1
|
Mukuze C, Msiska UM, Badji A, Obua T, Kweyu SV, Nghituwamhata SN, Rono EC, Maphosa M, Kasule F, Tukamuhabwa P. Genome-wide association mapping of bruchid resistance loci in soybean. PLoS One 2025; 20:e0292481. [PMID: 39792861 PMCID: PMC11723639 DOI: 10.1371/journal.pone.0292481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/22/2024] [Indexed: 01/12/2025] Open
Abstract
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality. In this study, 6 multi-locus methods of the mrMLM model for genome-wide association study were used to dissect the genetic architecture of bruchid resistance on 4traits: percentage adult bruchid emergence (PBE), percentage weight loss (PWL), median development period (MDP), and Dobie susceptibility index (DSI) on 100 diverse soybean genotypes, genotyped with 14,469 single-nucleotide polymorphism (SNP) markers. Using the best linear unbiased predictors (BLUPs), 13 quantitative trait nucleotides (QTNs) were identified by the mrMLM model, of which rs16_14976250 was associated with more than 1 bruchid resistance traits. As a result, the identified QTNs linked with resistance traits can be employed in marker-assisted breeding for the accurate and rapid screening of soybean genotypes for resistance to bruchids. Moreover, a gene search on the Phytozome soybean reference genome identified 27 potential candidate genes located within a window of 478.45 kb upstream and downstream of the most reliable QTNs. These candidate genes exhibit molecular and biological functionalities associated with various soybean resistance mechanisms and, therefore, could be incorporated into the farmers' preferred soybean varieties that are susceptible to bruchids.
Collapse
Affiliation(s)
- Clever Mukuze
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Department of Crop Science and Post-Harvest Technology, Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - Ulemu M. Msiska
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
- Department of Agri-Sciences, Faculty of Environmental Sciences, Mzuzu University, Luwinga, Malawi
| | - Afang Badji
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Tonny Obua
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Sharon V. Kweyu
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Selma N. Nghituwamhata
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Evalyne C. Rono
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| | - Mcebisi Maphosa
- Department of Crop and Soil Science, Faculty of Agricultural Sciences, Lupane State University, Lupane, Zimbabwe
| | - Faizo Kasule
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute, Soroti, Uganda
| | - Phinehas Tukamuhabwa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
2
|
Łabuz J, Banaś AK, Zgłobicki P, Bażant A, Sztatelman O, Giza A, Lasok H, Prochwicz A, Kozłowska-Mroczek A, Jankowska U, Hermanowicz P. Phototropin2 3'UTR overlaps with the AT5G58150 gene encoding an inactive RLK kinase. BMC PLANT BIOLOGY 2024; 24:55. [PMID: 38238701 PMCID: PMC10795372 DOI: 10.1186/s12870-024-04732-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND This study examines the biological implications of an overlap between two sequences in the Arabidopsis genome, the 3'UTR of the PHOT2 gene and a putative AT5G58150 gene, encoded on the complementary strand. AT5G58150 is a probably inactive protein kinase that belongs to the transmembrane, leucine-rich repeat receptor-like kinase family. Phot2 is a membrane-bound UV/blue light photoreceptor kinase. Thus, both proteins share their cellular localization, on top of the proximity of their loci. RESULTS The extent of the overlap between 3'UTR regions of AT5G58150 and PHOT2 was found to be 66 bp, using RACE PCR. Both the at5g58150 T-DNA SALK_093781C (with insertion in the promoter region) and 35S::AT5G58150-GFP lines overexpress the AT5G58150 gene. A detailed analysis did not reveal any substantial impact of PHOT2 or AT5G58150 on their mutual expression levels in different light and osmotic stress conditions. AT5G58150 is a plasma membrane protein, with no apparent kinase activity, as tested on several potential substrates. It appears not to form homodimers and it does not interact with PHOT2. Lines that overexpress AT5G58150 exhibit a greater reduction in lateral root density due to salt and osmotic stress than wild-type plants, which suggests that AT5G58150 may participate in root elongation and formation of lateral roots. In line with this, mass spectrometry analysis identified proteins with ATPase activity, which are involved in proton transport and cell elongation, as putative interactors of AT5G58150. Membrane kinases, including other members of the LRR RLK family and BSK kinases (positive regulators of brassinosteroid signalling), can also act as partners for AT5G58150. CONCLUSIONS AT5G58150 is a membrane protein that does not exhibit measurable kinase activity, but is involved in signalling through interactions with other proteins. Based on the interactome and root architecture analysis, AT5G58150 may be involved in plant response to salt and osmotic stress and the formation of roots in Arabidopsis.
