1
|
Sampath K, Shilu Z, Yan H, Tripathi YK, Ramachandran S. Assessment of interspecies and intergeneric gene flow for the GM Jatropha curcas event X8#34 with high oleic acid content in seed. GM CROPS & FOOD 2025; 16:235-251. [PMID: 40042895 PMCID: PMC11901391 DOI: 10.1080/21645698.2025.2470484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025]
Abstract
GM Jatropha X8#34 was placed for transgene flow assessment in the open field trial on Semakau Island, Singapore, between 2015 and 2017 to evaluate the potential gene flow to its non-GM counterparts and related species. The trial featured the GM Jatropha event X8#34, which is characterized by high oleic acid content, marker-free, and a homozygous transgene. The study focused on cross-pollination from the GM event to non-GM plants, analyzing factors such as distance, wind and insects mediated transfer, using event-specific multiplex PCR analysis of F1 seeds. Pollen dispersal by wind was also assessed to understand the extent of distance traveled and pollen load. Our results showed the maximum observed transgene flow was 4.5%, occurring in non-GM plants located 2 meters in third quarter of 2016, average for four quarters is 2.57%. However, as the distance increased, the transgene flow decreased significantly, at 4 meters distance observed 0.8% in fourth quarter and an average 0.25%. Transgene flow was not observed beyond 4 meters. These results are consistent with the exponential decrease in Jatropha pollen dispersed and captured by traps over distance, with no pollen detected beyond 6 meters through wind dispersal. Furthermore, no intrageneric transgene flow was detected from GM Jatropha to Jatropha integerrima, nor intergeneric transgene flow to related weedy species such as Euphorbia hirta, Phyllanthus niruri, or Ricinus communis (Castor bean), under open-field conditions (2015-2017). The findings suggest that Jatropha pollination is primarily facilitated by short-distance foraging insects, or overlapping branches between adjacent trees enhances cross-pollination rate due to denser floral display, and attracts more pollinators. An adequate separation distance (>8 meters) is sufficient to prevent unintended transgene flow from GM Jatropha to non-GM Jatropha in Singapore ecological conditions. Additionally, transgene flow between GM Jatropha and related horticultural shrub (Jatropha integerrima) or intergeneric relatives like E. hirta, P. niruri, and castor bean is unlikely under open field conditions.
Collapse
Affiliation(s)
- Kasthurirengan Sampath
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| | - Zhang Shilu
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| | - Hong Yan
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Yogendra Kr. Tripathi
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| | - Srinivasan Ramachandran
- Temasek Lifesciences Laboratory, 1 Research Link, National University of Singapore, Singapore
- JOil (S) Pte Ltd, 1 Research Link, National University of Singapore, Singapore
| |
Collapse
|
2
|
Wang X, Sheng Z, Huang H, Tang Z, Wei W, Stewart CN, Liu Y. Inheritance and ecological effects of exogenous genes from transgenic Brassica napus to Brassica juncea hybrids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112245. [PMID: 39236877 DOI: 10.1016/j.plantsci.2024.112245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Zhilu Sheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Hai Huang
- State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Zhixi Tang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | | | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China.
| |
Collapse
|
3
|
Guan ZJ, Zheng M, Tang ZX, Wei W, Stewart CN. Proteomic Analysis of Bt cry1Ac Transgenic Oilseed Rape ( Brassica napus L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:2319. [PMID: 37375944 DOI: 10.3390/plants12122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Oilseed rape (Brassica napus L.) is an important cash crop, but transgenic oilseed rape has not been grown on a commercial scale in China. It is necessary to analyze the characteristics of transgenic oilseed rape before commercial cultivation. In our study, differential expression of total protein from the leaves in two transgenic lines of oilseed rape expressing foreign Bt Cry1Ac insecticidal toxin and their non-transgenic parent plant was analyzed using a proteomic approach. Only shared changes in both of the two transgenic lines were calculated. Fourteen differential protein spots were analyzed and identified, namely, eleven upregulated expressed protein spots and three downregulated protein spots. These proteins are involved in photosynthesis, transporter function, metabolism, protein synthesis, and cell growth and differentiation. The changes of these protein spots in transgenic oilseed rape may be attributable to the insertion of the foreign transgenes. However, the transgenic manipulation might not necessarily cause significant change in proteomes of the oilseed rape.
