids defense strategy. FRONTIERS IN PLANT SCIENCE 2022; 13:1001427. [PMID: 36176684 PMCID: PMC9513425 DOI: 10.3389/fpls.2022.1001427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Biological control is a safe way of combating plant diseases using the living organisms. For the precise use of microbial biological control agents, the genetic information on the hypersensitive response (HR), and defense-related gene induction pathways of plants are necessary. Orchids are the most prominent stakeholders of floriculture industry, and owing to their long-awaited flowering pattern, disease control is imperative to allow healthy vegetative growth that spans more than 2 years in most of the orchids. We observed leaf-less flowering in three orchid species (Cymbidium ensifolium, C. goeringii and C. sinense). Using these materials as reference, we performed transcriptome profiling for healthy leaves from non-infected plants to identify genes specifically involved in plant-pathogen interaction pathway. For this pathway, a total of 253 differentially expressed genes (DEGs) were identified in C. ensifolium, 189 DEGs were identified in C. goeringii and 119 DEGs were found in C. sinense. These DEGs were mainly related to bacterial secretion systems, FLS2, CNGCs and EFR, regulating HR, stomatal closure and defense-related gene induction. FLS2 (LRR receptor-like serine/threonine kinase) contained the highest number of DEGs among three orchid species, followed by calmodulin. Highly upregulated gene sets were found in C. sinense as compared to other species. The great deal of DEGs, mainly the FLS2 and EFR families, related to defense and immunity responses can effectively direct the future of biological control of diseases for orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Yang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Hao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
Yusop MSM, Mohamed-Hussein ZA, Ramzi AB, Bunawan H. Cymbidium Mosaic Virus Infecting Orchids: What, How, and What Next? IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e3020. [PMID: 35891960 PMCID: PMC9284244 DOI: 10.30498/ijb.2021.278382.3020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Context Cymbidium mosaic virus (CymMV) is one of the most devastating viruses causing losses in the orchid industry, affecting economies worth millions of US dollars. CymMV significantly affects the orchid population and could be controlled through an integrated management strategy consisting of virus detection, good sanitation care of gardeners and their tools, and maintaining virus-free explants. Evidence acquisition This review was written based on research publications relevant to the CymMV infection in orchids. The literature cited were obtained from online literature databases such as web of Science, Scopus, and Google Scholar. The searched term used was "Cymbidium mosaic virus". Related publications to the initial search were also examined. Results & Conclusions This review describes the threat of CymMV to the orchid population by examining its history, genome organization, symptoms on individual orchids, detection, and management. Current research has been focusing on the prospect of transgenic orchids with viral resistance. This review also highlights the potential role of the symbiotic relationship between orchids and arbuscular mycorrhiza fungi that could be useful to improve the protection of orchids against virus infection. Overall, this review provides information on how CymMV infection impacts the orchid population.
Collapse
Affiliation(s)
- Mohd Shakir Mohamad Yusop
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Klepikova AV, Kasianov AS, Ezhova MA, Penin AA, Logacheva MD. Transcriptome atlas of Phalaenopsis equestris. PeerJ 2021; 9:e12600. [PMID: 34966594 PMCID: PMC8667740 DOI: 10.7717/peerj.12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 11/15/2021] [Indexed: 11/27/2022] Open
Abstract
The vast diversity of Orchidaceae together with sophisticated adaptations to pollinators and other unique features make this family an attractive model for evolutionary and functional studies. The sequenced genome of Phalaenopsis equestris facilitates Orchidaceae research. Here, we present an RNA-seq-based transcriptome map of P. equestris that covers 19 organs of the plant, including leaves, roots, floral organs and the shoot apical meristem. We demonstrated the high quality of the data and showed the similarity of the P. equestris transcriptome map with the gene expression atlases of other plants. The transcriptome map can be easily accessed through our database Transcriptome Variation Analysis (TraVA) for visualizing gene expression profiles. As an example of the application, we analyzed the expression of Phalaenopsis “orphan” genes–those that do not have recognizable similarity with the genes of other plants. We found that approximately half of these genes were not expressed; the ones that were expressed were predominantly expressed in reproductive structures.