Collapse
Affiliation(s)
- Justyna Łabuz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland.
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Olga Sztatelman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Aleksandra Giza
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Hanna Lasok
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Aneta Prochwicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Anna Kozłowska-Mroczek
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| | - Paweł Hermanowicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Kraków, Poland
| |
Collapse
|
3
|
Mmbando GS. Challenges and prospects in using biotechnological interventions in O. glaberrima, an African cultivated rice. GM CROPS & FOOD 2022; 13:372-387. [DOI: 10.1080/21645698.2022.2149212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Gideon Sadikiel Mmbando
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma (Udom), Dodoma, Tanzania
| |
Collapse
|
4
|
Panibe JP, Wang L, Lee YC, Wang CS, Li WH. Identifying mutations in sd1, Pi54 and Pi-ta, and positively selected genes of TN1, the first semidwarf rice in Green Revolution. BOTANICAL STUDIES 2022; 63:9. [PMID: 35347474 PMCID: PMC8960516 DOI: 10.1186/s40529-022-00336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Taichung Native 1 (TN1) is the first semidwarf rice cultivar that initiated the Green Revolution. As TN1 is a direct descendant of the Dee-geo-woo-gen cultivar, the source of the sd1 semidwarf gene, the sd1 gene can be defined through TN1. Also, TN1 is susceptible to the blast disease and is described as being drought-tolerant. However, genes related to these characteristics of TN1 are unknown. Our aim was to identify and characterize TN1 genes related to these traits. RESULTS Aligning the sd1 of TN1 to Nipponbare sd1, we found a 382-bp deletion including a frameshift mutation. Sanger sequencing validated this deleted region in sd1, and we proposed a model of the sd1 gene that corrects errors in the literature. We also predicted the blast disease resistant (R) genes of TN1. Orthologues of the R genes in Tetep, a well-known resistant cultivar that is commonly used as a donor for breeding new blast resistant cultivars, were then sought in TN1, and if they were present, we looked for mutations. The absence of Pi54, a well-known R gene, in TN1 partially explains why TN1 is more susceptible to blast than Tetep. We also scanned the TN1 genome using the PosiGene software and identified 11 genes deemed to have undergone positive selection. Some of them are associated with drought-resistance and stress response. CONCLUSIONS We have redefined the deletion of the sd1 gene in TN1, a direct descendant of the Dee-geo-woo-gen cultivar, and have corrected some literature errors. Moreover, we have identified blast resistant genes and positively selected genes, including genes that characterize TN1's blast susceptibility and abiotic stress response. These new findings increase the potential of using TN1 to breed new rice cultivars.
Collapse
Affiliation(s)
- Jerome P. Panibe
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300 Taiwan
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115 Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023 China
| | - Yi-Chen Lee
- Biodiversity Research Center, Academia Sinica, Taipei, 115 Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung-Hsing University, Taichung, 40227 Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Wen-Hsiung Li
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, 300 Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 115 Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| |
Collapse
|
5
|
González-Morales S, Solís-Gaona S, Valdés-Caballero MV, Juárez-Maldonado A, Loredo-Treviño A, Benavides-Mendoza A. Transcriptomics of Biostimulation of Plants Under Abiotic Stress. Front Genet 2021; 12:583888. [PMID: 33613631 PMCID: PMC7888440 DOI: 10.3389/fgene.2021.583888] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Plant biostimulants are compounds, living microorganisms, or their constituent parts that alter plant development programs. The impact of biostimulants is manifested in several ways: via morphological, physiological, biochemical, epigenomic, proteomic, and transcriptomic changes. For each of these, a response and alteration occur, and these alterations in turn improve metabolic and adaptive performance in the environment. Many studies have been conducted on the effects of different biotic and abiotic stimulants on plants, including many crop species. However, as far as we know, there are no reviews available that describe the impact of biostimulants for a specific field such as transcriptomics, which is the objective of this review. For the commercial registration process of products for agricultural use, it is necessary to distinguish the specific impact of biostimulants from that of other legal categories of products used in agriculture, such as fertilizers and plant hormones. For the chemical or biological classification of biostimulants, the classification is seen as a complex issue, given the great diversity of compounds and organisms that cause biostimulation. However, with an approach focused on the impact on a particular field such as transcriptomics, it is perhaps possible to obtain a criterion that allows biostimulants to be grouped considering their effects on living systems, as well as the overlap of the impact on metabolism, physiology, and morphology occurring between fertilizers, hormones, and biostimulants.