Collapse
Affiliation(s)
- Zheng-Jun Guan
- Department of Life Sciences, Yuncheng University, Yuncheng 044000, China
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Min Zheng
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Department of Hotel Management, Linyi Technician Institute, Linyi 276005, China
| | - Zhi-Xi Tang
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Climate Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - C Neal Stewart
- Department of Plant Sciences and Center for Agricultural Synthetic Biology, University of Tennessee, 2505 EJ Chapman Drive, Knoxville, TN 37996-4561, USA
| |
Collapse
|
4
|
Shao Z, Huang L, Zhang Y, Qiang S, Song X. Transgene Was Silenced in Hybrids between Transgenic Herbicide-Resistant Crops and Their Wild Relatives Utilizing Alien Chromosomes. PLANTS (BASEL, SWITZERLAND) 2022; 11:3187. [PMID: 36501227 PMCID: PMC9741405 DOI: 10.3390/plants11233187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The commercialization of transgenic herbicide-resistant (HR) crops may cause gene flow risk. If a transgene in progenies of transgenic crops and wild relatives is silencing, these progenies should be killed by the target herbicide, thus, the gene flow risk could be decreased. We obtained the progenies of backcross generations between wild Brassca juncea (AABB, 2n = 36) and glufosinate-resistant transgenic Brassica napus (AACC, 2n = 38, PAT gene located on the C-chromosome). They carried the HR gene but did not express it normally, i.e., gene silencing occurred. Meanwhile, six to nine methylation sites were found on the promoter of PAT in transgene-silencing progenies, while no methylation sites occurred on that in transgene-expressing progenies. In addition, transgene expressing and silencing backcross progenies showed similar fitness with wild Brassica juncea. In conclusion, we elaborate on the occurrence of transgene-silencing event in backcross progenies between transgenic crop utilizing alien chromosomes and their wild relatives, and the DNA methylation of the transgene promoter was an important factor leading to gene silencing. The insertion site of the transgene could be considered a strategy to reduce the ecological risk of transgenic crops, and applied to cultivate lower gene flow HR crops in the future.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (L.H.); (Y.Z.); (S.Q.)
| |
Collapse
|
5
|
Vis-NIR Spectroscopy and Machine Learning Methods for the Discrimination of Transgenic Brassica napus L. and Their Hybrids with B. juncea. Processes (Basel) 2022. [DOI: 10.3390/pr10020240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The rapid advancement of genetically modified (GM) technology over the years has raised concerns about the safety of GM crops and foods for human health and the environment. Gene flow from GM crops may be a threat to the environment. Therefore, it is critical to develop reliable, rapid, and low-cost technologies for detecting and monitoring the presence of GM crops and crop products. Here, we used visible near-infrared (Vis-NIR) spectroscopy to distinguish between GM and non-GM Brassica napus, B. juncea, and F1 hybrids (B. juncea X GM B. napus). The Vis-NIR spectra were preprocessed with different preprocessing methods, namely normalization, standard normal variate, and Savitzky–Golay. Both raw and preprocessed spectra were used in combination with eight different chemometric methods for the effective discrimination of GM and non-GM plants. The standard normal variate and support vector machine combination was determined to be the most accurate model in the discrimination of GM, non-GM, and hybrid plants among the many combinations (99.4%). The use of deep learning in combination with Savitzky–Golay resulted in 99.1% classification accuracy. According to the findings, it is concluded that handheld Vis-NIR spectroscopy combined with chemometric analyses could be used to distinguish between GM and non-GM B. napus, B. juncea, and F1 hybrids.