Collapse
Affiliation(s)
- Anna V Klepikova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Artem S Kasianov
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia
| | - Margarita A Ezhova
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Aleksey A Penin
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Maria D Logacheva
- Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Li S, Wu ZG, Zhou Y, Dong ZF, Fei X, Zhou CY, Li SF. Changes in metabolism modulate induced by viroid infection in the orchid Dendrobium officinale. Virus Res 2021; 308:198626. [PMID: 34780884 DOI: 10.1016/j.virusres.2021.198626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Dendrobium officinale is an important traditional Chinese medicinal herb, and the stem tissue is the main medicinal that is harvested from D. officinale. Recently, the first viroid was identified from D. officinale in China, and it has been named Dendrobium viroid (DVd). Whether DVd interferes with metabolic pathways in dendrobium plants and affects the medicinal value of the host is unknown. In this study, metabolomics data from stem tissues supported by transcriptome studies were used to investigate how metabolism modulate of D. officinale is altered by DVd infection. Our results show that metabolism of D. officinale is reprogrammed in many ways during DVd infection, and this is reflected by significant changes in the levels of flavonoids, alkaloids, and phenolic acids. Furthermore, we found that DVd infection significantly decreased the accumulation of flavonoids and alkaloid metabolites in infected stems, and the decreases in these metabolites appears to affect the medicinal components of the infected plants, weakening the host antiviral immune response as well. Conversely, phenolic acids occupy a larger proportion of the up-regulated metabolites from DVd infection in comparison with the mock-inoculated control, and the increase in the total phenolic acids may reflect the activation of the pathogen defense response in D. officinale. Taken together, our results provide an interesting overview and give a better understanding of the relationship between metabolism and DVd infection in the orchid D. officinale.
Collapse
Affiliation(s)
- Shuai Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400700, China
| | - Zhi-Gang Wu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ying Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhen-Fei Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xuan Fei
- School of Pharmacy, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chang-Yong Zhou
- Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400700, China
| | - Shi-Fang Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
13
|
Identification and Characterization of NPR1 and PR1 Homologs in Cymbidium orchids in Response to Multiple Hormones, Salinity and Viral Stresses. Int J Mol Sci 2020; 21:ijms21061977. [PMID: 32183174 PMCID: PMC7139473 DOI: 10.3390/ijms21061977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
The plant nonexpressor of pathogenesis-related 1 (NPR1) and pathogenesis-associated 1 (PR1) genes play fundamental roles in plant immunity response, as well as abiotic-stress tolerance. Nevertheless, comprehensive identification and characterization of NPR1 and PR1 homologs has not been conducted to date in Cymbidium orchids, a valuable industrial crop cultivated as ornamental and medicinal plants worldwide. Herein, three NPR1-like (referred to as CsNPR1-1, CsNPR1-2, and CsNPR1-3) and two PR1-like (CsPR1-1 and CsPR1-2) genes were genome-widely identified from Cymbidium orchids. Sequence and phylogenetic analysis revealed that CsNPR1-1 and CsNPR1-2 were grouped closest to NPR1 homologs in Zea mays (sharing 81.98% identity) and Phalaenopsis (64.14%), while CsNPR1-3 was classified into a distinct group with Oryza sativaNPR 3 (57.72%). CsPR1-1 and CsPR1-2 were both grouped closest to Phalaenopsis PR1 and other monocot plants. Expression profiling showed that CsNPR1 and CsPR1 were highly expressed in stem/pseudobulb and/or flower. Salicylic acid (SA) and hydrogen peroxide (H2O2) significantly up-regulated expressions of CsNPR1-2, CsPR1-1 and CsPR1-2, while CsNPR1-3, CsPR1-1 and CsPR1-2 were significantly up-regulated by abscisic acid (ABA) or salinity (NaCl) stress. In vitro transcripts of entire Cymbidium mosaic virus (CymMV) genomic RNA were successfully transfected into Cymbidium protoplasts, and the CymMV infection up-regulated the expression of CsNPR1-2, CsPR1-1 and CsPR1-2. Additionally, these genes were transiently expressed in Cymbidium protoplasts for subcellular localization analysis, and the presence of SA led to the nuclear translocation of the CsNPR1-2 protein, and the transient expression of CsNPR1-2 greatly enhanced the expression of CsPR1-1 and CsPR1-2. Collectively, the CsNPR1-2-mediated signaling pathway is SA-dependent, and confers to the defense against CymMV infection in Cymbidium orchids.