Collapse
|
6
|
Lin F, Li S, Wang K, Tian H, Gao J, Zhao Q, Du C. A leucine-rich repeat receptor-like kinase, OsSTLK, modulates salt tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110465. [PMID: 32540023 DOI: 10.1016/j.plantsci.2020.110465] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 05/23/2023]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) have been widely associated with plant abiotic stress responses. However, the functions of the majority of LRR-RLKs has not been well defined. Here, we identified a novel rice LRR-RLK member involved in salt tolerance and designated as OsSTLK (Oryza sativa L. Salt-Tolerance LRR-RLK). Transcript analysis showed that OsSTLK was significantly induced in response to salt stress in rice shoot and root in a time and dosage-dependent fashion. Phenotypic observations indicated that OsSTLK overexpression exhibited reduced salt sensitivity, and improved salt stress tolerance. Further physiological analysis showed that OsSTLK overexpression remarkably reduced electrolyte leakage, malondialdehyde (MDA) content, reactive oxygen species (ROS) accumulation under salt stress conditions by up-regulating ROS-scavenging activities and modifying stomatal patterning. Moreover, Na+/K+ ratio and MAPK phosphorylation level were also reduced in OsSTLK-overexpression transgenic rice plants compared with WT control. Taken together, our findings suggested that OsSTLK as an important positive regulator of salt stress tolerance perhaps through regulating ROS scavenging system, Na+/K+ ratio and MAPK signal pathway.
Collapse
Affiliation(s)
- Faming Lin
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shen Li
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ke Wang
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haoran Tian
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junfeng Gao
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Changqing Du
- Collaborative Innovation Center of Henan Grain Crops, Rice Engineer Center in Henan Province, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Cheuk A, Ouellet F, Houde M. The barley stripe mosaic virus expression system reveals the wheat C2H2 zinc finger protein TaZFP1B as a key regulator of drought tolerance. BMC PLANT BIOLOGY 2020; 20:144. [PMID: 32264833 PMCID: PMC7140352 DOI: 10.1186/s12870-020-02355-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/23/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Drought stress is one of the major factors limiting wheat production globally. Improving drought tolerance is important for agriculture sustainability. Although various morphological, physiological and biochemical responses associated with drought tolerance have been documented, the molecular mechanisms and regulatory genes that are needed to improve drought tolerance in crops require further investigation. We have used a novel 4-component version (for overexpression) and a 3-component version (for underexpression) of a barley stripe mosaic virus-based (BSMV) system for functional characterization of the C2H2-type zinc finger protein TaZFP1B in wheat. These expression systems avoid the need to produce transgenic plant lines and greatly speed up functional gene characterization. RESULTS We show that overexpression of TaZFP1B stimulates plant growth and up-regulates different oxidative stress-responsive genes under well-watered conditions. Plants that overexpress TaZFP1B are more drought tolerant at critical periods of the plant's life cycle. Furthermore, RNA-Seq analysis revealed that plants overexpressing TaZFP1B reprogram their transcriptome, resulting in physiological and physical modifications that help wheat to grow and survive under drought stress. In contrast, plants transformed to underexpress TaZFP1B are significantly less tolerant to drought and growth is negatively affected. CONCLUSIONS This study clearly shows that the two versions of the BSMV system can be used for fast and efficient functional characterization of genes in crops. The extent of transcriptome reprogramming in plants that overexpress TaZFP1B indicates that the encoded transcription factor is a key regulator of drought tolerance in wheat.
Collapse
Affiliation(s)
- Arnaud Cheuk
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Francois Ouellet
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada
| | - Mario Houde
- Département des Sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, Québec, H3C 3P8, Canada.
| |
Collapse
|
8
|
Nongpiur RC, Singla-Pareek SL, Pareek A. The quest for osmosensors in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:595-607. [PMID: 31145792 DOI: 10.1093/jxb/erz263] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Osmotic stress has severe effects on crop productivity. Since climate change is predicted to exacerbate this problem, the development of new crops that are tolerant to osmotic stresses, especially drought and salinity stress, is required. However, only limited success has been achieved to date, primarily because of the lack of a clear understanding of the mechanisms that facilitate osmosensing. Here, we discuss the potential mechanisms of osmosensing in plants. We highlight the roles of proteins such as receptor-like kinases, which sense stress-induced cell wall damage, mechanosensitive calcium channels, which initiate a calcium-induced stress response, and phospholipase C, a membrane-bound enzyme that is integral to osmotic stress perception. We also discuss the roles of aquaporins and membrane-bound histidine kinases, which could potentially detect changes in extracellular osmolarity in plants, as they do in prokaryotes and lower eukaryotes. These putative osmosensors have the potential to serve as master regulators of the osmotic stress response in plants and could prove to be useful targets for the selection of osmotic stress-tolerant crops.