Collapse
|
6
|
Song X, Yan J, Zhang Y, Li H, Zheng A, Zhang Q, Wang J, Bian Q, Shao Z, Wang Y, Qiang S. Gene Flow Risks From Transgenic Herbicide-Tolerant Crops to Their Wild Relatives Can Be Mitigated by Utilizing Alien Chromosomes. FRONTIERS IN PLANT SCIENCE 2021; 12:670209. [PMID: 34177986 PMCID: PMC8231706 DOI: 10.3389/fpls.2021.670209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Integration of a transgene into chromosomes of the C-genomes of oilseed rape (AACC, 2n = 38) may affect their gene flow to wild relatives, particularly Brassica juncea (AABB, 2n = 36). However, no empiric evidence exists in favor of the C-genome as a safer candidate for transformation. In the presence of herbicide selections, the first- to fourth-generation progenies of a B. juncea × glyphosate-tolerant oilseed rape cross [EPSPS gene insertion in the A-genome (Roundup Ready, event RT73)] showed more fitness than a B. juncea × glufosinate-tolerant oilseed rape cross [PAT gene insertion in the C-genome (Liberty Link, event HCN28)]. Karyotyping and fluorescence in situ hybridization-bacterial artificial chromosome (BAC-FISH) analyses showed that crossed progenies from the cultivars with transgenes located on either A- or C- chromosome were mixoploids, and their genomes converged over four generations to 2n = 36 (AABB) and 2n = 37 (AABB + C), respectively. Chromosome pairing of pollen mother cells was more irregular in the progenies from cultivar whose transgene located on C- than on A-chromosome, and the latter lost their C-genome-specific markers faster. Thus, transgene insertion into the different genomes of B. napus affects introgression under herbicide selection. This suggests that gene flow from transgenic crops to wild relatives could be mitigated by breeding transgenic allopolyploid crops, where the transgene is inserted into an alien chromosome.
Collapse
|
7
|
Liu Y, Neal Stewart C, Li J, Wei W. One species to another: sympatric Bt transgene gene flow from Brassica napus alters the reproductive strategy of wild relative Brassica juncea under herbivore treatment. ANNALS OF BOTANY 2018; 122:617-625. [PMID: 29878055 PMCID: PMC6153478 DOI: 10.1093/aob/mcy096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Since pollen flow or seed dispersal can contribute to transgene persistence in the environment, the sympatric presence of transgenic crops with their wild relatives is an ecological concern. In this study, we tested the hypothesis that proximate growth of a herbivore-resistant Bt crop and wild relatives coupled with the presence of herbivores can increase relative frequency of crop-to-wild transgene flow persistence outside of cultivation. METHODS We conducted a field experiment using insect enclosures with and without herbivores with cultivated Bt-transgenic Brassica napus (Bt OSR) and wild brown mustard (Brassica juncea) in pure and mixed stands. Low-density diamondback moth (Plutella xylostella) caterpillar infestation treatments were applied and transgene flow and reproductive organs were measured. KEY RESULTS Bt-transgenic B. napus produced more ovules and pollen than wild mustard, but the pollen to ovule (P/O) ratio in the two species was not significantly different. Low-level herbivory had no effects on fitness parameters of Bt OSR or wild brown mustard or on the transgene flow frequency. All progeny from wild brown mustard containing the Bt transgene came from mixed stands, with a gene flow frequency of 0.66 %. In mixed stands, wild brown mustard produced less pollen and more ovules than in pure stands of brown mustard. This indicates a decreased P/O ratio in a mixed population scenario. CONCLUSIONS Since a lower P/O ratio indicates a shift in sex allocation towards relatively greater female investment and a higher pollen transfer efficiency, the presence of transgenic plants in wild populations may further increase the potential transgene flow by altering reproductive allocation of wild species.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Sohn SI, Oh YJ, Lee KR, Ko HC, Cho HS, Lee YH, Chang A. Characteristics Analysis of F1 Hybrids between Genetically Modified Brassica napus and B. rapa. PLoS One 2016; 11:e0162103. [PMID: 27632286 PMCID: PMC5025156 DOI: 10.1371/journal.pone.0162103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 11/21/2022] Open
Abstract
A number of studies have been conducted on hybridization between transgenic Brassica napus and B. rapa or backcross of F1 hybrid to their parents. However, trait changes must be analyzed to evaluate hybrid sustainability in nature. In the present study, B. rapa and transgenic (BrAGL20) B. napus were hybridized to verify the early flowering phenomenon of F1 hybrids, and F1 hybrid traits were analyzed to predict their impact on sustainability. Flowering of F1 hybrid has been induced slightly later than that of the transgenic B. napus, but flowering was available in the greenhouse without low temperature treatment to young plant, similar to the transgenic B. napus. It is because the BrAGL20 gene has been transferred from transgenic B. napus to F1 hybrid. The size of F1 hybrid seeds was intermediate between those of B. rapa and transgenic B. napus, and ~40% of F1 pollen exhibited abnormal size and morphology. The form of the F1 stomata was also intermediate between that of B. rapa and transgenic B. napus, and the number of stomata was close to the parental mean. Among various fatty acids, the content of erucic acid exhibited the greatest change, owing to the polymorphism of parental FATTY ACID ELONGASE 1 alleles. Furthermore, F2 hybrids could not be obtained. However, BC1 progeny were obtained by hand pollination of B. rapa with F1 hybrid pollen, with an outcrossing rate of 50%.