Collapse
|
14
|
Lan HH, Wang CM, Chen SS, Zheng JY. siRNAs Derived from Cymbidium Mosaic Virus and Odontoglossum Ringspot Virus Down-modulated the Expression Levels of Endogenous Genes in Phalaenopsis equestris. THE PLANT PATHOLOGY JOURNAL 2019; 35:508-520. [PMID: 31632225 PMCID: PMC6788414 DOI: 10.5423/ppj.oa.03.2019.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/10/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Interplay between Cymbidium mosaic virus (CymMV)/Odontoglossum ringspot virus (ORSV) and its host plant Phalaenopsis equestris remain largely unknown, which led to deficiency of effective measures to control disease of P. equestris caused by infecting viruses. In this study, for the first time, we characterized viral small interfering RNAs (vsiRNAs) profiles in P. equestris co-infected with CymMV and ORSV through small RNA sequencing technology. CymMV and ORSV small interfering RNAs (siRNAs) demonstrated several general and specific/new characteristics. vsiRNAs, with A/U bias at the first nucleotide, were predominantly 21-nt long and they were derived predominantly (90%) from viral positive-strand RNA. 21-nt siRNA duplexes with 0-nt overhangs were the most abundant 21-nt duplexes, followed by 2-nt overhangs and then 1-nt overhangs 21-nt duplexes in infected P. equestris. Continuous but heterogeneous distribution and secondary structures prediction implied that vsiRNAs originate predominantly by direct Dicer-like enzymes cleavage of imperfect duplexes in the most folded regions of the positive strand of both viruses RNA molecular. Furthermore, we totally predicted 54 target genes by vsiRNAs with psRNATarget server, including disease/stress response-related genes, RNA interference core components, cytoskeleton-related genes, photosynthesis or energy supply related genes. Gene Ontology classification showed that a majority of the predicted targets were related to cellular components and cellular processes and performed a certain function. All target genes were down-regulated with different degree by vsiRNAs as shown by real-time reverse transcription polymerase chain reaction. Taken together, CymMV and ORSV siRNAs played important roles in interplay with P. equestris by down modulating the expression levels of endogenous genes in host plant.
Collapse
Affiliation(s)
- Han-hong Lan
- Corresponding author: Phone) +86-596-2528735, FAX) +86-591-2528735, E-mail)
| | | | | | | |
Collapse
|
15
|
Silva RN, Monteiro VN, Steindorff AS, Gomes EV, Noronha EF, Ulhoa CJ. Trichoderma/pathogen/plant interaction in pre-harvest food security. Fungal Biol 2019; 123:565-583. [PMID: 31345411 DOI: 10.1016/j.funbio.2019.06.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/17/2023]
Abstract
Large losses before crop harvesting are caused by plant pathogens, such as viruses, bacteria, oomycetes, fungi, and nematodes. Among these, fungi are the major cause of losses in agriculture worldwide. Plant pathogens are still controlled through application of agrochemicals, causing human disease and impacting environmental and food security. Biological control provides a safe alternative for the control of fungal plant pathogens, because of the ability of biocontrol agents to establish in the ecosystem. Some Trichoderma spp. are considered potential agents in the control of fungal plant diseases. They can interact directly with roots, increasing plant growth, resistance to diseases, and tolerance to abiotic stress. Furthermore, Trichoderma can directly kill fungal plant pathogens by antibiosis, as well as via mycoparasitism strategies. In this review, we will discuss the interactions between Trichoderma/fungal pathogens/plants during the pre-harvest of crops. In addition, we will highlight how these interactions can influence crop production and food security. Finally, we will describe the future of crop production using antimicrobial peptides, plants carrying pathogen-derived resistance, and plantibodies.