Collapse
Affiliation(s)
- Ramsong Chantre Nongpiur
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Pan J, Li Z, Wang Q, Yang L, Yao F, Liu W. An S-domain receptor-like kinase, OsESG1, regulates early crown root development and drought resistance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110318. [PMID: 31779898 DOI: 10.1016/j.plantsci.2019.110318] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 05/19/2023]
Abstract
Plant receptor-like kinase (RLKs) are serine/threonine protein kinases that play fundamental roles in development, innate immunity, and abiotic stress response. Here, we identified an S-domain receptor-like kinase OsESG1 from rice (Oryza sativa), and identified its involvement in early crown root (CR) development and drought response. The OsESG1 kinase domain possessed auto-phosphorylation activity and was able to phosphorylate MBP and His proteins. OsESG1 was expressed ubiquitously in all tissues that were examined, with relatively higher expression in the embryo. And it could be induced to express by treating with PEG, NaCl and ABA. Transgenic plants carrying anti-sense (AS) OsESG1 were generated by knockdown of OsESG1 expression. At the early seedling stage, AS lines had fewer CRs and shorter shoot compared with wild type (WT) plants. IAA flux and the genes' expressions of the auxin responsive and efflux carrier were infected in the AS lines. These results indicated that auxin signaling and polar auxin transport (PAT) were disrupted. The AS lines were more sensitive to osmotic stress compared to WT, and showed excessive accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), lower activities of antioxidant enzymes, and impaired expressions of stress-related genes under PEG treatment. Results above suggested that OsESG1 may regulate CR initiation and development by controlling auxin response and distribution, and participate in stress response by regulating the activities of antioxidants and expressions of stress-regulated genes.
Collapse
Affiliation(s)
- Jiaowen Pan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Zhen Li
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Qingguo Wang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Lianqun Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China
| | - Fangyin Yao
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| | - Wei Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Key Laboratory of Genetic Improvement, Ecology and Physiology of Crops, Jinan 250100, Shandong, China.
| |
Collapse
|
10
|
Xu L, Wang C, Cao W, Zhou S, Wu T. CLAVATA1-type receptor-like kinase CsCLAVATA1 is a putative candidate gene for dwarf mutation in cucumber. Mol Genet Genomics 2018; 293:1393-1405. [PMID: 29971484 DOI: 10.1007/s00438-018-1467-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/27/2018] [Indexed: 01/14/2023]
Abstract
Dwarf mutations have played vital roles in elucidating the regulatory molecular mechanisms of plant height. In this study, we identified a mutant named Csdw, whose mutagenesis was induced by ethyl methyl sulfonate in cucumber, and this mutant exhibited a dwarf phenotype with a reduced internode length because of the reduction of cell division in the main stem. The dwarf phenotype of Csdw could be partially rescued through GA3 application, and endogenous GA3 levels from the stem of Csdw decreased distinctly. Genetic analysis showed that Csdw was attributed to a recessive gene. The MutMap and Kompetitive Allele Specific PCR genotyping results revealed that Csa3G872760 (CsCLAVATA1), encoding a CLAVATA1-type receptor-like kinase, was a putative candidate gene for dwarf mutation in cucumber. The expression of CsCLAVATA1 in the stem of Csdw was lower than that of wild-type plants. Therefore, CsCLAVATA1 could regulate the dwarf phenotype in cucumber.