Collapse
Affiliation(s)
- Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju, North Jeolla Province, 54874, Republic of Korea
| | - Young-Ju Oh
- Institute for Future Environmental Ecology Co., Ltd, 5, Palbok 1-gil, Deokjin-gu, Jeonju, North Jeolla Province, 54883, Republic of Korea
| | - Kyeong-Ryeol Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju, North Jeolla Province, 54874, Republic of Korea
| | - Ho-Cheol Ko
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju, North Jeolla Province, 54874, Republic of Korea
| | - Hyun-Suk Cho
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju, North Jeolla Province, 54874, Republic of Korea
| | - Yeon-Hee Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju, North Jeolla Province, 54874, Republic of Korea
| | - Ancheol Chang
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, 370 Nongsaengmyeong-ro, Wansan-gu, Jeonju, North Jeolla Province, 54874, Republic of Korea
| |
Collapse
|
9
|
Liu Y, Zhang YX, Song SQ, Li J, Neal Stewart C, Wei W, Zhao Y, Wang WQ. A proteomic analysis of seeds from Bt-transgenic Brassica napus and hybrids with wild B. juncea. Sci Rep 2015; 5:15480. [PMID: 26486652 PMCID: PMC4614387 DOI: 10.1038/srep15480] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/28/2015] [Indexed: 11/13/2022] Open
Abstract
Transgene insertions might have unintended side effects on the transgenic host, both crop and hybrids with wild relatives that harbor transgenes. We employed proteomic approaches to assess protein abundance changes in seeds from Bt-transgenic oilseed rape (Brassica napus) and its hybrids with wild mustard (B. juncea). A total of 24, 15 and 34 protein spots matching to 23, 13 and 31 unique genes were identified that changed at least 1.5 fold (p < 0.05, Student’s t-test) in abundance between transgenic (tBN) and non-transgenic (BN) oilseed rape, between hybrids of B. juncea (BJ) × tBN (BJtBN) and BJ × BN (BJBN) and between BJBN and BJ, respectively. Eight proteins had higher abundance in tBN than in BN. None of these proteins was toxic or nutritionally harmful to human health, which is not surprising since the seeds are not known to produce toxic proteins. Protein spots varying in abundance between BJtBN and BJBN seeds were the same or homologous to those in the respective parents. None of the differentially-accumulated proteins between BJtBN and BJBN were identical to those between tBN and BN. Results indicated that unintended effects resulted from transgene flow fell within the range of natural variability of hybridization and those found in the native host proteomes.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Ying-Xue Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475001, China
| | - Song-Quan Song
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, 2431 Joe Johnson Drive, Knoxville, TN 37996-4561, USA
| | - Wei Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yujie Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, China
| | - Wei-Qing Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
10
|
Hooftman DAP, Bullock JM, Morley K, Lamb C, Hodgson DJ, Bell P, Thomas J, Hails RS. Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats. ANNALS OF BOTANY 2015; 115:147-157. [PMID: 25452253 PMCID: PMC4284111 DOI: 10.1093/aob/mcu213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/26/2014] [Accepted: 09/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND AND AIMS Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species. METHODS Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species. KEY RESULTS The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus. CONCLUSIONS Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.
Collapse
Affiliation(s)
- Danny A P Hooftman
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - James M Bullock
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Kathryn Morley
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Caroline Lamb
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - David J Hodgson
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Philippa Bell
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Jane Thomas
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| | - Rosemary S Hails
- Centre for Ecology and Hydrology, Benson Lane, Wallingford OX10 8BB, UK, School of Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK and National Institute of Agricultural Botany, Huntingdon Rd, Cambridge CB3 0EL, UK
| |
Collapse
|