Collapse
Affiliation(s)
- Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Valdirene Neves Monteiro
- Campus of Exact Sciences and Technologies, Campus Henrique Santillo, Anapolis, Goiás State, Brazil
| | - Andrei Stecca Steindorff
- U.S. Department of Energy (DOE) Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Eriston Vieira Gomes
- Department of Biofunctional, Center of Higher Education Morgana Potrich Eireli, Morgana Potrich College, Mineiros, Goiás, Brazil
| | | | - Cirano J Ulhoa
- Department of Biochemistry and Cellular Biology, Biological Sciences Institute, Campus Samambaia, Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| |
Collapse
|
16
|
Yoshida T, Shiraishi T, Hagiwara-Komoda Y, Komatsu K, Maejima K, Okano Y, Fujimoto Y, Yusa A, Yamaji Y, Namba S. The Plant Noncanonical Antiviral Resistance Protein JAX1 Inhibits Potexviral Replication by Targeting the Viral RNA-Dependent RNA Polymerase. J Virol 2019; 93:e01506-18. [PMID: 30429349 PMCID: PMC6340027 DOI: 10.1128/jvi.01506-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/08/2018] [Indexed: 11/20/2022] Open
Abstract
Understanding the innate immune mechanisms of plants is necessary for the breeding of disease-resistant lines. Previously, we identified the antiviral resistance gene JAX1 from Arabidopsis thaliana, which inhibits infection by potexviruses. JAX1 encodes a unique jacalin-type lectin protein. In this study, we analyzed the molecular mechanisms of JAX1-mediated resistance. JAX1 restricted the multiplication of a potexviral replicon lacking movement-associated proteins, suggesting inhibition of viral replication. Therefore, we developed an in vitro potato virus X (PVX) translation/replication system using vacuole- and nucleus-free lysates from tobacco protoplasts, and we revealed that JAX1 inhibits viral RNA synthesis but not the translation of the viral RNA-dependent RNA polymerase (RdRp). JAX1 did not affect the replication of a resistance-breaking mutant of PVX. Blue native polyacrylamide gel electrophoresis of fractions separated by sucrose gradient sedimentation showed that PVX RdRp constituted the high-molecular-weight complex that seems to be crucial for viral replication. JAX1 was detected in this complex of the wild-type PVX replicon but not in that of the resistance-breaking mutant. In addition, JAX1 interacted with the RdRp of the wild-type virus but not with that of a virus with a point mutation at the resistance-breaking residue. These results suggest that JAX1 targets RdRp to inhibit potexviral replication.IMPORTANCE Resistance genes play a crucial role in plant antiviral innate immunity. The roles of conventional nucleotide-binding leucine-rich repeat (NLR) proteins and the associated defense pathways have long been studied. In contrast, recently discovered resistance genes that do not encode NLR proteins (non-NLR resistance genes) have not been investigated extensively. Here we report that the non-NLR resistance factor JAX1, a unique jacalin-type lectin protein, inhibits de novo potexviral RNA synthesis by targeting the huge complex of viral replicase. This is unlike other known antiviral resistance mechanisms. Molecular elucidation of the target in lectin-type protein-mediated antiviral immunity will enhance our understanding of the non-NLR-mediated plant resistance system.
Collapse
Affiliation(s)
- Tetsuya Yoshida
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takuya Shiraishi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuka Hagiwara-Komoda
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken Komatsu
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukari Okano
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Fujimoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Akira Yusa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Hashimoto M, Neriya Y, Keima T, Iwabuchi N, Koinuma H, Hagiwara-Komoda Y, Ishikawa K, Himeno M, Maejima K, Yamaji Y, Namba S. EXA1, a GYF domain protein, is responsible for loss-of-susceptibility to plantago asiatica mosaic virus in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:120-131. [PMID: 27402258 DOI: 10.1111/tpj.13265] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
One of the plant host resistance machineries to viruses is attributed to recessive alleles of genes encoding critical host factors for virus infection. This type of resistance, also referred to as recessive resistance, is useful for revealing plant-virus interactions and for breeding antivirus resistance in crop plants. Therefore, it is important to identify a novel host factor responsible for robust recessive resistance to plant viruses. Here, we identified a mutant from an ethylmethane sulfonate (EMS)-mutagenized Arabidopsis population which confers resistance to plantago asiatica mosaic virus (PlAMV, genus Potexvirus). Based on map-based cloning and single nucleotide polymorphism analysis, we identified a premature termination codon in a functionally unknown gene containing a GYF domain, which binds to proline-rich sequences in eukaryotes. Complementation analyses and robust resistance to PlAMV in a T-DNA mutant demonstrated that this gene, named Essential for poteXvirus Accumulation 1 (EXA1), is indispensable for PlAMV infection. EXA1 contains a GYF domain and a conserved motif for interaction with eukaryotic translation initiation factor 4E (eIF4E), and is highly conserved among monocot and dicot species. Analysis using qRT-PCR and immunoblotting revealed that EXA1 was expressed in all tissues, and was not transcriptionally responsive to PlAMV infection in Arabidopsis plants. Moreover, accumulation of PlAMV and a PlAMV-derived replicon was drastically diminished in the initially infected cells by the EXA1 deficiency. Accumulation of two other potexviruses also decreased in exa1-1 mutant plants. Our results provided a functional annotation to GYF domain-containing proteins by revealing the function of the highly conserved EXA1 gene in plant-virus interactions.