Collapse
Affiliation(s)
- Lilin Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Wen Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Shengmao Zhou
- Guangxi Academy of Agricultural Science, 174 Daxuedong Road, Nanning, 530007, China
| | - Tao Wu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
11
|
Bettembourg M, Dardou A, Audebert A, Thomas E, Frouin J, Guiderdoni E, Ahmadi N, Perin C, Dievart A, Courtois B. Genome-wide association mapping for root cone angle in rice. RICE (NEW YORK, N.Y.) 2017; 10:45. [PMID: 28971382 PMCID: PMC5624858 DOI: 10.1186/s12284-017-0184-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/19/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant root systems play a major role in anchoring and in water and nutrient uptake from the soil. The root cone angle is an important parameter of the root system architecture because, combined with root depth, it helps to determine the volume of soil explored by the plant. Two genes, DRO1 and SOR1, and several QTLs for root cone angle have been discovered in the last 5 years. RESULTS To find other QTLs linked to root cone angle, a genome-wide association mapping study was conducted on two panels of 162 indica and 169 japonica rice accessions genotyped with two sets of SNP markers (genotyping-by-sequencing set with approximately 16,000 markers and high-density-rice-array set with approximately 300,000 markers). The root cone angle of all accessions was measured using a screen protractor on images taken after 1 month of plant growth in the Rhizoscope phenotyping system. The distribution of the root cone angle in the indica panel was Gaussian, but several accessions of the japonica panel (all the bulus from Indonesia and three temperate japonicas from Nepal or India) appeared as outliers with a very wide root cone angle. The data were submitted to association mapping using a mixed model with control of structure and kinship. A total of 15 QTLs for the indica panel and 40 QTLs for the japonica panel were detected. Genes underlying these QTLs (+/-50 kb from the significant markers) were analyzed. We focused our analysis on auxin-related genes, kinases, and genes involved in root developmental processes and identified 8 particularly interesting genes. CONCLUSIONS The present study identifies new sources of wide root cone angle in rice, proposes ways to bypass some drawbacks of association mapping to further understand the genetics of the trait and identifies candidate genes deserving further investigation.
Collapse
Affiliation(s)
| | | | - Alain Audebert
- Cirad, UMR AGAP, F34398 Montpellier Cedex 5, France
- Cirad / ISRA-Ceraas, BP 3320 Thies, Senegal
| | | | | | | | | | | | - Anne Dievart
- Cirad, UMR AGAP, F34398 Montpellier Cedex 5, France
- Shanghai Jiao Tong University (SJTU), School of Life Sciences and Biotechnology, Shanghai, 200240 China
| | | |
Collapse
|
12
|
Liang WW, Huang JH, Li CP, Yang LT, Ye X, Lin D, Chen LS. MicroRNA-mediated responses to long-term magnesium-deficiency in Citrus sinensis roots revealed by Illumina sequencing. BMC Genomics 2017; 18:657. [PMID: 28836935 PMCID: PMC5571589 DOI: 10.1186/s12864-017-3999-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/01/2017] [Indexed: 01/17/2023] Open
Abstract
Background Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in ‘Xuegan’ (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. Results We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. Conclusions We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3999-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei-Wei Liang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Chun-Ping Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Lin
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Wang J, Liu S, Li C, Wang T, Zhang P, Chen K. PnLRR-RLK27, a novel leucine-rich repeats receptor-like protein kinase from the Antarctic moss Pohlia nutans, positively regulates salinity and oxidation-stress tolerance. PLoS One 2017; 12:e0172869. [PMID: 28241081 PMCID: PMC5328275 DOI: 10.1371/journal.pone.0172869] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 02/11/2017] [Indexed: 11/17/2022] Open
Abstract
Leucine-rich repeats receptor-like kinases (LRR-RLKs) play important roles in plant growth and development as well as stress responses. Here, 56 LRR-RLK genes were identified in the Antarctic moss Pohlia nutans transcriptome, which were further classified into 11 subgroups based on their extracellular domain. Of them, PnLRR-RLK27 belongs to the LRR II subgroup and its expression was significantly induced by abiotic stresses. Subcellular localization analysis showed that PnLRR-RLK27 was a plasma membrane protein. The overexpression of PnLRR-RLK27 in Physcomitrella significantly enhanced the salinity and ABA tolerance in their gametophyte growth. Similarly, PnLRR-RLK27 heterologous expression in Arabidopsis increased the salinity and ABA tolerance in their seed germination and early root growth as well as the tolerance to oxidative stress. PnLRR-RLK27 overproduction in these transgenic plants increased the expression of salt stress/ABA-related genes. Furthermore, PnLRR-RLK27 increased the activities of reactive oxygen species (ROS) scavengers and reduced the levels of malondialdehyde (MDA) and ROS. Taken together, these results suggested that PnLRR-RLK27 as a signaling regulator confer abiotic stress response associated with the regulation of the stress- and ABA-mediated signaling network.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Shenghao Liu
- Marine Ecology Research Center, The First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Chengcheng Li
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Tailin Wang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| | - Pengying Zhang
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Jinan, China
| | - Kaoshan Chen
- School of Life Science and National Glycoengineering Research Center, Shandong University, Jinan, China
| |
Collapse
|