Collapse
Affiliation(s)
- Masayoshi Hashimoto
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yutaro Neriya
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takuya Keima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Nozomu Iwabuchi
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroaki Koinuma
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yuka Hagiwara-Komoda
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuya Ishikawa
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Misako Himeno
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kensaku Maejima
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuyuki Yamaji
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Shigetou Namba
- Laboratory of Plant Pathology, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
18
|
Jo Y, Choi H, Kim SM, Kim SL, Lee BC, Cho WK. Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus. BMC Genomics 2016; 17:579. [PMID: 27507588 PMCID: PMC4977635 DOI: 10.1186/s12864-016-2994-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 02/08/2023] Open
Abstract
Background Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. Results We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Conclusions Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2994-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yeonhwa Jo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Sun-Lim Kim
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Bong Choon Lee
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,The Taejin Genome Institute, Gadam-gil 61, Hoeongseong, 25239, Republic of Korea.
| |
Collapse
|
19
|
Simultaneous detection of Cymbidium mosaic virus and Odontoglossum ringspot virus in orchids using multiplex RT-PCR. Virus Genes 2015; 51:417-22. [PMID: 26542829 DOI: 10.1007/s11262-015-1258-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
A system for simultaneous detection of two orchid-infecting viruses was developed and applied to several orchid species. The detection system involved multiplex reverse transcription-polymerase chain reaction (RT-PCR) and could simultaneously identify Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) from the orchid species studied. Multiplex RT-PCR was conducted using two virus-specific primer pairs and an internal control pair of primers to amplify the CymMV and ORSV coat protein regions, and orchid 18S rDNA, respectively. For optimization of multiplex RT-PCR conditions, serial dilutions of total RNA and cDNA were performed and the detection limit of the system was evaluated. The optimized multiplex detection system for CymMV and ORSV was applied to various orchid species, including several cultivars of Doritaenopsis, Cymbidium, Dendrobium, and Phalaenopsis to test the efficacy of this method. Our results indicate that the multiplex RT-PCR detection system will be a rapid, simple, and precise diagnosis tool in a range of orchid species.
Collapse
|
20
|
Faoro F, Gozzo F. Is modulating virus virulence by induced systemic resistance realistic? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 234:1-13. [PMID: 25804804 DOI: 10.1016/j.plantsci.2015.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/17/2015] [Accepted: 01/20/2015] [Indexed: 06/04/2023]
Abstract
Induction of plant resistance, either achieved by chemicals (systemic acquired resistance, SAR) or by rhizobacteria (induced systemic resistance, ISR) is a possible and/or complementary alternative to manage virus infections in crops. SAR mechanisms operating against viruses are diverse, depending on the pathosystem, and may inhibit virus replication as well as cell-to-cell and long-distance movement. Inhibition is often mediated by salicylic acid with the involvement of alternative oxidase and reactive oxygen species. However, salicylate may also stimulate a separate downstream pathway, leading to the induction of an additional mechanism, based on RNA-dependent RNA polymerase 1-mediated RNA silencing. Thus, SAR and RNA silencing would closely cooperate in the defence against virus infection. Despite tremendous recent progress in the knowledge of SAR mechanisms, only a few compounds, including benzothiadiazole and chitosan have been shown to reduce the severity of systemic virus disease in controlled environment and, more modestly, in open field. Finally, ISR induction, has proved to be a promising strategy to control virus disease, particularly by seed bacterization with a mixture of plant growth-promoting rhizobacteria. However, the use of any of these treatments should be integrated with cultivation practices that reduce vector pressure by the use of insecticides, or by Bt crops.
Collapse
Affiliation(s)
- Franco Faoro
- Department of Agricultural and Environmental Sciences, University of Milan, Via Celoria 2, 20133 Milano, Italy; CNR, Institute for Sustainable Plant Protection, Strada delle Cacce 73, 10135 Turin, Italy.
| | - Franco Gozzo
- Department of Food, Environmental and Nutritional Sciences, Section of Chemistry and Biomolecular Sciences, University of Milano, Via Celoria 2, 20133 Milano, Italy
| |
Collapse
|